Introduction and Fundamental Concepts (Lectures 1-7)

Size: px
Start display at page:

Download "Introduction and Fundamental Concepts (Lectures 1-7)"

Transcription

1 Introduction and Fundamental Concepts (Lectures -7) Q. Choose the crect answer (i) A fluid is a substance that (a) has the same shear stress at a point regardless of its motion (b) is practicall incompressible (c) cannot remain at rest under action of an shear fce (d) obes Newton s law of viscosit [Ans.(c)] (ii) F a Newtonian fluid (a) shear stress is proptional to shear strain (b) rate of shear stress is proptional to shear strain (c) shear stress is proptional to rate of shear strain (d) rate of shear stress is proptional to rate of shear strain [Ans.(c)] n du (iii) Shear stress f a general fluid motion is represented b τ + A, where n d and A are constants. A Newtonian fluid is given b (a) n > and A = (b) n = and A = (c) n > and A (d) n < and A = [Ans.(b)] (iv) If the relationship between the shear stress τ and the rate of shear strain du d is n du expressed asτ = m d. The fluid with the exponent n < is known as (a) Pseudoplastic fluid (b) Bingham fluid (c) Dilatant fluid (d) Newtonian fluid [Ans.(a)] (v) The increase in temperature (a) increases the viscosit of a liquid and decreases the viscosit of a gas (b) decreases the viscosit of a liquid and increases the viscosit of a gas (c) increases the viscosit of both a liquid and a gas (d) decreases the viscosit of both a liquid and a gas [Ans.(b)] (vi) The bulk modulus of elasticit f an ideal gas (equation of state p = ρrt, where p is the pressure, ρ is the densit, R is the characteristic gas constant and T is the absolute temperature) at constant temperature T is given b p (a) ρ

2 (b) RT (c) p (d) ρ RT [Ans.(c)] Q. A plate having an area of.4 m is sliding down the inclined plane at to the hizontal with a velocit of. m/s. There is a cushion of fluid mm thick between the plane and the plate. The weight of the plate is N. Assuming linear velocit profile in the film, find the viscosit of the fluid. The arrangement is shown in the figure below. Fluid τ. m/s W sin θ W W = N cos θ Component of weight along the slope isw sin. Velocit gradient is found to be du V V = = d h h where h is the thickness of the oil film and V is the velocit of the plate.. Viscous resistance F is given b F = τ A du V F A A d h At equilibrium, the viscous resistance to the motion should be equal to the component of the weight of the solid block along the slope. Thus, V A = Wsin h..4 = sin =. N-s/m

3 Q. A thin plate is placed between two flat surfaces h apart such that the viscosit of liquids on the top and bottom of the plate are and respectivel. Determine the position of the plate such that the viscous resistance to unifm motion of the plate is minimum. Let us assume that the velocit of the plate be V. Let F and F be the shear fces per unit area on the lower surface and upper surface of the thin plate respectivel. Let us also consider that the distance of the thin plate from the bottom wall is as shown in the figure below. h V From Newton s law of viscosit, shear stress on the bottom surface of the plate τ is given b du τ d V = Shear fce per unit area on the bottom surface of the plate is du V F d From Newton s law of viscosit, shear stress on the upper surface of the plate τ is given b du τ d where d = h ( Neglecting thickness of the plate) V τ h Shear fce per unit area on the upper surface of the plate is du V F d h Total viscous resistance to drag the plate is F = F+ F V V + h

4 F minimum F, we have df d = V V + = h ( ) ( h ) ( h ) ( h ) = = h = + Q4. A unifm film of oil. mm thick separates two discs, each of mm diameter, mounted coaxiall. Igning the edge effects, calculate the tque necessar to rotate one disc relative to other at a speed of 7 rev/s, if the oil has a viscosit of.4 Pa-s. At a radial distance r (measured from the axis of the discs) in the oil film ( figure below), the velocit v= π 7 r dv π 7 r = =.8 r d. ( is measured along the direction of the axis i.e., perpendicular to the discs) 7 rev/s R = mm Oil. mm r dr The fce acting on an elemental ption of the disc of thickness dr at a radial location r is given b df =.4.8 r π rdr ( ) 4

5 Cresponding tque Hence, ( ) dt =.4.8 r π rdr r ( ) R T = dt =.4.8 r πr dr ( where R, the radius of the disc = mm =. m) ( ) π. = = 7.4 N-m 4 Q. (a) Find the change in volume of. m of water at 6.7 C when subjected to a pressure increase of MN/m (The bulk modulus of elasticit of water at 6.7 C is 9.4 N/m ). (b) From the following test data, determine the bulk modulus of elasticit of water: at. MN/m, the volume was. m and at 4 MN/m, the volume was.99 m. (a) 6 Change in pressure p = N/m Initial volume of water V =. m Bulk modulus of elasticit is given b E p = = p E 6. = =.89 m 9.4 p = 4. =.MN/ m =. N/m (b) Change in pressure ( ) 6 Change in volume = (.99) =. m The bulk modulus of elasticit of water is 6 p. E = =. =. N/m. 9 Q6. A spherical soap bubble of diameter d coalesces with another bubble of diameter d to fm a single bubble of diameter d containing the same amount of air. Assuming isothermal process, derive an analtical expression f d as a function of d, d, the ambient pressure p and the surface tension of soap solution σ. If d = mm, d = 4 mm, p = kn/m and σ =.9 N/m, determine d.

6 From conservation of mass m+ m = m where m, m and m are the masses of air inside the bubbles of diameter d, d and d respectivel. F an isothermal process (considering air to behave as an ideal gas), the above leads to pd + pd = pd where p, p and p are the pressures inside the bubbles of diameter d, d and d respectivel. Now, 8σ p = p + d 8σ p = p + d 8σ p = p + d Hence, 8σ 8σ 8σ p + d + p + d = p + d d d d F the given values of d = mm, d = 4 mm, p = kn/m, σ =.9 N/m (.) + + (.4) = + d..4 d d 7. + d = 7. d which gives d = 4.6 m = 4.6 mm 6

Incompressible Viscous Flows

Incompressible Viscous Flows Incompressible Viscous Flows Q. Choose the crect answer (i) The maximum velocit of a one-dimensional incompressible full developed viscous flow between two fixed parallel plates is 6m/s. The mean velocit

More information

CHAPTER 1 Fluids and their Properties

CHAPTER 1 Fluids and their Properties FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those

More information

2, where dp is the constant, R is the radius of

2, where dp is the constant, R is the radius of Dynamics of Viscous Flows (Lectures 8 to ) Q. Choose the correct answer (i) The average velocity of a one-dimensional incompressible fully developed viscous flow between two fixed parallel plates is m/s.

More information

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like: 11/01/2017 Lecture 3 Properties of Fluids There are thermodynamic properties of fluids like: Pressure, p (N/m 2 ) or [ML -1 T -2 ], Density, ρ (kg/m 3 ) or [ML -3 ], Specific weight, γ = ρg (N/m 3 ) or

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1

University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1 University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING ME 311 - Fluid Mechanics Lecture notes Chapter 1 Introduction and fluid properties Prepared by : Dr. N. Ait Messaoudene Based

More information

ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4. (Buoyancy and Viscosity of water)

ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4. (Buoyancy and Viscosity of water) ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4 (Buoyancy and Viscosity of water) 16. BUOYANCY Whenever an object is floating in a fluid or when it is completely submerged in

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first

More information

Petroleum Engineering Dept. Fluid Mechanics Second Stage Dr. Ahmed K. Alshara

Petroleum Engineering Dept. Fluid Mechanics Second Stage Dr. Ahmed K. Alshara Continents Chapter 1. Fluid Mechanics -Properties of fluids -Density, specific gravity, specific volume and Viscosity -Newtonian and non Newtonian fluids -Surface tension Compressibility -Pressure -Cavitations

More information

MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =-6 (1/2) 2 = -3/2 m/s

MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =-6 (1/2) 2 = -3/2 m/s MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER ) FALL 018 1) For the velocity fields given below, determine: i) Whether the flow field is one-, two-, or three-dimensional, and why. ii) Whether the flow

More information

Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara

Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara Continents Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara Chapter 1. Fluid Mechanics -Properties of fluids -Density, specific gravity, specific volume and

More information

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

More information

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Reading Assignments Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 1 You can find the answers of some of the following

More information

Fluid Mechanics Introduction

Fluid Mechanics Introduction Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be

More information

Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi

Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi WHAT we will learn I. Characterization of Fluids - What is the fluid? (Physical properties of Fluid) II. Behavior of fluids - Fluid

More information

Homework of chapter (1) (Solution)

Homework of chapter (1) (Solution) بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanics-discussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First

More information

Fluid Mechanics Discussion. Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad

Fluid Mechanics Discussion. Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad Discussion Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad 2014-2015 Chapter (1) Fluids and their Properties Fluids and their Properties Fluids (Liquids or gases) which a substance

More information

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

More information

HYDRAULICS STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL HYDRAULICS

HYDRAULICS STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL HYDRAULICS 1 STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL Syllabus Hydraulics ( Fluid Mechanics ) Fluid properties, hydrostatics, measurements of flow, Bernoulli's theorem and its application, flow

More information

We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from

We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from Chapter 1. Introduction 1.1 Some Characteristics of Fluids We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from scientific or engineering point of view. In

More information

AMME2261: Fluid Mechanics 1 Course Notes

AMME2261: Fluid Mechanics 1 Course Notes Module 1 Introduction and Fluid Properties Introduction Matter can be one of two states: solid or fluid. A fluid is a substance that deforms continuously under the application of a shear stress, no matter

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:

More information

(Refer Slide Time: 2:14)

(Refer Slide Time: 2:14) Fluid Dynamics And Turbo Machines. Professor Dr Shamit Bakshi. Department Of Mechanical Engineering. Indian Institute Of Technology Madras. Part A. Module-1. Lecture-3. Introduction To Fluid Flow. (Refer

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Review of Fluid Mechanics

Review of Fluid Mechanics Chapter 3 Review of Fluid Mechanics 3.1 Units and Basic Definitions Newton s Second law forms the basis of all units of measurement. For a particle of mass m subjected to a resultant force F the law may

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

Fluids and their Properties

Fluids and their Properties Chapter (1) Fluids and their Properties Dr. KHALIL MAHMOUD ALASTAL Eng.Mohammed AbuRahma Eng.Reem Sbaih 2017 Newton s Law of Viscosity: - / Non-Newtonian Fluids: - Mass Density: - / Specific weight: -

More information

Please remember all the unit that you use in your calculation. There are no marks for correct answer without unit.

Please remember all the unit that you use in your calculation. There are no marks for correct answer without unit. CHAPTER 1 : PROPERTIES OF FLUIDS What is fluid? A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called

More information

Pharmaceutics I. Unit 6 Rheology of suspensions

Pharmaceutics I. Unit 6 Rheology of suspensions Pharmaceutics I اينالديصيدلينيات 1 Unit 6 Rheology of suspensions 1 Rheology, the science of the flow or deformation of matter (liquid or soft solid) under the effect of an applied force. It addresses

More information

Polymerization Technology Laboratory Course

Polymerization Technology Laboratory Course Polymerization Technology Laboratory Course Viscometry/Rheometry Tasks 1. Comparison of the flow behavior of polystyrene- solution and dispersion systems 2. Determination of the flow behaviour of polyvinylalcohol

More information

Boiling Heat Transfer and Two-Phase Flow Fall 2012 Rayleigh Bubble Dynamics. Derivation of Rayleigh and Rayleigh-Plesset Equations:

Boiling Heat Transfer and Two-Phase Flow Fall 2012 Rayleigh Bubble Dynamics. Derivation of Rayleigh and Rayleigh-Plesset Equations: Boiling Heat Transfer and Two-Phase Flow Fall 2012 Rayleigh Bubble Dynamics Derivation of Rayleigh and Rayleigh-Plesset Equations: Let us derive the Rayleigh-Plesset Equation as the Rayleigh equation can

More information

CE MECHANICS OF FLUIDS UNIT I

CE MECHANICS OF FLUIDS UNIT I CE 6303- MECHANICS OF FLUIDS UNIT I 1. Define specific volume of a fluid and write its unit [N/D-14][M/J-11] Volume per unit mass of a fluid is called specific volume. Unit: m3 / kg. 2. Name the devices

More information

AGITATION AND AERATION

AGITATION AND AERATION AGITATION AND AERATION Although in many aerobic cultures, gas sparging provides the method for both mixing and aeration - it is important that these two aspects of fermenter design be considered separately.

More information

1. The Properties of Fluids

1. The Properties of Fluids 1. The Properties of Fluids [This material relates predominantly to modules ELP034, ELP035] 1.1 Fluids 1.1 Fluids 1.2 Newton s Law of Viscosity 1.3 Fluids Vs Solids 1.4 Liquids Vs Gases 1.5 Causes of viscosity

More information

Chapter 3 Non-Newtonian fluid

Chapter 3 Non-Newtonian fluid Chapter 3 Non-Newtonian fluid 3-1. Introduction: The study of the deformation of flowing fluids is called rheology; the rheological behavior of various fluids is sketchen Figure 3-1. Newtonian fluids,

More information

P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid.

P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid. CEE 3310 Thermodynamic Properties, Aug. 27, 2010 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

More information

Liquids and solids are essentially incompressible substances and the variation of their density with pressure is usually negligible.

Liquids and solids are essentially incompressible substances and the variation of their density with pressure is usually negligible. Properties of Fluids Intensive properties are those that are independent of the mass of a system i.e. temperature, pressure and density. Extensive properties are those whose values depend on the size of

More information

Pharmaceutics I صيدالنيات 1. Unit 6

Pharmaceutics I صيدالنيات 1. Unit 6 Pharmaceutics I صيدالنيات 1 Unit 6 1 Rheology of suspensions Rheology, the study of flow, addresses the viscosity characteristics of powders, fluids, and semisolids. Materials are divided into two general

More information

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION INTRODUCTION DEFINITION OF FLUID plate solid F at t = 0 t > 0 = F/A plate U p F fluid t 0 t 1 t 2 t 3 FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

More information

This chapter is a study of the shear stress as a function of the shear rate for Newtonian and non-newtonian biological materials.

This chapter is a study of the shear stress as a function of the shear rate for Newtonian and non-newtonian biological materials. Lecture 10 and Flow (Ch. 6) This chapter is a study of the shear stress as a function of the shear rate for Newtonian and non-newtonian biological materials. 1 Lecture 10 and Flow (Ch. 6) When a fluid

More information

Fluid Mechanics II. Newton s second law applied to a control volume

Fluid Mechanics II. Newton s second law applied to a control volume Fluid Mechanics II Stead flow momentum equation Newton s second law applied to a control volume Fluids, either in a static or dnamic motion state, impose forces on immersed bodies and confining boundaries.

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

MECHANICAL PROPERTIES OF FLUIDS:

MECHANICAL PROPERTIES OF FLUIDS: Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

More information

Lecturer, Department t of Mechanical Engineering, SVMIT, Bharuch

Lecturer, Department t of Mechanical Engineering, SVMIT, Bharuch Fluid Mechanics By Ashish J. Modi Lecturer, Department t of Mechanical Engineering, i SVMIT, Bharuch Review of fundamentals Properties of Fluids Introduction Any characteristic of a system is called a

More information

BME 419/519 Hernandez 2002

BME 419/519 Hernandez 2002 Vascular Biology 2 - Hemodynamics A. Flow relationships : some basic definitions Q v = A v = velocity, Q = flow rate A = cross sectional area Ohm s Law for fluids: Flow is driven by a pressure gradient

More information

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum

More information

COURSE NUMBER: ME 321 Fluid Mechanics I. Fluid: Concept and Properties

COURSE NUMBER: ME 321 Fluid Mechanics I. Fluid: Concept and Properties COURSE NUMBER: ME 321 Fluid Mechanics I Fluid: Concept and Properties Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 What is Fluid Mechanics? Fluid mechanics

More information

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring ROTATIONAL STRESSES INTRODUCTION High centrifugal forces are developed in machine components rotating at a high angular speed of the order of 100 to 500 revolutions per second (rps). High centrifugal force

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

MECHANICAL PROPERTIES

MECHANICAL PROPERTIES MECHANICAL PROPERTIES Rheology S.C. BAYNE, 1 J.Y. Thompson 2 1 University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078 sbayne@umich.edu 2 Nova Southeastern College of Dental Medicine, Ft.

More information

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

More information

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5 BTECH MECHANICAL PRINCIPLES AND APPLICATIONS Level 3 Unit 5 FORCES AS VECTORS Vectors have a magnitude (amount) and a direction. Forces are vectors FORCES AS VECTORS (2 FORCES) Forces F1 and F2 are in

More information

Module 3: "Thin Film Hydrodynamics" Lecture 11: "" The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces

Module 3: Thin Film Hydrodynamics Lecture 11:  The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces Order of Magnitude Analysis file:///e /courses/colloid_interface_science/lecture11/11_1.htm[6/16/2012 1:39:56 PM]

More information

Steven Burian Civil & Environmental Engineering September 25, 2013

Steven Burian Civil & Environmental Engineering September 25, 2013 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

More information

Solution. a) (425 mn) 2 = 3425(10-3 ) N4 2 = N 2 Ans. b) ( ms) 2 = 367.3(10 3 )(10-3 ) s4 2 = 4.53(10 3 ) s 2 Ans.

Solution. a) (425 mn) 2 = 3425(10-3 ) N4 2 = N 2 Ans. b) ( ms) 2 = 367.3(10 3 )(10-3 ) s4 2 = 4.53(10 3 ) s 2 Ans. 1 1. Evaluate each of the following to three significant figures, and express each answer in SI units using an appropriate prefix: (a) (45 mn), (b) (67 300 ms), (c) 373(10 6 )4 1> mm. a) (45 mn) = 345(10-3

More information

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

More information

AN EXPERIMETAL STUDY ON THE FLUID PROPERTIES OF LIQUEFIED SAND DURING ITS FLOW

AN EXPERIMETAL STUDY ON THE FLUID PROPERTIES OF LIQUEFIED SAND DURING ITS FLOW th World Conference on Earthquake Engineering ancouver, B.C., Canada August -6, 4 Paper No. 64 AN EXPERIMETAL STUDY ON TE FLUID PROPERTIES OF LIQUEFIED SAND DURING ITS FLOW Masanori AMADA, Yuji TAKAASI

More information

Momentum (Newton s 2nd Law of Motion)

Momentum (Newton s 2nd Law of Motion) Dr. Nikos J. Mourtos AE 160 / ME 111 Momentum (Newton s nd Law of Motion) Case 3 Airfoil Drag A very important application of Momentum in aerodynamics and hydrodynamics is the calculation of the drag of

More information

Fluid Mechanics-61341

Fluid Mechanics-61341 An-Najah National University College of Engineering Fluid Mechanics-61341 Chapter [1] Fundamentals 1 The Book (Elementary Fluid Mechanics by Street, Watters and Vennard) Each chapter includes: Concepts

More information

PROPERTIES OF FLUIDS

PROPERTIES OF FLUIDS Unit - I Chapter - PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pa-s To find : Shear stress. Step - : Calculate the shear stress at various

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Chapter 6 Molten State

Chapter 6 Molten State Chapter 6 Molten State Rheology ( 流變學 ) study of flow and deformation of (liquid) fluids constitutive (stress-strain) relation of fluids shear flow shear rate ~ dγ/dt ~ velocity gradient dv 1 = dx 1 /dt

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline - Lectures weeks 9-12 Chapter 6: Balance in nature - description of energy balance

More information

1 FLUIDS AND THEIR PROPERTIES

1 FLUIDS AND THEIR PROPERTIES FLUID MECHANICS CONTENTS CHAPTER DESCRIPTION PAGE NO 1 FLUIDS AND THEIR PROPERTIES PART A NOTES 1.1 Introduction 1.2 Fluids 1.3 Newton s Law of Viscosity 1.4 The Continuum Concept of a Fluid 1.5 Types

More information

Viscosity * Desmond Schipper Andrew R. Barron. 1 Introduction

Viscosity * Desmond Schipper Andrew R. Barron. 1 Introduction OpenStax-CNX module: m50215 1 Viscosity * Desmond Schipper Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract This module discusses

More information

ME3250 Fluid Dynamics I

ME3250 Fluid Dynamics I ME3250 Fluid Dynamics I Section I, Fall 2012 Instructor: Prof. Zhuyin Ren Department of Mechanical Engineering University of Connecticut Course Information Website: http://www.engr.uconn.edu/~rzr11001/me3250_f12/

More information

EART162: PLANETARY INTERIORS

EART162: PLANETARY INTERIORS EART162: PLANETARY INTERIORS Francis Nimmo Last Week Global gravity variations arise due to MoI difference (J 2 ) We can also determine C, the moment of inertia, either by observation (precession) or by

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

Rheology and Constitutive Equations. Rheology = Greek verb to flow. Rheology is the study of the flow and deformation of materials.

Rheology and Constitutive Equations. Rheology = Greek verb to flow. Rheology is the study of the flow and deformation of materials. Rheology and Constitutive Equations Rheology = Greek verb to flow Rheology is the study of the flow and deformation of materials. The focus of rheology is primarily on the study of fundamental, or constitutive,

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013 Lecture 1 3/13/13 University of Washington Department of Chemistry Chemistry 53 Winter Quarter 013 A. Definition of Viscosity Viscosity refers to the resistance of fluids to flow. Consider a flowing liquid

More information

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2B.11 Page 1 of 5

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2B.11 Page 1 of 5 BS Transport Phenomena 2e Revised: Chapter 2 - Problem 2B11 Page 1 of 5 Problem 2B11 The cone-and-plate viscometer (see Fig 2B11 A cone-and-plate viscometer consists of a flat plate and an inverted cone,

More information

Dynamic (absolute) Viscosity

Dynamic (absolute) Viscosity Viscosity Taken from: http://www.engineeringtoolbox.com/dynamic-absolute-kinematic-viscosity-d_412.html The viscosity of a fluid is an important property in the analysis of liquid behavior and fluid motion

More information

ACE Engineering College

ACE Engineering College ACE Engineering College Ankushapur (V), Ghatkesar (M), R.R.Dist 501 301. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * MECHANICS OF FLUIDS & HYDRAULIC

More information

Viscosity and Polymer Melt Flow. Rheology-Processing / Chapter 2 1

Viscosity and Polymer Melt Flow. Rheology-Processing / Chapter 2 1 Viscosity and Polymer Melt Flow Rheology-Processing / Chapter 2 1 Viscosity: a fluid property resistance to flow (a more technical definition resistance to shearing) Remember that: τ μ du dy shear stress

More information

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) Test Midterm 1 F2013 MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct nswer in the Questions Below.) 1. The absolute viscosity µ of a fluid is primarily a function

More information

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste, CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance

More information

PHYSICAL MECHANISM OF CONVECTION

PHYSICAL MECHANISM OF CONVECTION Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

More information

Class Notes Fall 2014

Class Notes Fall 2014 57:020 Fluid Mechanics Class Notes Fall 2014 Prepared by: Professor Fred Stern Typed by: Stephanie Schrader (Fall 1999) Corrected by: Jun Shao (Fall 2003, Fall 2005) Corrected by: Jun Shao, Tao Xing (Fall

More information

Fluid Properties and Units

Fluid Properties and Units Fluid Properties and Units CVEN 311 Continuum Continuum All materials, solid or fluid, are composed of molecules discretely spread and in continuous motion. However, in dealing with fluid-flow flow relations

More information

Find the magnitude of F when t = 2. (9 marks)

Find the magnitude of F when t = 2. (9 marks) Condensed M2 Paper These questions are all taken from a Mechanics 2 exam paper, but any intermediate steps and diagrams have been removed, leaving enough information to answer the question, but none of

More information

ch-01.qxd 8/4/04 2:33 PM Page 1 Part 1 Basic Principles of Open Channel Flows

ch-01.qxd 8/4/04 2:33 PM Page 1 Part 1 Basic Principles of Open Channel Flows ch-01.qxd 8/4/04 2:33 PM Page 1 Part 1 Basic Principles of Open Channel Flows ch-01.qxd 8/4/04 2:33 PM Page 3 Introduction 1 Summary The introduction chapter reviews briefly the basic fluid properties

More information

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW 4.1 Introduction Boundary layer concept (Prandtl 1904): Eliminate selected terms in the governing equations Two key questions (1) What are the

More information

Unit operations of chemical engineering

Unit operations of chemical engineering 1 Unit operations of chemical engineering Fourth year Chemical Engineering Department College of Engineering AL-Qadesyia University Lecturer: 2 3 Syllabus 1) Boundary layer theory 2) Transfer of heat,

More information

Fluid Mechanics Abdusselam Altunkaynak

Fluid Mechanics Abdusselam Altunkaynak Fluid Mechanics Abdusselam Altunkaynak 1. Unit systems 1.1 Introduction Natural events are independent on units. The unit to be used in a certain variable is related to the advantage that we get from it.

More information

Sliding Contact Bearings

Sliding Contact Bearings Sliding Contact Bearings Classification of Bearings 1. According to the direction of load to be supported. The bearings under this group are classified as: (a) Radial bearings (b) Thrust bearings. In radial

More information

STRESS, STRAIN AND DEFORMATION OF SOLIDS

STRESS, STRAIN AND DEFORMATION OF SOLIDS VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I -------------------------------------------------------------------------------------------------------------------------------

More information

INTRODUCTION TO FLUID MECHANICS June 27, 2013

INTRODUCTION TO FLUID MECHANICS June 27, 2013 INTRODUCTION TO FLUID MECHANICS June 27, 2013 PROBLEM 3 (1 hour) A perfect liquid of constant density ρ and constant viscosity µ fills the space between two infinite parallel walls separated by a distance

More information

I9 Lateral deflections of circular plates

I9 Lateral deflections of circular plates I9 Lateral deflections of circular plates 19.1 Introduction In this chapter, consideration will be made of three classes of plate problem, namely (i) (ii) (iii) small deflections ofplates, where the maximum

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 3-0-0 Introduction to Aerospace Engineering Aerodynamics 5 & 6 Prof. H. Bijl ir. N. Timmer Delft University of Technology 5. Compressibility

More information

Boundary Conditions in Fluid Mechanics

Boundary Conditions in Fluid Mechanics Boundary Conditions in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University The governing equations for the velocity and pressure fields are partial

More information

Formulae that you may or may not find useful. E v = V. dy dx = v u. y cp y = I xc/a y. Volume of an entire sphere = 4πr3 = πd3

Formulae that you may or may not find useful. E v = V. dy dx = v u. y cp y = I xc/a y. Volume of an entire sphere = 4πr3 = πd3 CE30 Test 1 Solution Key Date: 26 Sept. 2017 COVER PAGE Write your name on each sheet of paper that you hand in. Read all questions very carefully. If the problem statement is not clear, you should ask

More information

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum)

- Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum) 2.20 - Marine Hydrodynamics, Spring 2005 Lecture 4 2.20 - Marine Hydrodynamics Lecture 4 Introduction Governing Equations so far: Knowns Equations # Unknowns # density ρ( x, t) Continuity 1 velocities

More information

12.1 Viscous potential flow (VPF)

12.1 Viscous potential flow (VPF) 1 Energy equation for irrotational theories of gas-liquid flow:: viscous potential flow (VPF), viscous potential flow with pressure correction (VCVPF), dissipation method (DM) 1.1 Viscous potential flow

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Spherical Pressure Vessels

Spherical Pressure Vessels Spherical Pressure Vessels Pressure vessels are closed structures containing liquids or gases under essure. Examples include tanks, pipes, essurized cabins, etc. Shell structures : When essure vessels

More information

7. STRESS ANALYSIS AND STRESS PATHS

7. STRESS ANALYSIS AND STRESS PATHS 7-1 7. STRESS ANALYSIS AND STRESS PATHS 7.1 THE MOHR CIRCLE The discussions in Chapters and 5 were largely concerned with vertical stresses. A more detailed examination of soil behaviour requires a knowledge

More information