P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid.


 Gerald Edwards
 2 years ago
 Views:
Transcription
1 CEE 3310 Thermodynamic Properties, Aug. 27, Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container will form a free surface in a gravitational field (and mix minimally with any atmosphere) while a gas will form an atmosphere (and eventually mix with an existing atmosphere). While buoyancy forces are important in each, gravity is generally an important forcing term in free surface liquid flows and not in atmospheric (gas) flows. We consider a fluid to be a continuum i.e., it is continuously differentiable. Dimensional consistency F = ma [MLT 2 ] = [M][LT 2 ]. A dimensionally consistent equation may be based on physics, an inconsistent equation is certainly not physically based. 1.5 Thermodynamic Properties Temperature Measure of internal energy level. Pressure Measure of compressive (normal) stress at a point. P = 1 3 (σ xx + σ yy + σ zz ) = F A It is created by the bombardment of the surface by molecules of fluid. Density ρ = Mass Volume There is less than a 1% change in the density of water over the standard range of temperatures seen in the environment yet this difference can be very important! Specific Weight γ = ρg = weight volume
2 12 Density (kg/m 3 ) Temperture ( C) γ water =62.4 lbs/ft Specific Gravity The specific gravity is the density of a substance normalized by the density of water at a certain temperature, often 4 C, the temperature of maximum density at normal pressures. Hence we write S.G. = ρ ρ 4 C S.G. of sands and gravels is about = ρ in S.I. units 1000 kg/m3 1.6 Perfect Gas Law P = ρrθ where R is the specific gas constant which can be expressed as R = C P C V where C P is the specific heat at constant pressure and C V is the specific heat at constant volume.
3 CEE 3310 Thermodynamic Properties, Aug. 27, We also can write R = Λ MW gas where Λ is the universal gas constant (8314 m 2 s 2 K 1 ) and MW gas is the molecular weight of the gas. Let s check the units Example Find ρ and γ for CO 2 at 100 C. P = [M] [L 3 ] [L 2 ] [T 2 Θ] Θ = [M] [LT 2 ] = [ML] [L 2 T 2 ] = Force Area ρ=1.44 kg/m 3 ; S.G.=14.1 N/m Viscosity d 1 = u 1 dt d 2 = u 2 dt = (u 1 + du)dt Strain = d 2 d 1 = (u 1 + du u 1 )dt = du dt
4 14 For solids we know that stress is proportional to strain. In fluids we find that stress is proportional to strain rate. Strain rate = du dt dt = du the velocity gradient is the strain rate! Therefore since Therefore µ = τ du stress strain rate (1.1) τ du (1.2) τ = µ du (1.3) = [MLT 2 L 2 ] [LT 1 ] [L] = [M] [LT] what is this? Momentum has the units of mass times velocity hence we can interpret µ as having the dimensions of momentum per area. Thus we can think of µ, known as the viscosity, as the amount of momentum transported by molecular activity across a given area. Thus highly viscous fluids (honey) transport lots of momentum and tend to be harder to move (be more sticky) as you have to move the whole fluid while low viscosity fluids (water) tend to be easier to move as only a small parcel of fluid is affected by trying to move a a thin slab of fluid Kinematic Viscosity If we normalize the viscosity by the density we have the kinematic viscosity. ν = µ ρ = [L2 ] [T] At 20 C water has an absolute or dynamic viscosity of Nsm 2 (or Pas) and a kinematic viscosity of m 2 s 1.
5 CEE 3310 Thermodynamic Properties, Aug. 27, Now, if we have a thin gap filled with a fluid but the solid surfaces on either side of the gap have some relative velocity (e.g., one surface is fixed but the other is moving) then there will be stress on either solid surface transmitted by the fluid. The molecules on either solid boundary must be moving at the speed of the boundary, this is known as the noslip boundary condition. If the fluid filled gap is long compared to its width then we can ignore what happens at the end of the gap and, if the system is at steady state (meaning the velocity profile of the fluid in the gap is no longer changing in time) then we would find that the velocity profile just varies linearly, going from the velocity of the one boundary to the velocity of the other boundary. We will actually solve for the exact solution from the equations of motion later in the semester! A linear velocity variation is a constant velocity gradient hence the fluid stress is constant, just equal to the fluid viscosity times the constant velocity gradient. This is perhaps best illustrated by an example Example  A block sliding down an inclined plane If the block has mass 1 kg: 1. Determine the viscosity, µ, of the lubricant fluid in the gap. 2. What speed will the block travel if the angle, θ, is adjusted to 10 and the gap, δ, is decreased to 0.5 mm
6 16 1) µ = kg m s (= N s m 2 = Pa s); 2) V = m s
7 CEE 3310 Thermodynamic Properties, Aug. 27, Review System of units B.G., S.I. Be careful and be comfortable in both! Thermodynamic properties Θ, P, ρ(θ, P) Perfect Gas Law Viscosity stress strain rate τ = µ du 1.9 Vapor Pressure If initially we start with a vacuum, over time a pressure will form as the result of molecular action. Particles leave the surface. Eventually an equilibrium pressure is achieved as the same number of particles leave the surface as return to it. This pressure is known as the vapor pressure of the fluid and is denoted p v. As we will see in a few weeks, fluid motions can lead to very low pressures. If p p v the fluid will boil. This process is known as cavitation Surface Tension The water molecule is polar. The O attracts the H +. Within the fluid this attraction is in balance, i.e., the net force due to all of the polar pairs is zero. However, at the surface half of this force is missing and the surface is pulled toward the fluid interior with
8 18 a certain energy. surface energy = J m 2 = N m m 2 = N m = force length = tension hence we refer to this energy as the surface tension (Υ) Example the pressure in a bubble Tension force = 2πRΥ Pressure force = (P I P E )πr 2 P = P I P E = 2πRΥ πr 2 = 2Υ R The Contact Angle In the case of a bubble we only had to concern ourselves with a liquid gas interface but often we find we have three phases present (a liquidgassolid interface) for example, when you fill your glass with water and you get a contact line around the circumference of the glass at the airwaterglass interface. You ve all likely noticed that the contact line rises locally, appearing to adhere to and be lifted by the glass boundary forming what is known as a meniscus, the region local to the solid boundary where the gasliquid
9 CEE 3310 Thermodynamic Properties, Aug. 27, interface is curved. The angle that is formed at this threephase interface is known as the contact angle and is defined as the angle between the line originating from the threephase contact point tangent to the liquidgas interface and the tangent to the solid boundary as measured through the liquid, e.g., When the liquid seems to spread easily over the boundary, the contact angle is θ c < 90 and we refer to the liquid as wetting, as in the case of water on glass, which is totally wetting giving θ c 0. When the liquid resists spreading over the boundary, instead trying to form a droplet, the contact angle is θ c > 90 and we refer to the liquid as nonwetting, as in the case of water on teflon (θ c 110) nd Example A water barometer You are planning on constructing your own water barometer. This will be constructed by filling a long cylindrical glass tube sealed at one end with water and then carefully inverting it so that the mouth of the tube stays wet. The free surface of the water drops to a given elevation and you can measure the height of the water above the reservoir below to calculate the atmospheric pressure. There are at least two important fluid properties that affect the accuracy of your water barometer, what are they?
10 20 What minimum diameter must the tube be if you want the capillary induced rise in the tube to be less than 1 mm (assume 20 C water)? If the atmospheric pressure is 30 in Hg, what is the correction you need to apply to the barometer reading to account for the effect of vapor pressure on your reading?
AMME2261: Fluid Mechanics 1 Course Notes
Module 1 Introduction and Fluid Properties Introduction Matter can be one of two states: solid or fluid. A fluid is a substance that deforms continuously under the application of a shear stress, no matter
More informationCHAPTER 1 Fluids and their Properties
FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those
More informationWe may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from
Chapter 1. Introduction 1.1 Some Characteristics of Fluids We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from scientific or engineering point of view. In
More informationCHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.
CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,
More informationINTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION
INTRODUCTION DEFINITION OF FLUID plate solid F at t = 0 t > 0 = F/A plate U p F fluid t 0 t 1 t 2 t 3 FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION
More informationLagrangian description from the perspective of a parcel moving within the flow. Streamline Eulerian, tangent line to instantaneous velocity field.
Chapter 2 Hydrostatics 2.1 Review Eulerian description from the perspective of fixed points within a reference frame. Lagrangian description from the perspective of a parcel moving within the flow. Streamline
More informationPetroleum Engineering Dept. Fluid Mechanics Second Stage Dr. Ahmed K. Alshara
Continents Chapter 1. Fluid Mechanics Properties of fluids Density, specific gravity, specific volume and Viscosity Newtonian and non Newtonian fluids Surface tension Compressibility Pressure Cavitations
More informationFluid Mechanics Introduction
Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be
More informationPetroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara
Continents Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara Chapter 1. Fluid Mechanics Properties of fluids Density, specific gravity, specific volume and
More informationHYDRAULICS STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL HYDRAULICS
1 STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL Syllabus Hydraulics ( Fluid Mechanics ) Fluid properties, hydrostatics, measurements of flow, Bernoulli's theorem and its application, flow
More informationLecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:
11/01/2017 Lecture 3 Properties of Fluids There are thermodynamic properties of fluids like: Pressure, p (N/m 2 ) or [ML 1 T 2 ], Density, ρ (kg/m 3 ) or [ML 3 ], Specific weight, γ = ρg (N/m 3 ) or
More informationUniversity of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1
University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING ME 311  Fluid Mechanics Lecture notes Chapter 1 Introduction and fluid properties Prepared by : Dr. N. Ait Messaoudene Based
More informationChapter 1 Fluid Characteristics
Chapter 1 Fluid Characteristics 1.1 Introduction 1.1.1 Phases Solid increasing increasing spacing and intermolecular liquid latitude of cohesive Fluid gas (vapor) molecular force plasma motion 1.1.2 Fluidity
More informationFluid Properties and Units
Fluid Properties and Units CVEN 311 Continuum Continuum All materials, solid or fluid, are composed of molecules discretely spread and in continuous motion. However, in dealing with fluidflow flow relations
More informationIntroduction to Marine Hydrodynamics
1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first
More informationLiquids and solids are essentially incompressible substances and the variation of their density with pressure is usually negligible.
Properties of Fluids Intensive properties are those that are independent of the mass of a system i.e. temperature, pressure and density. Extensive properties are those whose values depend on the size of
More informationHomework of chapter (1) (Solution)
بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanicsdiscussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First
More informationPart II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi
Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi WHAT we will learn I. Characterization of Fluids  What is the fluid? (Physical properties of Fluid) II. Behavior of fluids  Fluid
More informationClass Notes Fall 2014
57:020 Fluid Mechanics Class Notes Fall 2014 Prepared by: Professor Fred Stern Typed by: Stephanie Schrader (Fall 1999) Corrected by: Jun Shao (Fall 2003, Fall 2005) Corrected by: Jun Shao, Tao Xing (Fall
More informationWelcome to MECH 280. Ian A. Frigaard. Department of Mechanical Engineering, University of British Columbia. Mech 280: Frigaard
Welcome to MECH 280 Ian A. Frigaard Department of Mechanical Engineering, University of British Columbia Lectures 1 & 2: Learning goals/concepts: What is a fluid Apply continuum hypothesis Stress and viscosity
More informationNicholas J. Giordano. Chapter 10 Fluids
Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according
More informationMECHANICAL PROPERTIES OF FLUIDS:
Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is
More informationLecturer, Department t of Mechanical Engineering, SVMIT, Bharuch
Fluid Mechanics By Ashish J. Modi Lecturer, Department t of Mechanical Engineering, i SVMIT, Bharuch Review of fundamentals Properties of Fluids Introduction Any characteristic of a system is called a
More informationPlease remember all the unit that you use in your calculation. There are no marks for correct answer without unit.
CHAPTER 1 : PROPERTIES OF FLUIDS What is fluid? A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called
More informationMECHANICAL PROPERTIES OF FLUIDS
CHAPTER10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure
More informationMM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =6 (1/2) 2 = 3/2 m/s
MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER ) FALL 018 1) For the velocity fields given below, determine: i) Whether the flow field is one, two, or threedimensional, and why. ii) Whether the flow
More informationA drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension
A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:
More informationTOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant ForcesArchimedes Principle
Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant ForcesArchimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation
More informationFluid Mechanics61341
AnNajah National University College of Engineering Fluid Mechanics61341 Chapter [1] Fundamentals 1 The Book (Elementary Fluid Mechanics by Street, Watters and Vennard) Each chapter includes: Concepts
More informationSteven Burian Civil & Environmental Engineering September 25, 2013
Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session
More informationChapter 1 Fluid Proper2es. CE Fluid Mechanics Diogo Bolster
Chapter 1 Fluid Proper2es CE30460  Fluid Mechanics Diogo Bolster What is a Fluid? A substance that deforms con2nuously when acted on by a shearing stress A solid will deform to a certain point for a given
More informationFluid Mechanics. du dy
FLUID MECHANICS Technical English  I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's
More informationME3250 Fluid Dynamics I
ME3250 Fluid Dynamics I Section I, Fall 2012 Instructor: Prof. Zhuyin Ren Department of Mechanical Engineering University of Connecticut Course Information Website: http://www.engr.uconn.edu/~rzr11001/me3250_f12/
More informationStates of matter. Density high > high >> low (pressure dependent)
Fluids States of matter Solids Fluids crystalline amorphous liquids gasses Interatomic forces strong > strong >> very weak Density high > high >> low (pressure dependent) Density is an important material
More informationDimensions represent classes of units we use to describe a physical quantity. Most fluid problems involve four primary dimensions
BEE 5330 Fluids FE Review, Feb 24, 2010 1 A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container will form a free
More informationCHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.
CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,
More informationFluid Mechanics II Viscosity and shear stresses
Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small
More informationCE MECHANICS OF FLUIDS UNIT I
CE 6303 MECHANICS OF FLUIDS UNIT I 1. Define specific volume of a fluid and write its unit [N/D14][M/J11] Volume per unit mass of a fluid is called specific volume. Unit: m3 / kg. 2. Name the devices
More informationFluid Engineering Mechanics
Fluid Engineering Mechanics Chapter Fluid Properties: Density, specific volume, specific weight, specific gravity, compressibility, viscosity, measurement of viscosity, Newton's equation of viscosity,
More informationACE Engineering College
ACE Engineering College Ankushapur (V), Ghatkesar (M), R.R.Dist 501 301. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * MECHANICS OF FLUIDS & HYDRAULIC
More informationChapter 14. Fluid Mechanics
Chapter 14 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite volume nor shape All of these
More informationShell Balances in Fluid Mechanics
Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell
More informationDifferential relations for fluid flow
Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow
More information1. The Properties of Fluids
1. The Properties of Fluids [This material relates predominantly to modules ELP034, ELP035] 1.1 Fluids 1.1 Fluids 1.2 Newton s Law of Viscosity 1.3 Fluids Vs Solids 1.4 Liquids Vs Gases 1.5 Causes of viscosity
More informationChapter 10  Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain
Question 10.1: Explain why The blood pressure in humans is greater at the feet than at the brain Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though
More informationBFC FLUID MECHANICS BFC NOOR ALIZA AHMAD
BFC 10403 FLUID MECHANICS CHAPTER 1.0: Principles of Fluid 1.1 Introduction to Fluid Mechanics 1.2 Thermodynamic Properties of a Fluid: Density, specific weight, specific gravity, viscocity (kelikatan)berat
More informationDIMENSIONS AND UNITS
DIMENSIONS AND UNITS A dimension is the measure by which a physical variable is expressed quantitatively. A unit is a particular way of attaching a number to the quantitative dimension. Primary Dimension
More informationCOURSE NUMBER: ME 321 Fluid Mechanics I. Fluid: Concept and Properties
COURSE NUMBER: ME 321 Fluid Mechanics I Fluid: Concept and Properties Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 What is Fluid Mechanics? Fluid mechanics
More informationPhysics 201 Chapter 13 Lecture 1
Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UWMadison 1 Fluids Density
More informationFluids and their Properties
Chapter (1) Fluids and their Properties Dr. KHALIL MAHMOUD ALASTAL Eng.Mohammed AbuRahma Eng.Reem Sbaih 2017 Newton s Law of Viscosity:  / NonNewtonian Fluids:  Mass Density:  / Specific weight: 
More informationFluid Mechanics Discussion. Prepared By: Dr.Khalil M. AlAstal Eng.Ahmed S. AlAgha Eng.Ruba M. Awad
Discussion Prepared By: Dr.Khalil M. AlAstal Eng.Ahmed S. AlAgha Eng.Ruba M. Awad 20142015 Chapter (1) Fluids and their Properties Fluids and their Properties Fluids (Liquids or gases) which a substance
More informationChapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian
Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite
More information1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)
1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid
More informationBenha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016
Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 01 May 4/ 016 Second year Mech. Time :180 min. Examiner:Dr.Mohamed Elsharnoby Attempt
More information Marine Hydrodynamics. Lecture 4. Knowns Equations # Unknowns # (conservation of mass) (conservation of momentum)
2.20  Marine Hydrodynamics, Spring 2005 Lecture 4 2.20  Marine Hydrodynamics Lecture 4 Introduction Governing Equations so far: Knowns Equations # Unknowns # density ρ( x, t) Continuity 1 velocities
More informationPhysics 123 Unit #1 Review
Physics 123 Unit #1 Review I. Definitions & Facts Density Specific gravity (= material / water) Pressure Atmosphere, bar, Pascal Barometer Streamline, laminar flow Turbulence Gauge pressure II. Mathematics
More informationUNIT I FLUID PROPERTIES AND STATICS
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: IIB.Tech & ISem Course & Branch:
More information! =!"#$% exerted by a fluid (liquid or gas) !"#$ =!"# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME
FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME PRESSURE, P! =!"#$%!"#! exerted by a fluid (liquid or gas) Thermodynamic importance of pressure One of two independent
More informationMeteorology 432. Barometry Spring 2013
Meteorology 432 Barometry Spring 2013 Basics Revisited Objective: Measure the static pressure exerted by the atmosphere. Static Pressure: Force per unit area in the absence of air motion. In this case,
More informationPhysics 207 Lecture 18
Physics 07, Lecture 8, Nov. 6 MidTerm Mean 58.4 (64.6) Median 58 St. Dev. 6 (9) High 94 Low 9 Nominal curve: (conservative) 8000 A 679 B or A/B 346 C or B/C 933 marginal 98 D Physics 07: Lecture 8,
More informationChapter 9: Solids and Fluids
Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical
More informationReview of Fluid Mechanics
Chapter 3 Review of Fluid Mechanics 3.1 Units and Basic Definitions Newton s Second law forms the basis of all units of measurement. For a particle of mass m subjected to a resultant force F the law may
More informationMiddle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.
Reading Assignments Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 1 You can find the answers of some of the following
More informationMicrofluidics 1 Basics, Laminar flow, shear and flow profiles
MT0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,
More informationFluid flow Pressure Bernoulli Principle Surface Tension
Lecture 9. Fluid flow Pressure Bernoulli Principle Surface Tension A v L A is the area Fluid flow Speed of a fluid in a pipe is not the same as the flow rate Relating: Fluid flow rate to Average speed
More information11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an
Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior
More informationCHAPTER 2. SOILWATER POTENTIAL: CONCEPTS AND MEASUREMENT
SSC107 Fall 2000 Chapter 2, Page  1  CHAPTER 2. SOILWATER POTENTIAL: CONCEPTS AND MEASUREMENT Contents: Transport mechanisms Water properties Definition of soilwater potential Measurement of soilwater
More informationFluid flow Pressure Bernoulli Principle Surface Tension
Lecture 9. Fluid flow Pressure Bernoulli Principle Surface Tension Fluid flow Speed of a fluid in a pipe is not the same as the flow rate Depends on the radius of the pipe. example: Low speed Large flow
More informationFluid Mechanics 3502 Day 1, Spring 2018
Instructor Fluid Mechanics 3502 Day 1, Spring 2018 Dr. Michele Guala, Civil Eng. Department UMN Office hours: (Tue ?) CEGE 162 9:3010:30? Tue Thu CEGE phone (612) 6267843 (Mon,Wed,Fr) SAFL, 2 third
More informationCHAPTER (2) FLUID PROPERTIES SUMMARY DR. MUNZER EBAID MECH.ENG.DEPT.
CHAPTER () SUMMARY DR. MUNZER EBAID MECH.ENG.DEPT. 08/1/010 DR.MUNZER EBAID 1 System Is defined as a given quantity of matter. Extensive Property Can be identified when it is Dependent on the total mass
More informationCHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...
CHAPTER 13 FLUIDS Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes Principle! Upthrust!
More informationFluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118
CVEN 311501 (Socolofsky) Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118 Name: : UIN: : Instructions: Fill in your name and
More informationOCN/ATM/ESS 587. The winddriven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction
OCN/ATM/ESS 587 The winddriven ocean circulation. Friction and stress The Ekman layer, top and bottom Ekman pumping, Ekman suction Westward intensification The winddriven ocean. The major ocean gyres
More informationNotes 4: Differential Form of the Conservation Equations
Low Speed Aerodynamics Notes 4: Differential Form of the Conservation Equations Deriving Conservation Equations From the Laws of Physics Physical Laws Fluids, being matter, must obey the laws of Physics.
More informationMost substances can be in three states: solid, liquid, and gas.
States of Matter Most substances can be in three states: solid, liquid, and gas. Solid Particles Have Fixed Positions The particles in a solid are very close together and have an orderly, fixed arrangement.
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationWhat s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube
PHYS 101 Lecture 29x  Viscosity 29x  1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced
More informationChapter 6(Section1) Surface Tension
Chapter 6(Section1) Surface Tension Free surface of the liquid tends to minimize the surface area. e.g.(1)if the small quantity of mercury is allowed to fall on the floor, it converted in to small spherical
More informationChapter 2. States of Matter
Chapter 2 States of Matter 21 Matter Matter Matter Anything that takes up space and has mass. Is air matter? Yes. It takes up space and has mass. It has atoms. All matter is made up of atoms. ( Dalton
More informations and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I
Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum
More informationCHAPTER 1 Basic Considerations
CHAPTER Basic Considerations FEtype Exam Review Problems: Problems. to. Chapter / Basic Considerations. (C) m = F/a or kg = N/m/s = N s /m. (B) [μ] = [τ/(/dy)] = (F/L )/(L/T)/L = F. T/L. (A) 8 9.6 0 Pa
More information1 Onedimensional analysis
Onedimensional analysis. Introduction The simplest models for gas liquid flow systems are ones for which the velocity is uniform over a crosssection and unidirectional. This includes flows in a long
More informationChapter 1 INTRODUCTION
Chapter 1 INTRODUCTION 11 The Fluid. 12 Dimensions. 13 Units. 14 Fluid Properties. 1 11 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid
More informationESS314. Basics of Geophysical Fluid Dynamics by John Booker and Gerard Roe. Conservation Laws
ESS314 Basics of Geophysical Fluid Dynamics by John Booker and Gerard Roe Conservation Laws The big differences between fluids and other forms of matter are that they are continuous and they deform internally
More informationFrom the last time, we ended with an expression for the energy equation. u = ρg u + (τ u) q (9.1)
Lecture 9 9. Administration None. 9. Continuation of energy equation From the last time, we ended with an expression for the energy equation ρ D (e + ) u = ρg u + (τ u) q (9.) Where ρg u changes in potential
More informationLiquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...
CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes
More informationGeneral Physics I (aka PHYS 2013)
General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 12 CHAPTER 19 REVIEW CHAPTER 12: FLUID MECHANICS Section 12.1: Density Section 12.2:
More informationChapter 5. The Differential Forms of the Fundamental Laws
Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations
More informationBasic Considerations. Outline. Chapter Objectives
1 Basic Considerations Outline 1.1 Introduction 1.2 Dimensions, Units, and Physical Quantities 1.3 Continuum View of Gases and Liquids 1.4 Pressure and Temperature Scales 1.5 Fluid Properties 1.5.1 Density
More informationME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4. (Buoyancy and Viscosity of water)
ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4 (Buoyancy and Viscosity of water) 16. BUOYANCY Whenever an object is floating in a fluid or when it is completely submerged in
More informationThe online of midtermtests of Fluid Mechanics 1
The online of midtermtests of Fluid Mechanics 1 1) The information on a can of pop indicates that the can contains 460 ml. The mass of a full can of pop is 3.75 lbm while an empty can weights 80.5 lbf.
More informationFluid Mechanics. Spring 2009
Instructor: Dr. YangCheng Shih Department of Energy and Refrigerating AirConditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 11 General Remarks 12 Scope
More informationR09. d water surface. Prove that the depth of pressure is equal to p +.
Code No:A109210105 R09 SET1 B.Tech II Year  I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal
More informationCHEMISTRY Matter and Change. Chapter 12: States of Matter
CHEMISTRY Matter and Change Chapter 12: States of Matter CHAPTER 12 States of Matter Section 12.1 Section 12.2 Section 12.3 Section 12.4 Gases Forces of Attraction Liquids and Solids Phase Changes Click
More informationBoundary Conditions in Fluid Mechanics
Boundary Conditions in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University The governing equations for the velocity and pressure fields are partial
More informationCustom Search Sponsored Links
Dynamic, Absolute and Kinematic Viscosity An introduction to dynamic, absolute and kinematic viscosity and how to convert between CentiStokes (cst), CentiPoises (cp), Saybolt Universal Seconds (SSU), degree
More informationFRIDAYS 14:00 to 15:40. FRIDAYS 16:10 to 17:50
Brad Peterson, P.E. FRIDAYS 14:00 to 15:40 FRIDAYS 16:10 to 17:50 BRAD PETERSON, P.E., PTOE Brigham Young University, 1975 Highway and Bridge Design Montana, Utah, Idaho, Wyoming Worked 27 Years in Helena,
More informationFlux  definition: (same format for all types of transport, momentum, energy, mass)
Fundamentals of Transport Flu  definition: (same format for all types of transport, momentum, energy, mass) flu in a given direction Quantity of property being transferred ( time)( area) More can be transported
More informationChapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces
Liquids, Solids, and Intermolecular Forces Chapter 11 Comparisons of the States of Matter The solid and liquid states have a much higher density than the gas state The solid and liquid states have similar
More informationFormulae that you may or may not find useful. E v = V. dy dx = v u. y cp y = I xc/a y. Volume of an entire sphere = 4πr3 = πd3
CE30 Test 1 Solution Key Date: 26 Sept. 2017 COVER PAGE Write your name on each sheet of paper that you hand in. Read all questions very carefully. If the problem statement is not clear, you should ask
More information