BFC FLUID MECHANICS BFC NOOR ALIZA AHMAD


 Isaac Shepherd
 3 years ago
 Views:
Transcription
1 BFC FLUID MECHANICS
2 CHAPTER 1.0: Principles of Fluid 1.1 Introduction to Fluid Mechanics 1.2 Thermodynamic Properties of a Fluid: Density, specific weight, specific gravity, viscocity (kelikatan)berat tentu, compressibility (kemampatan), Bulk modulus (modulus pukal), dynamic & kinematic viscosity (kelikatan dinamik dan kinematik),surface tension (ketegangan permukaan) and capillarity (kererambutan). 2
3 CHAPTER 1.0: Principles of Fluid 1.1 Introduction to Fluid Mechanics Mechanics is the oldest physical science that deals with both stationary and moving bodies under the influence of forces. The branch of mechanics that deals with bodies at rest is called statics, while the branch that deals with bodies in motion is called dynamics. The subcategory fluid mechanics is defined as the science that deals with the behavior of fluids at rest (fluid statics)or in motion (fluid dynamics), and the interaction of fluids with solids or other fluids at the boundaries. 3
4 1.1 Introduction to Fluid Mechanics  Fluid engineering applications is enormous: breathing, blood flow, swimming, pumps, fans, turbines, airplanes, ships, rivers, windmills, pipes, icebergs, engines, filters, jets, and sprinklers, to name a few.. 4
5 1.1 Introduction to Fluid Mechanics (Cont d)  From the point of view of fluid mechanics, all matter consists of only two states, fluid and solid. Distinction between a solid and a fluid is made on the basis of the substance s ability to resist an applied shear (or tangential) stress that tends to change its shape.  Any shear stress applied to a fluid, no matter how small, will result in motion of that fluid. The fluid moves and deforms continuously as long as the shear stress is applied. 5
6 1.1 Introduction to Fluid Mechanics (Cont d) Figure 1 illustrates a solid block resting on a rigid plane and stressed by its own weight. The solid sags into a static deflection, shown as a highly exaggerated dashed line, resisting shear without flow. Figure 1 6
7 1.1 Introduction to Fluid Mechanics (Cont d)  The liquid and gas at rest in Figure 2 require the supporting walls to eliminate shear stress. Figure 2 7
8 1.1 Introduction to Fluid Mechanics  The liquid retains its volume and forms a free surface in the container.  If the walls are removed, shear develops in the liquid and a big splash results.  If the container is tilted, shear again develops, waves form, and the free surface seeks a horizontal configuration, pouring out over the lip if necessary. 8
9 1.2 Thermodynamic Properties of a Fluid: a) Density, (ketumpatan) m V ( kg / 3 m )  Density is highly variable in gases and increases nearly proportionally to the pressure level. 9
10 1.2 Thermodynamic Properties of a Fluid: (Cont d)  Density in liquids is nearly constant; the density of water (about 1000 kg/m 3 ) increases only 1 percent if the pressure is increased by a factor of 220. Thus most liquid flows are treated analytically as nearly incompressible.  Compare their densities at 20 C and 1 atm: Mercury: = 13,580 kg/m 3 Hydrogen: = kg/m 3 10
11 The density of liquids and solids depends more strongly on temperature than it does on pressure. At 1 atm, for example, the density of water changes from 998 kg/m3 at 20 C to 975 kg/m3 at 75 C, a change of 2.3 percent, which can still be neglected in many engineering analyses. 0 C Density (kg/m 3 ) Nota : 1000 kg/m 3 = 1.94 slugs/ft 3 11
12 b) Specific volume, (Isipadu tentu) V m 1 c) Relative density (ketumpatan relatif) and is defined as the ratio of the density of a substance to the density ofsome standard substance at a specified temperature (usually water at 4 C, for which H 2 O 1000 kg/m 3 ). 12
13 d) Specific gravity, SG (graviti tentu) the density of a substance is given relative to the density of a wellknown substance. SG H 2Oat4 e) specific weight, s (berat tentu) s = g ( N/m 3 ) 0 C Substances Water Blood Seawater Gasoline Mercury Wood Gold Ice Air SG
14 Example 1: Given Specific Gravity of Mercury is (20 0 C). Calculate mercury s density. Solution: merkuri merkuri 1000kg/ m x10 kg/ m 3 14
15 Example 2: Calculate the gasoline s density at 20 0 C. The mass and volume are 60 kg dan 0.5 m 3 respectively Solution: m V ( kg/ 3 m ) 120kg / m 3 15
16 f) Compressibility, (kebolehmampatan) refers to the change in volume (V) of a substance that is subjected to a change in pressure on it. Added Volume Bar the usual quantity used to measure this phenomenon is the bulk modulus of elasticity or simply bulk modulus, E 16
17 g) Bulk Modulus, E (Modulas Pukal) Pressure changes needed for changing the volume Initial Volume Showing the pressure increment with volume reduction Volume changes E, harder to compress 17
18 h) Viscosity, (Kelikatan) is a property that represents the internal resistance of a fluid to motion or the fluidity, and that property is the viscosity. The force a flowing fluid exerts on a body in the flow direction is called the drag force, and the magnitude of this force depends, in part, on viscosity 18
19 19
20 To obtain a relation for viscosity, consider a fluid layer between two very large parallel plates (or equivalently, two parallel plates immersed in a large body of a fluid) separated by a distance l. Now a constant parallel force F is applied to the upper plate while the lower plate is held fixed. After the initial transients, it is observed that the upper plate moves continuously under the influence of this force at a constant velocity V. 20
21 The fluid in contact with the upper plate sticks to the plate surface and moves with it at the same velocity, and the shear stress acting on this fluid layer is ( = F/A) where A is the contact area between the plate and the fluid. Note that the fluid layer deforms continuously under the influence of shear stress. Details : See Cengel( 2005). Fluid Mechanics. Mc Graw Hill 21
22 Fluids for which the rate of deformation is proportional to the shear stress are called Newtonian fluids Water, air, gasoline, and oils (Newtonian fluids) Blood and liquid plastics (nonnewtonian fluids) In onedimensional shear flow of Newtonian fluids, shear stress can be expressed by the linear relationship Shear stress: 22
23 Example 3: SAE 30 Oil at 20 0 C of in is placed in between two layer. The bottom layer is fixed while upper layer moves with acceleration 13 ft/s. Calculate shear stress for the oil. Solution: = (9.20 x 103 )[ 13/(0.005/2)] = Ib/ ft 2 23
24 Example 4: Benzene at 20 0 C has a coefficient of viscocity, Pa.s. Calculate the shear stress to deform this fluid at velocity gradient of 4900 s1? Solution: = x 4900 = 3.19Pa 24
25 i) Dynamic Viscosity, (Kelikatan dinamik) defined as shear force per unit area Units: N s/m 2, kgm 1s1,Poise P Typically Water =1.14 kgm 1s1, Air =1.78 kgm 1s1, Mercury =1.552 kgm 1s1, Paraffin Oil=1.9 kgm 1s1, 25
26 Dynamic viscocities of some fluids at 1 atm and 20 0 C (unless otherwise stated) 26
27 j) Kinematic Viscosity, Kelikatan kinematik, the ratio of dynamic viscosity to density Two common units of kinematic viscosity are m 2 /s and stoke (1 stoke 1 cm 2 /s m 2 /s). Dynamic viscosity, in general, does not depend on pressure, but kinematic viscosity does. 27
28 Typically Water =1.14 x 106, m 2 /s Air =1.46 x 105 m 2 /s, Mercury =1.145 x 104 m 2 /s, Paraffin Oil =2.375 x 103 m 2 /s 28
29 k) Surface Tension, s (Ketegangan permukaan) a drop of blood forms a hump on a horizontal glass! a drop of mercury forms a nearperfect sphere and can be rolled just like a steel ball over a smooth surface! water droplets from rain or dew hang from branches or leaves of trees! 29
30 In these and other observances, liquid droplets behave like small spherical balloons filled with the liquid, and the surface of the liquid acts like a stretched elastic membrane under tension. The pulling force that causes this tension acts parallel to the surface and is due to the attractive forces Between the molecules of the liquid. The magnitude of this force per unit length is called surface tension s and is usually expressed in the unit N/m s F 2b 30
31 31
32 How surface tension arises?? Let see at microscopic view in Figure. By considering two liquid molecules, one at the surface and one deep within the liquid body. The attractive forces applied on the interior molecule by the surrounding molecules balance each other because of symmetry. 32
33 But the attractive forces acting on the surface molecule are not symmetric,and the attractive forces applied by the gas molecules above are usually very small. Therefore, there is a net attractive force acting on the molecule at the surface of the liquid, which tends to pull the molecules on the surface toward the interior of the liquid. This force is balanced by the repulsive forces from the molecules below the surface that are being compressed. 33
34 The resulting compression effect causes the liquid to minimize its surface area. This is the reason for the tendency of the liquid droplets to attain a spherical shape, which has the minimum surface area for a given volume. 34
35 That why with amusement, that some insects can land on water or even walk on water and that small steel needles can float on water. These phenomena are again made possible by surface tension that balances the weights of these objects. 35
36 l) Capillary effect (Kererambutan) Another interesting consequence of surface tension is the capillary effect,which is the rise or fall of a liquid in a smalldiameter tube inserted into the liquid. This effect is usually expressed by saying that water wets the glass (by sticking to it) while mercury does not 36
37 The contact angle for wetting and nonwetting fluids. A liquid is said to wet the surface when < 90 and not to wet the surface when >
38 The capillary rise of water and the capillary fall of mercury in a smalldiameter glass tube. The phenomenon of capillary effect can be explained microscopically by considering cohesive forces (the forces between like molecules, such as water and water) and adhesive forces (the forces between unlike molecules, such as water and glass). The liquid molecules at the solid liquid interface are subjected to both cohesive forces by other liquid molecules and adhesive forces by the molecules of the solid. 38
39 The magnitude of the capillary rise in a circular tube can be determined from a force balance on the cylindrical liquid column of height h in the tube (see figure) The bottom of the liquid column is at the same level as the free surface of the reservoir, and thus the pressure there must be atmospheric pressure. 39
40 This balances the atmospheric pressure acting at the top surface, and thus these two effects cancel each other. The weight of the liquid column is approximately Equating the vertical component of the surface tension force to the weight gives 40
41 Solving for h gives the capillary rise to be h 2 s cos gr R = constant Example 5: A 0.6mmdiameter glass tube is inserted into water at 20 C in a cup. Determine the capillary rise of water in the tube 41
42 Solution: With assumption, 1 There are no impurities in the water and no contamination on the surfaces of the glass tube. 2 The experiment is conducted in atmospheric air. 42
43 h = 2(0.073 N/m) 1000 kg/m 3 ( 9.81m/s 2 )(0.3 x 103 ) (cos 0 0 ) 1 kg. m/s 2 1 N = m = 5.0cm 43
CHAPTER 1 Fluids and their Properties
FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those
More informationA drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension
A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:
More informationFE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)
Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.
More informationLiquids and solids are essentially incompressible substances and the variation of their density with pressure is usually negligible.
Properties of Fluids Intensive properties are those that are independent of the mass of a system i.e. temperature, pressure and density. Extensive properties are those whose values depend on the size of
More informationCOURSE NUMBER: ME 321 Fluid Mechanics I. Fluid: Concept and Properties
COURSE NUMBER: ME 321 Fluid Mechanics I Fluid: Concept and Properties Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 What is Fluid Mechanics? Fluid mechanics
More information1. The Properties of Fluids
1. The Properties of Fluids [This material relates predominantly to modules ELP034, ELP035] 1.1 Fluids 1.1 Fluids 1.2 Newton s Law of Viscosity 1.3 Fluids Vs Solids 1.4 Liquids Vs Gases 1.5 Causes of viscosity
More informationFluid Mechanics Introduction
Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be
More informationFluids and their Properties
Chapter (1) Fluids and their Properties Dr. KHALIL MAHMOUD ALASTAL Eng.Mohammed AbuRahma Eng.Reem Sbaih 2017 Newton s Law of Viscosity:  / NonNewtonian Fluids:  Mass Density:  / Specific weight: 
More informationAMME2261: Fluid Mechanics 1 Course Notes
Module 1 Introduction and Fluid Properties Introduction Matter can be one of two states: solid or fluid. A fluid is a substance that deforms continuously under the application of a shear stress, no matter
More informationChapter 9: Solids and Fluids
Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical
More informationFluid Mechanics61341
AnNajah National University College of Engineering Fluid Mechanics61341 Chapter [1] Fundamentals 1 The Book (Elementary Fluid Mechanics by Street, Watters and Vennard) Each chapter includes: Concepts
More informationHYDRAULICS STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL HYDRAULICS
1 STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL Syllabus Hydraulics ( Fluid Mechanics ) Fluid properties, hydrostatics, measurements of flow, Bernoulli's theorem and its application, flow
More informationMECHANICAL PROPERTIES OF FLUIDS:
Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is
More informationWe may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from
Chapter 1. Introduction 1.1 Some Characteristics of Fluids We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from scientific or engineering point of view. In
More informationChapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas
Chapter 9 States of Matter Solids and Fluids Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium
More informationWhat s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube
PHYS 101 Lecture 29x  Viscosity 29x  1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced
More informationPetroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara
Continents Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara Chapter 1. Fluid Mechanics Properties of fluids Density, specific gravity, specific volume and
More informationCE MECHANICS OF FLUIDS UNIT I
CE 6303 MECHANICS OF FLUIDS UNIT I 1. Define specific volume of a fluid and write its unit [N/D14][M/J11] Volume per unit mass of a fluid is called specific volume. Unit: m3 / kg. 2. Name the devices
More informationFluid flow Pressure Bernoulli Principle Surface Tension
Lecture 9. Fluid flow Pressure Bernoulli Principle Surface Tension A v L A is the area Fluid flow Speed of a fluid in a pipe is not the same as the flow rate Relating: Fluid flow rate to Average speed
More informationTOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant ForcesArchimedes Principle
Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant ForcesArchimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation
More informationChapter 1 Fluid Characteristics
Chapter 1 Fluid Characteristics 1.1 Introduction 1.1.1 Phases Solid increasing increasing spacing and intermolecular liquid latitude of cohesive Fluid gas (vapor) molecular force plasma motion 1.1.2 Fluidity
More informationChapter 9. Solids and Fluids
Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium
More informationPart II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi
Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi WHAT we will learn I. Characterization of Fluids  What is the fluid? (Physical properties of Fluid) II. Behavior of fluids  Fluid
More informationFluid flow Pressure Bernoulli Principle Surface Tension
Lecture 9. Fluid flow Pressure Bernoulli Principle Surface Tension Fluid flow Speed of a fluid in a pipe is not the same as the flow rate Depends on the radius of the pipe. example: Low speed Large flow
More informations and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I
Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum
More informationIntroduction to Marine Hydrodynamics
1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first
More informationUniversity of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1
University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING ME 311  Fluid Mechanics Lecture notes Chapter 1 Introduction and fluid properties Prepared by : Dr. N. Ait Messaoudene Based
More informationChapter 10. Solids and Fluids
Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the
More informationINTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION
INTRODUCTION DEFINITION OF FLUID plate solid F at t = 0 t > 0 = F/A plate U p F fluid t 0 t 1 t 2 t 3 FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION
More informationHomework of chapter (1) (Solution)
بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanicsdiscussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First
More informationPetroleum Engineering Dept. Fluid Mechanics Second Stage Dr. Ahmed K. Alshara
Continents Chapter 1. Fluid Mechanics Properties of fluids Density, specific gravity, specific volume and Viscosity Newtonian and non Newtonian fluids Surface tension Compressibility Pressure Cavitations
More informationLecturer, Department t of Mechanical Engineering, SVMIT, Bharuch
Fluid Mechanics By Ashish J. Modi Lecturer, Department t of Mechanical Engineering, i SVMIT, Bharuch Review of fundamentals Properties of Fluids Introduction Any characteristic of a system is called a
More informationWelcome to MECH 280. Ian A. Frigaard. Department of Mechanical Engineering, University of British Columbia. Mech 280: Frigaard
Welcome to MECH 280 Ian A. Frigaard Department of Mechanical Engineering, University of British Columbia Lectures 1 & 2: Learning goals/concepts: What is a fluid Apply continuum hypothesis Stress and viscosity
More informationCHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.
CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,
More information1 FLUIDS AND THEIR PROPERTIES
FLUID MECHANICS CONTENTS CHAPTER DESCRIPTION PAGE NO 1 FLUIDS AND THEIR PROPERTIES PART A NOTES 1.1 Introduction 1.2 Fluids 1.3 Newton s Law of Viscosity 1.4 The Continuum Concept of a Fluid 1.5 Types
More informationSteven Burian Civil & Environmental Engineering September 25, 2013
Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session
More informationAnNajah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction
1 AnNajah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies
More informationENGR 292 Fluids and Thermodynamics
ENGR 292 Fluids and Thermodynamics Scott Li, Ph.D., P.Eng. Mechanical Engineering Technology Camosun College Jan.13, 2017 Review of Last Class Course Outline Class Information Contact Information, Website
More informationFluid Mechanics. du dy
FLUID MECHANICS Technical English  I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's
More informationMECHANICAL PROPERTIES OF FLUIDS
CHAPTER10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure
More informationR09. d water surface. Prove that the depth of pressure is equal to p +.
Code No:A109210105 R09 SET1 B.Tech II Year  I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal
More informationNicholas J. Giordano. Chapter 10 Fluids
Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according
More informationP = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid.
CEE 3310 Thermodynamic Properties, Aug. 27, 2010 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container
More informationFluid Properties and Units
Fluid Properties and Units CVEN 311 Continuum Continuum All materials, solid or fluid, are composed of molecules discretely spread and in continuous motion. However, in dealing with fluidflow flow relations
More informationChapter 6(Section1) Surface Tension
Chapter 6(Section1) Surface Tension Free surface of the liquid tends to minimize the surface area. e.g.(1)if the small quantity of mercury is allowed to fall on the floor, it converted in to small spherical
More informationChapter 9. Solids and Fluids
Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Atoms or molecules are held in specific locations By electrical forces Vibrate about
More information1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)
1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid
More informationCE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART  A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
More information9 MECHANICAL PROPERTIES OF SOLIDS
9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body
More informationMiddle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.
Reading Assignments Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 1 You can find the answers of some of the following
More informationChapter 1 INTRODUCTION
Chapter 1 INTRODUCTION 11 The Fluid. 12 Dimensions. 13 Units. 14 Fluid Properties. 1 11 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid
More informationName : Applied Physics II Exam One Winter Multiple Choice ( 7 Points ):
Name : email: Applied Physics II Exam One Winter 20062007 Multiple Choice ( 7 Points ): 1. Pure nitrogen gas is contained in a sealed tank containing a movable piston. The initial volume, pressure and
More informationSummary PHY101 ( 2 ) T / Hanadi Al Harbi
الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force
More informationChapter 10  Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain
Question 10.1: Explain why The blood pressure in humans is greater at the feet than at the brain Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though
More informationChapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian
Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite
More informationENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids
CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific
More informationClass Notes Fall 2014
57:020 Fluid Mechanics Class Notes Fall 2014 Prepared by: Professor Fred Stern Typed by: Stephanie Schrader (Fall 1999) Corrected by: Jun Shao (Fall 2003, Fall 2005) Corrected by: Jun Shao, Tao Xing (Fall
More informationChapter 14. Fluid Mechanics
Chapter 14 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite volume nor shape All of these
More informationINSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad  00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : III B. Tech Year : 0 0 Course Coordinator
More informationPharmaceutical compounding I Colloidal and SurfaceChemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali
University of Sulaimani School of Pharmacy Dept. of Pharmaceutics Pharmaceutical Compounding Pharmaceutical compounding I Colloidal and SurfaceChemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali
More informationUNIT I FLUID PROPERTIES AND STATICS
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: IIB.Tech & ISem Course & Branch:
More informationChapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces
Liquids, Solids, and Intermolecular Forces Chapter 11 Comparisons of the States of Matter The solid and liquid states have a much higher density than the gas state The solid and liquid states have similar
More informationLecture 8 Equilibrium and Elasticity
Lecture 8 Equilibrium and Elasticity July 19 EQUILIBRIUM AND ELASTICITY CHAPTER 12 Give a sharp blow one end of a stick on the table. Find center of percussion. Baseball bat center of percussion Equilibrium
More informationChapter 5(Section1) Friction in Solids and Liquids
Chapter 5(Section1) Friction in Solids and Liquids Que 1: Define friction. What are its causes? Ans : Friction: When two bodies are in contact with each other and if one body is made to move then the
More informationChapter 13. liquids. gases. 1) Fluids exert pressure. a) because they're made up of matter with forces applied between (I.M.F.)
\ Chapter 13 Fluids 1) Fluids exert pressure a) because they're made up of matter with forces applied between (I.M.F.) liquids gases b) they are made of matter in constant motion colliding with other matter
More informationPlease remember all the unit that you use in your calculation. There are no marks for correct answer without unit.
CHAPTER 1 : PROPERTIES OF FLUIDS What is fluid? A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called
More informationCHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.
CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,
More informationCHAPTER 10. States of Matter
CHAPTER 10 States of Matter Kinetic Molecular Theory Kinetikos  Moving Based on the idea that particles of matter are always in motion The motion has consequences Explains the behavior of Gases, Liquids,
More informationCHAPTER 10. Kinetic Molecular Theory. Five Assumptions of the KMT. Atmospheric Pressure
Kinetic Molecular Theory CHAPTER 10 States of Matter Kinetikos  Moving Based on the idea that particles of matter are always in motion The motion has consequences Explains the behavior of Gases, Liquids,
More informationACE Engineering College
ACE Engineering College Ankushapur (V), Ghatkesar (M), R.R.Dist 501 301. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * MECHANICS OF FLUIDS & HYDRAULIC
More informationFormulae that you may or may not find useful. E v = V. dy dx = v u. y cp y = I xc/a y. Volume of an entire sphere = 4πr3 = πd3
CE30 Test 1 Solution Key Date: 26 Sept. 2017 COVER PAGE Write your name on each sheet of paper that you hand in. Read all questions very carefully. If the problem statement is not clear, you should ask
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More information2 NavierStokes Equations
1 Integral analysis 1. Water enters a pipe bend horizontally with a uniform velocity, u 1 = 5 m/s. The pipe is bended at 90 so that the water leaves it vertically downwards. The input diameter d 1 = 0.1
More informationSOLIDS AND LIQUIDS  Here's a brief review of the atomic picture or gases, liquids, and solids GASES
30 SOLIDS AND LIQUIDS  Here's a brief review of the atomic picture or gases, liquids, and solids GASES * Gas molecules are small compared to the space between them. * Gas molecules move in straight lines
More informationA B C November 29 Exam 3 Physics 105. σ = W m 2 K 4 L v = J/kg R = J/(K mol) c w = 4186 J/(kg K) N A = 6.
L 2012 November 29 Exam 3 Physics 105 Physical Constants Properties of H 2 O σ = 5.6704 10 8 W m 2 K 4 L v = 2.26 10 6 J/kg R = 8.3145 J/(K mol) c w = 4186 J/(kg K) N A = 6.0221 10 23 L f = 3.33 10 5 J/kg
More informationStevens High School AP Physics II Work for Notschool
1. (AP SAMPLE QUESTION) An ideal fluid is flowing with a speed of 12 cm/s through a pipe of diameter 5 cm. The pipe splits into three smaller pipes, each with a diameter of 2 cm. What is the speed of the
More informationMM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =6 (1/2) 2 = 3/2 m/s
MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER ) FALL 018 1) For the velocity fields given below, determine: i) Whether the flow field is one, two, or threedimensional, and why. ii) Whether the flow
More informationFluid Mechanics61341
AnNajah National University College of Engineering Fluid Mechanics61341 Chapter [2] Fluid Statics 1 Fluid Mechanics2nd Semester 2010 [2] Fluid Statics Fluid Statics Problems Fluid statics refers to
More informationFluid Mechanics Abdusselam Altunkaynak
Fluid Mechanics Abdusselam Altunkaynak 1. Unit systems 1.1 Introduction Natural events are independent on units. The unit to be used in a certain variable is related to the advantage that we get from it.
More information11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an
Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior
More informationCh. 2 The Laws of Motion
Ch. 2 The Laws of Motion Lesson 1 Gravity and Friction Force  A push or pull we pull on a locker handle push a soccer ball or on the computer keys Contact force  push or pull on one object by another
More informationStress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study
Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can
More informationFluid Mechanics Discussion. Prepared By: Dr.Khalil M. AlAstal Eng.Ahmed S. AlAgha Eng.Ruba M. Awad
Discussion Prepared By: Dr.Khalil M. AlAstal Eng.Ahmed S. AlAgha Eng.Ruba M. Awad 20142015 Chapter (1) Fluids and their Properties Fluids and their Properties Fluids (Liquids or gases) which a substance
More informationChapter 12. Static Equilibrium and Elasticity
Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial
More informationObjectives: After completion of this module, you should be able to:
Chapter 12 Objectives: After completion of this module, you should be able to: Demonstrate your understanding of elasticity, elastic limit, stress, strain, and ultimate strength. Write and apply formulas
More informationCohesion, Surface Tension, and Adhesion
Cohesion, Surface Tension, and Adhesion Content Objectives SWBAT describe how hydrogen bonding allows water molecules to maintain strong cohesion, adhesion, and surface tension. Van der Waals Forces The
More informationChapter 10. Intermolecular Forces II Liquids and Phase Diagrams
Chapter 10 Intermolecular Forces II Liquids and Phase Diagrams Liquids Properties & Structure Vaporization and Condensation Kinetic Energy and Temperature Molecules in a liquid are constantly in motion
More informationDIMENSIONS AND UNITS
DIMENSIONS AND UNITS A dimension is the measure by which a physical variable is expressed quantitatively. A unit is a particular way of attaching a number to the quantitative dimension. Primary Dimension
More informationFluid Mechanics Vikasana Bridge Course 2012
Fluid Mechanics Fluid Liquids and gases can flow. Hence they are called fluids. Fluid is the name given to a substance which begins to flow, when external force is applied on it. This property distinguish
More information10  FLUID MECHANICS Page 1
0  FLUID MECHANICS Page Introduction Fluid is a matter in a state which can flow. Liquids, gases, molten metal and tar are examples of fluids. Fluid mechanics is studied in two parts: ( i ) Fluid statics
More informationSOLIDS AND LIQUIDS  Here's a brief review of the atomic picture or gases, liquids, and solids GASES
30 SOLIDS AND LIQUIDS  Here's a brief review of the atomic picture or gases, liquids, and solids GASES * Gas molecules are small compared to the space between them. * Gas molecules move in straight lines
More informationForces. Dynamics FORCEMAN
1 Forces Dynamics FORCEMAN 2 What causes things to move? Forces What is a force? A push or a pull that one body exerts on another. 3 Balanced No change in motion 4 5 Unbalanced If the forces acting on
More informationSOLIDS AND LIQUIDS  Here's a brief review of the atomic picture or gases, liquids, and solids GASES
30 SOLIDS AND LIQUIDS  Here's a brief review of the atomic picture or gases, liquids, and solids GASES * Gas molecules are small compared to the space between them. * Gas molecules move in straight lines
More information10.52 Mechanics of Fluids Spring 2006 Problem Set 3
10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation
More informationME3560 Tentative Schedule Fall 2018
ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read
More informationAgricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland
Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline  Lectures weeks 912 Chapter 6: Balance in nature  description of energy balance
More informationFluid Mechanics. Spring 2009
Instructor: Dr. YangCheng Shih Department of Energy and Refrigerating AirConditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 11 General Remarks 12 Scope
More information열과유체, 에너지와친해지기 KAIST 기계공학과정상권
열과유체, 에너지와친해지기 KAIST 기계공학과정상권 이번시간에는! 열역학  세상을움직이는스마트한법칙 물과공기로움직이는기계 사라지지않는에너지 / 증가하는엔트로피 열역학  세상을움직이는스마트한법칙 KAIST 기계공학과정상권 [ 학습목차 ] Thermofluids Energy conservation principle Energy Work (boundary work)
More informationME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4. (Buoyancy and Viscosity of water)
ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4 (Buoyancy and Viscosity of water) 16. BUOYANCY Whenever an object is floating in a fluid or when it is completely submerged in
More informationPhysics 207 Lecture 22. Lecture 22
Goals: Lecture Chapter 15 Use an idealfluid model to study fluid flow. Investigate the elastic deformation of solids and liquids Chapter 16 Recognize and use the state variables that characterize macroscopic
More information