INAC.

Size: px
Start display at page:

Download "INAC."

Transcription

1 ESRF ILL INAC MINATEC 1

2 LNCMI CRETA 120 CNRS scientists 50 Prof and associate Prof 130 technical and admin staff 100 PhD students

3 Nanofab PTA Epitaxy, nanofabrication and cristal growth Theory Instrumentation Condensed Matter and Low Temperature Physics Condensed Matter, Materials and Functions Nanosciences Physical properties: Optical properties Transport Magnetic properties structural properties Applications LPMMC INAC SPINTEC LETI G2ELab And many others worldwide: collaborations with 34 different countries CRG

4 Near field microscopy and NEMS Micro-magnets for MEMS Silicon nanowires Graphene Semiconductor nanowires

5 Near field microscopy and NEMS At NEEL: AFM and nanomechanics SNOM Joël Chevrier, Serge Huant, Florence Marchi, Jean-François Motte, Hermann Sellier At LETI: NEMS accelerometer LKB, IOTA, ESRF 1. The Casimir force 2. A nanovibrometer

6 1. The Casimir force 2. A nanovibrometer Vacuum fluctuations pressure P = 2 π hc L Confined modes 2 metal plates at 10 nm: 1 Atm the NEMS is sticked at 1 µm, 8 orders of magnitude less the MEMS works. Accelerometer developped at LETI γ Equil. Position [nm] theory acceleration [g] with Casimir without Casimir

7 1. The Casimir force 2. A nanovibrometer Fabry-Pérot Thinned optical fiber A near-field interferometric nano-vibrometer Today s issue!

8 Micro-magnets for MEMS MEMS: machines which range in size from µm to mm, e.g. actuators, motors, generators, switches, sensors. i) Remarkable features of magnetic interactions ti large forces large energy densities Long range ( µm ) Contactless actuation (action through sealed membranes suspension / levitation) (Bi)stability (magnets permanent forces without power consumption) Bidirectionality (repulsion / attraction) ii) Specific advantages of magnetism for MEMS - down-scaling : system size by factor L, magnetic forces by factor L - integrated µ-coils : very high current densities (< 10 6 A/mm² in pulses) 1st fully integrated prototype Magnetic MEMS: bistable ultra-fast levitating µ-switch LETI / G2Elab fixed moving fixed magnet magnet magnet BUT Performance limited by low quality magnets (Co 80 Pt 20 ) Need high quality (NdFeB, SmCo) integrated magnets: NEEL 200 µm planar coil

9 Thick hard magnetic films at Institut Néel Triode sputtering : Deposition rate 20 µm/h; Substrate 200 mm ANR project* Nanomag2 LETI, G2Elab, Néel and Alenia (12/05-12/08) µ 0 M (T) 1,5 1,0 0,5 0,0-0,5 05-1,0 oop NdFeB -1, µ 0 H i (T) Thick hard magnetic films (5 µm) on Si ip out-of-plane applications APL90_ (2007) M (a.u.) ip oop SmCo sub µ H (T) 0 in-plane applications above IC JAP_103_ (2008).u.) M (a. oop FePt ip "cold" 400 C 500 C 600 C µ H(T) 0 applications in corrosive environments Patterning of magnet films for integration Deposition on Pre-patterned subst. NdFeB 10 µm Wet etching of magnetic layer NdFeB Thermo-magnetic patterning Si SiO 2 JMMM (2009) Si NEEL: Nora Dempsey, Dominique Givord, Frederic Dumas-Bouchiat LETI: Christophe Billard, Philippe Robert, Carine Marcoux, Arnaud Walther (common PhD, now at LETI) G2ELab: Jerome Delamare, Orphée Cugat

10 Applications of µ-structured hard magnetic films Diamagnetic levitation Cell manipulation, microgravity conditions, etc Collaboration G2ELab + Biopuces Bismuth in air human cells in para. buffer Liposomes + magnetic nanoparticles Empty liposomes Magnetic trapping Micro-magnets Collaboration: Ampere, G2ELab, GIN fluorescent liposomes encapsulating magnetic nanoparticules on a magnetically patterned NdFeB film

11 Silicon nanowires

12 Silicon nanowires step 1: mesoscopic effects in the thermal conductance Nanofabrication at LETI Low temperature t experiments at Institut t Néel Theory in collaboration NEEL-LETI PhD Jean-Savin Héron (at NEEL) The characteristic length is the thermal wavelength of phonons. In silicon: at 1K λ T ~0.1μm, at 0.1K λ T ~1μm The conductance is quantized Roughness effects are observed Mesoscopic Size Effects on the Thermal Conductance of Silicon nanowire J.-S. Héron, T. Fournier, N. Mingo, O. Bourgeois, Nano Lett. 9, 1861 (2009)

13 Silicon nanowires step 2a: Electrical detection of biological events Nanofabrication at NEEL/Nanofab Fonctionalization and measures at LETI PhD Cécile Halté at LETI Cécile Halté 1, Guillaume Delapierre 1, Thierry Fournier 2, Thierry Baron 3, Françoise Vinet 1 1 -LETI/DTBS CNRS/Institut t Néel- 3 - CNRS/LTM The electrical conductance of a silicon nanowire is modified in the presence of charges at the surface step 2b: Thermoelectric effects in nanostructures Olivier Bourgeois (NEEL), Natalio Mingo, Marc Plissonnier (LITEN), Denis Renaud (LETI), IEMN

14 Graphene 1. Epitaxial graphene on SiC Preparation and STM NEEL: P.Mallet, J.Y.Veuillen 2. Graphene on other substrates Transport in graphene (ANR Xp-Graphene) NEEL: L.P.Lévy, C.Naud, C.Berger also GeorgiaTech IEMN: D. Vignaud, X. Wallart, H. Happy, G. Dambrine LETI: T. Poiroux, J.-F. Dayen Epitaxy of graphene on iridium NEEL: J.Coraux, O.Fruchart LETI: Aziz Zenasni, F.Fournel

15 Semiconductor nanowires NEEL + INAC MBE and MOCVD growth, contacts Spectroscopy Transport Light emitting diodes photovoltaics p o o o a cs Talk by H.Mariette at 4:55 today

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

ETH Rüschlikon the people and their research

ETH Rüschlikon the people and their research ETH Zurich @ Rüschlikon the people and their research Prof. Dr. Dimos Poulikakos, Laboratory of Thermodynamics in Emerging Technologies and Coordinator of the Nanotechnology Center, ETH Zurich The Vision

More information

Introduction to Scanning Probe Microscopy Zhe Fei

Introduction to Scanning Probe Microscopy Zhe Fei Introduction to Scanning Probe Microscopy Zhe Fei Phys 590B, Apr. 2019 1 Outline Part 1 SPM Overview Part 2 Scanning tunneling microscopy Part 3 Atomic force microscopy Part 4 Electric & Magnetic force

More information

Scanning Gate Microscopy (SGM) of semiconductor nanostructures

Scanning Gate Microscopy (SGM) of semiconductor nanostructures Scanning Gate Microscopy (SGM) of semiconductor nanostructures H. Sellier, P. Liu, B. Sacépé, S. Huant Dépt NANO, Institut NEEL, Grenoble, France B. Hackens, F. Martins, V. Bayot UCL, Louvain-la-Neuve,

More information

Superconducting Single-photon Detectors

Superconducting Single-photon Detectors : Quantum Cryptography Superconducting Single-photon Detectors Hiroyuki Shibata Abstract This article describes the fabrication and properties of a single-photon detector made of a superconducting NbN

More information

Advanced Workshop on Nanomechanics September Optomechanics with micro and nano-mirrors

Advanced Workshop on Nanomechanics September Optomechanics with micro and nano-mirrors 2445-09 Advanced Workshop on Nanomechanics 9-13 September 2013 Optomechanics with micro and nano-mirrors Samuel Deléglise Laboratoire Kastler Brossel Universite P. et M. Curie Optomechanics with micro

More information

Special Topics in Semiconductor Nanotechnology ECE 598XL

Special Topics in Semiconductor Nanotechnology ECE 598XL Special Topics in Semiconductor Nanotechnology ECE 598XL Fall 2009 ECE 598XL Syllabus Overview: size matters Formation Process Characterization SOA device applications and potentials Homework or quizzes

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

2D Materials Research Activities at the NEST lab in Pisa, Italy. Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy

2D Materials Research Activities at the NEST lab in Pisa, Italy. Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy 2D Materials Research Activities at the NEST lab in Pisa, Italy Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy 2D Materials Research Activities at the NEST lab in

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Scanning Direction References: Classical Tunneling Quantum Mechanics Tunneling current Tunneling current I t I t (V/d)exp(-Aφ 1/2 d) A = 1.025 (ev) -1/2 Å -1 I t = 10 pa~10na

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

There's Plenty of Room at the Bottom

There's Plenty of Room at the Bottom There's Plenty of Room at the Bottom 12/29/1959 Feynman asked why not put the entire Encyclopedia Britannica (24 volumes) on a pin head (requires atomic scale recording). He proposed to use electron microscope

More information

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Micromechanics Ass.Prof. Priv.-Doz. DI Dr. Harald Plank a,b a Institute of Electron Microscopy and Nanoanalysis, Graz

More information

Oxide Films & Nanostructures on Silicon for Thermal Energy Harvesting in Microelectronic Devices

Oxide Films & Nanostructures on Silicon for Thermal Energy Harvesting in Microelectronic Devices Oxide Films & Nanostructures on Silicon for Thermal Energy Harvesting in Microelectronic Devices R. Bachelet R. Moalla, A. Carretero-Genevrier, L. Mazet, L. Louahadj, J. Penuelas, B. Vilquin, C. Dubourdieu,

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) http://ww2.sljus.lu.se/staff/rainer/spm.htm Scanning Probe Microscopy (FYST42 / FAFN30) Scanning Probe Microscopy (SPM) overview & general principles March 23 th, 2018 Jan Knudsen, room K522, jan.knudsen@sljus.lu.se

More information

Highly charged ion beams applied to fabrication of Nano-scale 3D structures. Sadao MOMOTA Kochi University of Technology

Highly charged ion beams applied to fabrication of Nano-scale 3D structures. Sadao MOMOTA Kochi University of Technology Highly charged ion beams applied to fabrication of Nano-scale 3D structures Sadao MOMOTA Kochi University of Technology Introduction 1 Prospect of microscopic structures 2D Semiconductor 3D Ex. MEMS http://www.rise.waseda.ac.jp/proj/sci/s98s08/j-s98s08.html

More information

Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular

Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular Vacuum Technology Vacuum Pumps Two general classes exist: Gas transfer physical removal of matter Mechanical, diffusion, turbomolecular Adsorption entrapment of matter Cryo, sublimation, ion Mechanical

More information

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy High-Resolution Surface Analysis

More information

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman General concept and defining characteristics of AFM Dina Kudasheva Advisor: Prof. Mary K. Cowman Overview Introduction History of the SPM invention Technical Capabilities Principles of operation Examples

More information

Physics Open House Boston University Physics Department

Physics Open House Boston University Physics Department 2012 Boston University Physics Department What are the Big Questions? Dept. of Energy BESAC Report (2007): Directing Boston UniversityMatter Slideshow Title and Goes Energy: Here Five Challenges for Science

More information

Nanomechanics Measurements and Standards at NIST

Nanomechanics Measurements and Standards at NIST Nanomechanics Measurements and Standards at NIST Robert F. Cook Deputy Chief, Ceramics Division Leader, Nanomechanical Properties Group robert.cook@nist.gov NIST Mission Promote U.S. innovation and industrial

More information

An account of our efforts towards air quality monitoring in epitaxial graphene on SiC

An account of our efforts towards air quality monitoring in epitaxial graphene on SiC European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 2 nd International Workshop EuNetAir on New Sensing Technologies for

More information

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer Stanford University Michael Shandalov1, Shriram Ramanathan2, Changhyun Ko2 and Paul McIntyre1 1Department of Materials Science and Engineering, Stanford University 2Division of Engineering and Applied

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Ultra-low noise HEMTs for deep cryogenic lowfrequency and high-impedance readout electronics

Ultra-low noise HEMTs for deep cryogenic lowfrequency and high-impedance readout electronics Ultra-low noise HEMTs for deep cryogenic lowfrequency and high-impedance readout electronics Y. Jin, Q. Dong, Y.X. Liang, A. Cavanna, U. Gennser, L Couraud - Why cryoelectronics - Why HEMT - Noise characterization

More information

Scattering-type near-field microscopy for nanoscale optical imaging

Scattering-type near-field microscopy for nanoscale optical imaging Scattering-type near-field microscopy for nanoscale optical imaging Rainer Hillenbrand Nano-Photonics Group Max-Planck-Institut für Biochemie 82152 Martinsried, Germany Infrared light enables label-free

More information

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur Nova 600 NanoLab Dual beam Focused Ion Beam system @ IITKanpur Dual Beam Nova 600 Nano Lab From FEI company (Dual Beam = SEM + FIB) SEM: The Electron Beam for SEM Field Emission Electron Gun Energy : 500

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

Experimental methods in physics. Local probe microscopies I

Experimental methods in physics. Local probe microscopies I Experimental methods in physics Local probe microscopies I Scanning tunnelling microscopy (STM) Jean-Marc Bonard Academic year 09-10 1. Scanning Tunneling Microscopy 1.1. Introduction Image of surface

More information

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica Nanotechnology Yung Liou P601 yung@phys.sinica.edu.tw Institute of Physics Academia Sinica 1 1st week Definition of Nanotechnology The Interagency Subcommittee on Nanoscale Science, Engineering and Technology

More information

SYLLABUS FINDING NANO Syllabus NanoSCI DISCOVERING NANOTECHNOLOGY AND CULTURE IN GERMANY

SYLLABUS FINDING NANO Syllabus NanoSCI DISCOVERING NANOTECHNOLOGY AND CULTURE IN GERMANY 1. Syllabus NanoSCI Course title: NanoSCI - Electronic Properties of Nanoengineered Materials Catalog description: Physics and technology of nanoengineered materials and devices. Semiconductor nanostructures.

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Course website: http://www.physics.purdue.edu/academic_programs/courses/phys570p/ 1 Course

More information

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Peter Liljeroth Department of Applied Physics, Aalto University School of Science peter.liljeroth@aalto.fi Projekt współfinansowany

More information

Growing a Carbon Nanotube Atom by Atom: And yet it does turn

Growing a Carbon Nanotube Atom by Atom: And yet it does turn Growing a Carbon Nanotube Atom by Atom: And yet it does turn Stephen T. Purcell Mickaël Marchand, Catherine Journet, Dominique Guillot, Jean-Michel Benoit, Boris I. Yakobson (Rice U.) Summary PNEC Activities

More information

Measurement of the thermal conductance of silicon nanowires at low temperature

Measurement of the thermal conductance of silicon nanowires at low temperature Measurement of the thermal conductance of silicon nanowires at low temperature Olivier Bourgeois a), Thierry Fournier and Jacques Chaussy Centre de Recherches sur les Très Basses Températures, CNRS, laboratoire

More information

Simple piezoresistive accelerometer

Simple piezoresistive accelerometer Simple piezoresistive pressure sensor Simple piezoresistive accelerometer Simple capacitive accelerometer Cap wafer C(x)=C(x(a)) Cap wafer may be micromachined silicon, pyrex, Serves as over-range protection,

More information

Mie resonators on silicon Fabrication and optical properties

Mie resonators on silicon Fabrication and optical properties Mie resonators on silicon Fabrication and optical properties Marco Abbarchi 1, Meher Naffouti 1,4, Thomas David 1, Benjamin Vial 2, Abdelmalek Benkouider 1, Laurent Lermusiaux 3,Luc Favre 1, Antoine Ronda

More information

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute Thermal Transport in Graphene and other Two-Dimensional Systems Li Shi Department of Mechanical Engineering & Texas Materials Institute Outline Thermal Transport Theories and Simulations of Graphene Raman

More information

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL 1. INTRODUCTION Silicon Carbide (SiC) is a wide band gap semiconductor that exists in different polytypes. The substrate used for the fabrication

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

Deposition of thin films

Deposition of thin films 16 th March 2011 The act of applying a thin film to a surface is thin-film deposition - any technique for depositing a thin film of material onto a substrate or onto previously deposited layers. Thin is

More information

Nano fabrication and optical characterization of nanostructures

Nano fabrication and optical characterization of nanostructures Introduction to nanooptics, Summer Term 2012, Abbe School of Photonics, FSU Jena, Prof. Thomas Pertsch Nano fabrication and optical characterization of nanostructures Lecture 12 1 Optical characterization

More information

ME 4875/MTE C16. Introduction to Nanomaterials and Nanotechnology. Lecture 2 - Applications of Nanomaterials + Projects

ME 4875/MTE C16. Introduction to Nanomaterials and Nanotechnology. Lecture 2 - Applications of Nanomaterials + Projects ME 4875/MTE 575 - C16 Introduction to Nanomaterials and Nanotechnology Lecture 2 - Applications of Nanomaterials + Projects 1 Project Teams of 4 students each Literature review of one application of nanotechnology

More information

Nanotechnology: Today and tomorrow

Nanotechnology: Today and tomorrow Nanotechnology: Today and tomorrow Horst-Günter Rubahn NanoSYD Mads Clausen Instituttet Syddansk Universitet Alsion 2 6400 Sønderborg Agenda Alsion A bit about nano Nanoproducts Top down vs. bottom up

More information

Nanostructures. Lecture 13 OUTLINE

Nanostructures. Lecture 13 OUTLINE Nanostructures MTX9100 Nanomaterials Lecture 13 OUTLINE -What is quantum confinement? - How can zero-dimensional materials be used? -What are one dimensional structures? -Why does graphene attract so much

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

Lead and Arsenic concentration in the Marseille Calanques measured by Laser Induced Breakdown Spectroscopy. by T. Sarnet and J.

Lead and Arsenic concentration in the Marseille Calanques measured by Laser Induced Breakdown Spectroscopy. by T. Sarnet and J. Atelier du Réseau des Observatoires Hommes-Milieux "Contaminations métalliques" 21 Novembre 2016 Technopôle de l'environnement Arbois-Méditerranée, AIX en Provence Lead and Arsenic concentration in the

More information

And Manipulation by Scanning Probe Microscope

And Manipulation by Scanning Probe Microscope Basic 15 Nanometer Scale Measurement And Manipulation by Scanning Probe Microscope Prof. K. Fukuzawa Dept. of Micro/Nano Systems Engineering Nagoya University I. Basics of scanning probe microscope Basic

More information

Recap (so far) Low-Dimensional & Boundary Effects

Recap (so far) Low-Dimensional & Boundary Effects Recap (so far) Ohm s & Fourier s Laws Mobility & Thermal Conductivity Heat Capacity Wiedemann-Franz Relationship Size Effects and Breakdown of Classical Laws 1 Low-Dimensional & Boundary Effects Energy

More information

Surface Transfer Doping of Diamond by Organic Molecules

Surface Transfer Doping of Diamond by Organic Molecules Surface Transfer Doping of Diamond by Organic Molecules Qi Dongchen Department of Physics National University of Singapore Supervisor: Prof. Andrew T. S. Wee Dr. Gao Xingyu Scope of presentation Overview

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

Definition, identification and evaluation of a submicron metrology tool

Definition, identification and evaluation of a submicron metrology tool P-01 Tronics Microsystems Definition, identification and evaluation of a submicron metrology tool Supervised by : Philippe AZOLEY Head of production Philippe.azoley@troni csgroup.com Executed by: Paul

More information

Oscillateur paramétrique optique en

Oscillateur paramétrique optique en C. Ozanam 1, X. Lafosse 2, I. Favero 1, S. Ducci 1, G. Leo 1 1 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire MPQ, CNRS-UMR 7162, Paris, France, 2 Laboratoire de Photonique et Nanostructures,

More information

Contents. Preface to the first edition

Contents. Preface to the first edition Contents List of authors Preface to the first edition Introduction x xi xiii 1 The nanotechnology revolution 1 1.1 From micro- to nanoelectronics 2 1.2 From the macroscopic to the nanoscopic world 4 1.3

More information

JOHN G. EKERDT RESEARCH FOCUS

JOHN G. EKERDT RESEARCH FOCUS JOHN G. EKERDT RESEARCH FOCUS We study the surface, growth and materials chemistry of metal, dielectric, ferroelectric, and polymer thin films. We seek to understand and describe nucleation and growth

More information

Scanning Tunneling Microscopy and its Application

Scanning Tunneling Microscopy and its Application Chunli Bai Scanning Tunneling Microscopy and its Application With 181 Figures SHANGHAI SCIENTIFIC & TECHNICAL PUBLISHERS Jpl Springer Contents 1. Introduction 1 1.1 Advantages of STM Compared with Other

More information

MICROCHIP MANUFACTURING by S. Wolf

MICROCHIP MANUFACTURING by S. Wolf by S. Wolf Chapter 15 ALUMINUM THIN-FILMS and SPUTTER-DEPOSITION 2004 by LATTICE PRESS CHAPTER 15 - CONTENTS Aluminum Thin-Films Sputter-Deposition Process Steps Physics of Sputter-Deposition Magnetron-Sputtering

More information

Surface atoms/molecules of a material act as an interface to its surrounding environment;

Surface atoms/molecules of a material act as an interface to its surrounding environment; 1 Chapter 1 Thesis Overview Surface atoms/molecules of a material act as an interface to its surrounding environment; their properties are often complicated by external adsorbates/species on the surface

More information

Carbon Nanotube Thin-Films & Nanoparticle Assembly

Carbon Nanotube Thin-Films & Nanoparticle Assembly Nanodevices using Nanomaterials : Carbon Nanotube Thin-Films & Nanoparticle Assembly Seung-Beck Lee Division of Electronics and Computer Engineering & Department of Nanotechnology, Hanyang University,

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

Fundamentals of nanoscience

Fundamentals of nanoscience Fundamentals of nanoscience Spectroscopy of nano-objects Mika Pettersson 1. Non-spatially resolved spectroscopy Traditionally, in spectroscopy, one is interested in obtaining information on the energy

More information

Frictional characteristics of exfoliated and epitaxial graphene

Frictional characteristics of exfoliated and epitaxial graphene Frictional characteristics of exfoliated and epitaxial graphene Young Jun Shin a,b, Ryan Stromberg c, Rick Nay c, Han Huang d, Andrew T. S. Wee d, Hyunsoo Yang a,b,*, Charanjit S. Bhatia a a Department

More information

Low Temperature (LT), Ultra High Vacuum (UHV LT) Scanning Probe Microscopy (SPM) Laboratory

Low Temperature (LT), Ultra High Vacuum (UHV LT) Scanning Probe Microscopy (SPM) Laboratory Low Temperature (LT), Ultra High Vacuum (UHV LT) Scanning Probe Microscopy (SPM) Laboratory The laboratory of Low Temperature, Ultra High Vacuum (UHV LT) is specifically designed for surface science microscopy

More information

Toward Clean Suspended CVD Graphene

Toward Clean Suspended CVD Graphene Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supplemental information for Toward Clean Suspended CVD Graphene Alexander Yulaev 1,2,3, Guangjun

More information

PolyCerNet. 1. U. of Trento Italy 2. U. Pierre et Marie Curie Paris France 3. Max Plank Inst. Germany 4. Poly. Univ.

PolyCerNet. 1. U. of Trento Italy 2. U. Pierre et Marie Curie Paris France 3. Max Plank Inst. Germany 4. Poly. Univ. Tailored Multifunctional Polymer-Derived NanoCeramics - (Network Coordinator: Prof. Gian Domenico Soraru, University of Trento, Italy) is a Marie Curie Research and Training Network coordinated by the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2011.123 Ultra-strong Adhesion of Graphene Membranes Steven P. Koenig, Narasimha G. Boddeti, Martin L. Dunn, and J. Scott Bunch* Department of Mechanical Engineering,

More information

X-ray Imaging and Spectroscopy of Individual Nanoparticles

X-ray Imaging and Spectroscopy of Individual Nanoparticles X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland Intensity [a.u.] 1.4 1.3 1.2 1.1 D 8 nm 1 1 2 3 1.0 770

More information

REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS

REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS REFRACTORY METAL OXIDES: FABRICATION OF NANOSTRUCTURES, PROPERTIES AND APPLICATIONS S.K. Lazarouk, D.A. Sasinovich BELARUSIAN STATE UNIVERSITY OF INFORMATICS AND RADIOELECTRONICS Outline: -- experimental

More information

MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS

MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS ENRICO COZZANI DEIS DOCTORATE CYCLE XXIII 18/01/2011 Enrico Cozzani

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures MSE 6001, Semiconductor Materials Lectures Fall 2006 3 Semiconductor Heterostructures A semiconductor crystal made out of more

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID. Electron Energy, E Free electron Vacuum level 3p 3s 2p 2s 2s Band 3s Band 2p Band Overlapping energy bands Electrons E = 0 1s ATOM 1s SOLID In a metal the various energy bands overlap to give a single

More information

PY5020: Nanomechanics Nanoscience MEMS and NEMS

PY5020: Nanomechanics Nanoscience MEMS and NEMS PY5020: Nanomechanics Nanoscience MEMS and NEMS Toby Hallam hallamt@tcd.ie Overview - MEMS (Micro-Electro-Mechanical Systems) - Some enabling technologies RIE CPD - Capacitive actuators Pull-in instability

More information

Center for Integrated Nanotechnologies (CINT) Bob Hwang Co-Director, Sandia National Laboratories

Center for Integrated Nanotechnologies (CINT) Bob Hwang Co-Director, Sandia National Laboratories Center for Integrated Nanotechnologies (CINT) Bob Hwang Co-Director, Sandia National Laboratories Department of Energy Nanoscience Centers Molecular Foundry Center for Nanoscale Materials Center for Functional

More information

Autonomous magnetic devices for micro/nano particle handling

Autonomous magnetic devices for micro/nano particle handling Autonomous magnetic devices for micro/nano particle handling Luiz F. ZANINI 1,2, Frédéric DUMAS-BOUCHIAT 1 1- Institut Néel, CNRS UPR 2940 & Univ. J. Fourier, BP 166, 38042 Grenoble Cedex 9, France 2-

More information

Optimizing Graphene Morphology on SiC(0001)

Optimizing Graphene Morphology on SiC(0001) Optimizing Graphene Morphology on SiC(0001) James B. Hannon Rudolf M. Tromp Graphene sheets Graphene sheets can be formed into 0D,1D, 2D, and 3D structures Chemically inert Intrinsically high carrier mobility

More information

1. Nanotechnology & nanomaterials -- Functional nanomaterials enabled by nanotechnologies.

1. Nanotechnology & nanomaterials -- Functional nanomaterials enabled by nanotechnologies. Novel Nano-Engineered Semiconductors for Possible Photon Sources and Detectors NAI-CHANG YEH Department of Physics, California Institute of Technology 1. Nanotechnology & nanomaterials -- Functional nanomaterials

More information

Micro Chemical Vapor Deposition System: Design and Verification

Micro Chemical Vapor Deposition System: Design and Verification Micro Chemical Vapor Deposition System: Design and Verification Q. Zhou and L. Lin Berkeley Sensor and Actuator Center, Department of Mechanical Engineering, University of California, Berkeley 2009 IEEE

More information

Solutions for Assignment-8

Solutions for Assignment-8 Solutions for Assignment-8 Q1. The process of adding impurities to a pure semiconductor is called: [1] (a) Mixing (b) Doping (c) Diffusing (d) None of the above In semiconductor production, doping intentionally

More information

AM activities at Linköping University (also including lightweight technologies)

AM activities at Linköping University (also including lightweight technologies) AM activities at Linköping University (also including lightweight technologies) Johan Ölvander, PhD Professor in Machine Design Department of Management and Engineering Linköping University Students 27

More information

Development and characterization of 3D semiconductor X-rays detectors for medical imaging

Development and characterization of 3D semiconductor X-rays detectors for medical imaging Development and characterization of 3D semiconductor X-rays detectors for medical imaging Marie-Laure Avenel, Eric Gros d Aillon CEA-LETI, DETectors Laboratory marie-laure.avenel@cea.fr Outlines Problematic

More information

master thesis STM studies of molecules for molecular electronics

master thesis STM studies of molecules for molecular electronics STM studies of molecules for molecular electronics Experimental study of single organic molecules by Scanning Tunneling Microscope (STM) and spectroscopy at low temperature Experimental STM images of Aza-BODIPY

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Paola De Padova* Fellow

Paola De Padova* Fellow Paola De Padova* Fellow 2 Place Le Verrier, 13004, Marseille, France; *On leave from: Consiglio Nazionale delle Ricerche Istituto di Struttura della Materia CNR-ISM Via Fosso del Cavaliere, 100, 00133

More information

Atom interferometry in microgravity: the ICE project

Atom interferometry in microgravity: the ICE project Atom interferometry in microgravity: the ICE project (4) G. Stern 1,2, R. Geiger 1, V. Ménoret 1,B. Battelier 1, R. Charrière 3, N. Zahzam 3, Y. Bidel 3, L. Mondin 4, F. Pereira 2, A. Bresson 3, A. Landragin

More information

Scanning Probe Microscopy. EMSE-515 F. Ernst

Scanning Probe Microscopy. EMSE-515 F. Ernst Scanning Probe Microscopy EMSE-515 F. Ernst 1 Literature 2 3 Scanning Probe Microscopy: The Lab on a Tip by Ernst Meyer,Ans Josef Hug,Roland Bennewitz 4 Scanning Probe Microscopy and Spectroscopy : Theory,

More information

Transparent Electrode Applications

Transparent Electrode Applications Transparent Electrode Applications LCD Solar Cells Touch Screen Indium Tin Oxide (ITO) Zinc Oxide (ZnO) - High conductivity - High transparency - Resistant to environmental effects - Rare material (Indium)

More information

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical Physics Louisiana State University http://quantum.phys.lsu.edu

More information

Nano-Lithography. Edited by Stefan Landis

Nano-Lithography. Edited by Stefan Landis Nano-Lithography Edited by Stefan Landis IST^ m WILEY Table of Contents Foreword Jörge DE SOUSA NORONHA Introduction Michel BRILLOUET xi xvii Chapter 1. X-ray Lithography: Fundamentals and Applications

More information

Südliche Stadtmauerstr. 15a Tel: D Erlangen Fax:

Südliche Stadtmauerstr. 15a Tel: D Erlangen Fax: Curriculum Vitae Lionel Santinacci 19.10.1974 Nationality: French Südliche Stadtmauerstr. 15a Tel: + 49 9131 852 7587 D-91054 Erlangen Fax: + 49 9131 852 7582 Germany e-mail: lionel@ww.uni-erlangen.de

More information

QUANTUM NANOSTRUCTURES

QUANTUM NANOSTRUCTURES QUANTUM NANOSTRUCTURES by Droplet Epitaxy Somsak Panyakeow Semiconductor Device Research Laboratory (SDRL), CoE Nanotechnology Center of Thailand, Department of Electrical Engineering, Faculty of Engineering,

More information

III-V nanostructured materials synthesized by MBE droplet epitaxy

III-V nanostructured materials synthesized by MBE droplet epitaxy III-V nanostructured materials synthesized by MBE droplet epitaxy E.A. Anyebe 1, C. C. Yu 1, Q. Zhuang 1,*, B. Robinson 1, O Kolosov 1, V. Fal ko 1, R. Young 1, M Hayne 1, A. Sanchez 2, D. Hynes 2, and

More information

Self-Assembled InAs Quantum Dots

Self-Assembled InAs Quantum Dots Self-Assembled InAs Quantum Dots Steve Lyon Department of Electrical Engineering What are semiconductors What are semiconductor quantum dots How do we make (grow) InAs dots What are some of the properties

More information

Institute of Materials Science of Mulhouse. Vincent Roucoules. UMR 7361 CNRS. 27 th november, 2017 SULZBACH- ROSEMBERG (GERMANY)

Institute of Materials Science of Mulhouse. Vincent Roucoules.  UMR 7361 CNRS. 27 th november, 2017 SULZBACH- ROSEMBERG (GERMANY) Institute of Materials Science of Mulhouse Director(s): Mulhouse Cathie Vix Vincent Roucoules UMR 7361 CNRS www.is2m.uha.fr 10,0 µ 27 th november, 2017 SULZBACH- ROSEMBERG (GERMANY) Institute of Materials

More information

Progress Report to AOARD

Progress Report to AOARD Progress Report to AOARD C. C. (Chih-Chung) Yang The Graduate Institute of Electro-Optical Engineering National Taiwan University No. 1, Roosevelt Road, Section 4, Taipei, Taiwan (phone) 886-2-23657624

More information

Call for Papers. 3 Steps to Contribute a Presentation. Submit. Submission Deadline: June 26 (Tue.), 2018 (17:00, JST)

Call for Papers. 3 Steps to Contribute a Presentation. Submit. Submission Deadline: June 26 (Tue.), 2018 (17:00, JST) Call for Papers 3 Steps to Contribute a Presentation Join JSAP Submit Register Regular Membership Admission Fee: 10,000 JPY Annual Due*: 10,000 JPY *Annual due will be waived for the first year. Graduate

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

EECS C245 ME C218 Midterm Exam

EECS C245 ME C218 Midterm Exam University of California at Berkeley College of Engineering EECS C245 ME C218 Midterm Eam Fall 2003 Prof. Roger T. Howe October 15, 2003 Dr. Thara Srinivasan Guidelines Your name: SOLUTIONS Circle your

More information

Single ion implantation for nanoelectronics and the application to biological systems. Iwao Ohdomari Waseda University Tokyo, Japan

Single ion implantation for nanoelectronics and the application to biological systems. Iwao Ohdomari Waseda University Tokyo, Japan Single ion implantation for nanoelectronics and the application to biological systems Iwao Ohdomari Waseda University Tokyo, Japan Contents 1.History of single ion implantation (SII) 2.Novel applications

More information