Transparent Electrode Applications

Size: px
Start display at page:

Download "Transparent Electrode Applications"

Transcription

1

2 Transparent Electrode Applications LCD Solar Cells Touch Screen Indium Tin Oxide (ITO) Zinc Oxide (ZnO) - High conductivity - High transparency - Resistant to environmental effects - Rare material (Indium) - Not compatible for flexible electronics - Very expensive deposition techniques - High conductivity - High transparency - Not resistant to environmental effects - Not compatible for flexible electronics - Very expensive deposition techniques

3 FLATLAND; a Romance of Many Dimensions! 2004 No. of Patent Publications related to Graphene/ Year; from the UK IP Office 2013

4 Graphene; a Unique Material Graphene can be considered as a zero-band gap semiconductor, that exhibits a linear dependence of the electron energy on the wave vector Electron States in C.B and V.B. have opposite chirality. An electron at graphene s Fermi Energy E f carries a fluctuating polarization that gives rise to both intraband and interband transitions leading to distinct optical properties. Unique electronic and optical properties High current densities, with high transmission Easy and inexpensive manufacturing techniques Compatible with flexible substrates

5 Energy The Future! Global New Investment in Clean Energy Technologies, (From climate Policy Memo #8) THE SUN IS ALL OURS!! To replace Indium Tin Oxide (ITO) as transparent electrodes for solar cells

6 Outline Graphene; growth, characterization Reducing the sheet resistance for transparent electrodes applications; - Stacking - Doping, - G/Cu Busbars - Graphene/ NT hybrid

7 Graphene Isolation Scotch tape Graphite Exfoliation Chemical Vapor Deposition Growth via CVD on Copper films; transferred in solution to any substrates 1 layer at a time; Uniform over large areas, 1 layer: / at 97 % transparency X. S. Li et al, Science, 2009, 324, 1312

8 Graphene; Characterizations. Optical Spectra

9 Medium Energy Ion Scattering - light ions (like He + ) with an energy of kev are incident along a major crystallographic direction in the solid. - Energy and angle resolved detection of backscattered ions provides surface structural and compositional information. - Depth profile is based on the energy loss of the ions traveling through the film. - Because it uses lower energy ions, the depth resolution is greatly improved. Yield (counts) MEIS Data Data Fit Energy (kev) The MEIS gives 1.2 layers of graphene; equivalent to nm thickness; these results were used to fit the ellipsometer measurements. M. Copel et al, Appl. Phys. Lett. 2011, 98(11),

10 Index of Refraction (n) Ellipsometer Measurements n k Extinction Coefficient (k) Wavelength (nm) The ellipsometer measurements gives a value of 2.5 and 1.9 for n and k respectively A. Kasry et al, J. Phys. Chem. C, 2012, 116 (4), 2858

11 Outline Graphene; growth, characterization Reducing the sheet resistance for transparent electrodes applications; - Stacking - Doping, - G/Cu Busbars - Graphene/ NT hybrid

12 5 strategies for reducing the sheet resistance Reducing the Sheet Resistance E F Stacking of Gr films E F Doping with Nitric Acid (P-Dopant) Stacking and Doping Metal busbars in contact with Gr films Gr/ nanotube hybrid

13 Graphene. Transparent Electrodes Stacking and Doping The conductivity increases with increasing the number of layers and by doping A. Kasry et al, ACS Nano, 2010, 4(7), 3838

14 Graphene. Transparent Electrodes ITO Stacking and Doping The optical conductivity increases with doping A. Kasry et al, ACS Nano, 2010, 4(7), 3838

15 Reducing the Sheet Resistance 5 strategies for reducing the sheet resistance E F Stacking of Gr films E F Doping with Nitric Acid (P-Dopant) Stacking and Doping Metal busbars in contact with Gr films Gr/ nanotube hybrid

16 Graphene. Copper Busbars The metal grid reduces the distance the charge has to travel in the metallic carbon-based film, reducing the effective sheet resistance of the composite layer United States Patent Application A. Kasry et al, Thin Solid Films, 2012, 520(15), 4827

17 Metallic Busbars to Reduce the Sheet Resistance! United States Patent Application A. Kasry et al, Thin Solid Films, 2012, 520(15), 4827

18 Reducing the Sheet Resistance 5 strategies for reducing the sheet resistance E F Stacking of Gr films E F Doping with Nitric Acid (P-Dopant) Stacking and Doping Metal busbars in contact with Gr films Gr/ nanotube hybrid

19 Graphene/ Nanotube Hybrid! Before Vacuum Annealing After Vacuum Annealing Annealing improves the coupling between the graphene and the nanotubes Ahmed Maarouf, Bhupesh Chandra,, YOR US1.filed to US Patent Office

20 Carbon Nanotube-Graphene Hybrid as Transparent Conductors One Graphene layer Graphene-NT Hybrid Two stacked graphene layers After Vacuum annealing (10 600oC) After Nitric Acid Doping 5.2 K Ohm 2.7 K / 4.1 K / Ohm 360 / 400 /

21 Carbon Nanotube-Graphene Hybrid as Transparent Conductors Transmittance (%) Graphene Nanotubes Hybrid Sheet Resistance (Ohm/ Square)

22 Graphene..a Future Sensor?! From the McAlpine group at Princeton University: Graphene sensor "tattooed" onto a tooth can be used to detect bacteria and wirelessly monitor oral hygiene. The graphene is printed onto water-soluble silk and can be "bio-transferred" onto tooth enamel. Once the film is applied to the tooth, the silk dissolves in water, leaving only the sensor in place. It uses antimicrobial peptides and a resonant coil, so bacteria cells can be detected without needing an on-board power supply.

23 Conclusions! Graphene is a very promising candidate to replace ITO as a transparent conductor for several applications like solar cell electrodes and touch screens nm nm nm Graphene could be prepared by CVD method, growth 1.1µm conditions were optimized, and optical parameter were determined nm 1.1µm The sheet resistance of Graphene layers grown by CVD could be reduced to be comparable with Conventional transparent electrodes. Transmission (a.u.) ITO After Doping dc / op = 14.7 Before Doping dc / op = 4.9 Multilayer nm Sheet Resistance (ohm/square) Challenge the Challenges! Conducted under and partially funded by the 2008 joint development agreement between IBM Research and the Government of the Arab Republic of Egypt through the Egypt Nanotechnology Center

24 One Layer Graphene 50 µm Optical Microscope Image AFM Image

25 Graphene; Characterizations. Raman Spectroscopy Raman spectroscopy is a result of inelastic scattering of a photon. It is used to study vibrational modes in a system. The Raman spectra of singlelayer graphene has three key characteristic peaks: G peak; is due to the vibrational mode of sp2 bonded carbon. 2D and D bands; are induced by defects in the structure Raman Intensity G 2D D Raman Shift (cm -1 )

26 Growth Optimization. SEM & AFM 2 m 2 m 2 m 10 min Anneal/ 10 min Growth 30 min Anneal/ 10 min Growth 60 min Anneal/ 10 min Growth SEM results of the graphene on Cu before the transfer; the graphene grown using 10 min annealing time and 10 min. growth are smoother 200nm 200nm 200nm

27 Growth Optimization. XPS & Raman 400 D 10 min Anneal-10 min Growth 30 min Anneal-10 min Growth 60 min Anneal-10 min Growth Intensity (a.u.) Raman Shift (cm -1 ) Intensoty (a.u.) 2500 C1s Before Transfer Binding Energy (e.v.) Intensoty (a.u.) C1s After Transfer Binding Energy (e.v.) Raman Results of the graphene after transfer; the graphene grown at 10 min annealing time and 10 min. growth has less defects!

Graphene. Tianyu Ye November 30th, 2011

Graphene. Tianyu Ye November 30th, 2011 Graphene Tianyu Ye November 30th, 2011 Outline What is graphene? How to make graphene? (Exfoliation, Epitaxial, CVD) Is it graphene? (Identification methods) Transport properties; Other properties; Applications;

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 CVD growth of Graphene SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 Graphene zigzag armchair History 1500: Pencil-Is it made of lead? 1789: Graphite 1987: The first

More information

The Effects of Hydrazine Monohydrate Surface Doping on Graphene

The Effects of Hydrazine Monohydrate Surface Doping on Graphene Macalester Journal of Physics and Astronomy Volume 4 Issue 1 Spring 2016 Article 8 May 2016 The Effects of Hydrazine Monohydrate Surface Doping on Graphene Christian M. Stewart Macalester College, cstewart@macalester.edu

More information

Initial Stages of Growth of Organic Semiconductors on Graphene

Initial Stages of Growth of Organic Semiconductors on Graphene Initial Stages of Growth of Organic Semiconductors on Graphene Presented by: Manisha Chhikara Supervisor: Prof. Dr. Gvido Bratina University of Nova Gorica Outline Introduction to Graphene Fabrication

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

Session V: Graphene. Matteo Bruna CAMBRIDGE UNIVERSITY DEPARTMENT OF ENGINEERING

Session V: Graphene. Matteo Bruna CAMBRIDGE UNIVERSITY DEPARTMENT OF ENGINEERING Session V: Graphene Matteo Bruna Graphene: Material in the Flatland Graphite Graphene Properties: Thinnest imaginable material Good(and tunable) electrical conductor Strongest ever measured Stiffest known

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Auger Electron Spectroscopy

Auger Electron Spectroscopy Auger Electron Spectroscopy Auger Electron Spectroscopy is an analytical technique that provides compositional information on the top few monolayers of material. Detect all elements above He Detection

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD Supplementary figure 1 Graphene Growth and Transfer Graphene PMMA FeCl 3 DI water Copper foil CVD growth Back side etch PMMA coating Copper etch in 0.25M FeCl 3 DI water rinse 1 st transfer DI water 1:10

More information

Lab #3 Transparent Conductors

Lab #3 Transparent Conductors Lab #3 Transparent Conductors R.J. Ellingson and M.J. Heben Sept. 23, 2014 PHYS 4580, 6/7280 Today at 4:30 pm, R1 Room 1010 Impact of Optical Loss in Window Layer in PV Cells O Quantum Efficiency, aka

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. fabrication. A schematic of the experimental setup used for graphene Supplementary Figure 2. Emission spectrum of the plasma: Negative peaks indicate an

More information

XPS Depth Profiling of Epitaxial Graphene Intercalated with FeCl 3

XPS Depth Profiling of Epitaxial Graphene Intercalated with FeCl 3 XPS Depth Profiling of Epitaxial Graphene Intercalated with FeCl 3 Mahdi Ibrahim Maynard H. Jackson High School Atlanta, GA. Faculty Advisor: Dr. Kristin Shepperd Research Group: Prof. Edward Conrad School

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Topological insulator nanostructures for near-infrared transparent flexible electrodes Hailin Peng 1*, Wenhui Dang 1, Jie Cao 1, Yulin Chen 2,3, Di Wu 1, Wenshan Zheng 1, Hui Li 1, Zhi-Xun Shen 3,4, Zhongfan

More information

FMM, 15 th Feb Simon Zihlmann

FMM, 15 th Feb Simon Zihlmann FMM, 15 th Feb. 2013 Simon Zihlmann Outline Motivation Basics about graphene lattice and edges Introduction to Raman spectroscopy Scattering at the edge Polarization dependence Thermal rearrangement of

More information

Graphene FETs EE439 FINAL PROJECT. Yiwen Meng Su Ai

Graphene FETs EE439 FINAL PROJECT. Yiwen Meng Su Ai Graphene FETs EE439 FINAL PROJECT Yiwen Meng Su Ai Introduction What is Graphene? An atomic-scale honeycomb lattice made of carbon atoms Before 2004, Hypothetical Carbon Structure Until 2004, physicists

More information

Lectures Graphene and

Lectures Graphene and Lectures 15-16 Graphene and carbon nanotubes Graphene is atomically thin crystal of carbon which is stronger than steel but flexible, is transparent for light, and conducts electricity (gapless semiconductor).

More information

Graphene Novel Material for Nanoelectronics

Graphene Novel Material for Nanoelectronics Graphene Novel Material for Nanoelectronics Shintaro Sato Naoki Harada Daiyu Kondo Mari Ohfuchi (Manuscript received May 12, 2009) Graphene is a flat monolayer of carbon atoms with a two-dimensional honeycomb

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Flexible, high-performance carbon nanotube integrated circuits Dong-ming Sun, Marina Y. Timmermans, Ying Tian, Albert G. Nasibulin, Esko I. Kauppinen, Shigeru Kishimoto, Takashi

More information

Marcus Klein, SURAGUS GmbH

Marcus Klein, SURAGUS GmbH RPGR2017 21.09.2017 Singapore Marcus Klein, SURAGUS GmbH SURAGUS as company and as EU Gladiator Challenges for industrial Graphene applications Example application graphene as TCM Quality characteristics

More information

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Prof. Dr. Esko I. Kauppinen Helsinki University of Technology (TKK) Espoo, Finland Forecast Seminar February 13, 2009

More information

Engineered Flexible Conductive Barrier Films for Advanced Energy Devices

Engineered Flexible Conductive Barrier Films for Advanced Energy Devices The 13 th Korea-U.S. Forum on Nanotechnology Engineered Flexible Conductive Barrier Films for Advanced Energy Devices Jinsung Kwak 1, Yongsu Jo 1, Soon-Dong Park 2, Na Yeon Kim 1, Se-Yang Kim 1, Zonghoon

More information

Supplementary Information

Supplementary Information Supplementary Information Plasma-assisted reduction of graphene oxide at low temperature and atmospheric pressure for flexible conductor applications Seung Whan Lee 1, Cecilia Mattevi 2, Manish Chhowalla

More information

Graphene Fundamentals and Emergent Applications

Graphene Fundamentals and Emergent Applications Graphene Fundamentals and Emergent Applications Jamie H. Warner Department of Materials University of Oxford Oxford, UK Franziska Schaffel Department of Materials University of Oxford Oxford, UK Alicja

More information

Optical Properties of Copper Phthalocyanine(CuPc)Thin Films

Optical Properties of Copper Phthalocyanine(CuPc)Thin Films Egypt. J. Sol., Vol. (24), No. (1), (2001) 11 Optical Properties of Copper Phthalocyanine(CuPc)Thin Films M. M. El-Nahass, F.S. Bahabri* ands.r.al-harbi* Faculty of Education, Ain Shams University, Cairo,

More information

Supplementary Figure 1: A potential scheme to electrically gate the graphene-based metamaterial. Here density. The voltage equals, where is the DC

Supplementary Figure 1: A potential scheme to electrically gate the graphene-based metamaterial. Here density. The voltage equals, where is the DC Supplementary Figure 1: A potential scheme to electrically gate the graphene-based metamaterial. Here density. The voltage equals, where is the DC permittivity of the dielectric. is the surface charge

More information

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height topographies of h-bn film in a size of ~1.5µm 1.5µm, 30µm 30µm

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Continuous, Highly Flexible and Transparent. Graphene Films by Chemical Vapor Deposition for. Organic Photovoltaics

Continuous, Highly Flexible and Transparent. Graphene Films by Chemical Vapor Deposition for. Organic Photovoltaics Supporting Information for Continuous, Highly Flexible and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics Lewis Gomez De Arco 1,2, Yi Zhang 1,2, Cody W. Schlenker 2,

More information

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield 2D MBE Activities in Sheffield I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield Outline Motivation Van der Waals crystals The Transition Metal Di-Chalcogenides

More information

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Yu Yao 1, Raji Shankar 1, Patrick Rauter 1, Yi Song 2, Jing Kong

More information

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. Plasmonics The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. A possible way out is the conversion of light into plasmons. They have much shorter

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information NiSe 2 Pyramids Deposited on N-doped Graphene Encapsulated

More information

Work-Function Decrease of Graphene Sheet. Using Alkali Metal Carbonates

Work-Function Decrease of Graphene Sheet. Using Alkali Metal Carbonates Supporting Information Work-Function Decrease of Graphene Sheet Using Alkali Metal Carbonates Ki Chang Kwon and Kyoung Soon Choi School of Chemical Engineering and Materials Science, Chung-Ang University

More information

Imaging Carbon materials with correlative Raman-SEM microscopy. Introduction. Raman, SEM and FIB within one chamber. Diamond.

Imaging Carbon materials with correlative Raman-SEM microscopy. Introduction. Raman, SEM and FIB within one chamber. Diamond. Imaging Carbon materials with correlative Raman-SEM microscopy Application Example Carbon materials are widely used in many industries for their exceptional properties. Electric conductance, light weight,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 215 Supporting Information Enhanced Photovoltaic Performances of Graphene/Si Solar Cells by Insertion

More information

Hydrogenation of Single Walled Carbon Nanotubes

Hydrogenation of Single Walled Carbon Nanotubes Hydrogenation of Single Walled Carbon Nanotubes Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University Coworkers and Ackowledgement A. Nikitin 1), H. Ogasawara 1), D.

More information

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film Fengang Zheng, a,b, * Peng Zhang, a Xiaofeng Wang, a Wen Huang,

More information

III-V nanostructured materials synthesized by MBE droplet epitaxy

III-V nanostructured materials synthesized by MBE droplet epitaxy III-V nanostructured materials synthesized by MBE droplet epitaxy E.A. Anyebe 1, C. C. Yu 1, Q. Zhuang 1,*, B. Robinson 1, O Kolosov 1, V. Fal ko 1, R. Young 1, M Hayne 1, A. Sanchez 2, D. Hynes 2, and

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INORMATION Supplementary Information Extremely Efficient lexible Organic Light-emitting Diodes with Modified Graphene Anode Tae-Hee Han 1, Youngbin Lee 2, Mi-Ri Choi 1, Seong-Hoon Woo 1,

More information

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Theoretical Study on Graphene Silicon Heterojunction Solar Cell Copyright 2015 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoelectronics and Optoelectronics Vol. 10, 1 5, 2015 Theoretical Study on Graphene

More information

Supporting Information. Direct Growth of Graphene Films on 3D Grating. Structural Quartz Substrates for High-performance. Pressure-Sensitive Sensor

Supporting Information. Direct Growth of Graphene Films on 3D Grating. Structural Quartz Substrates for High-performance. Pressure-Sensitive Sensor Supporting Information Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-performance Pressure-Sensitive Sensor Xuefen Song, a,b Tai Sun b Jun Yang, b Leyong Yu, b Dacheng

More information

Supplementary Figure 1. Visible (λ = 633 nm) Raman spectra of a-co x layers. (a) Raman spectra of

Supplementary Figure 1. Visible (λ = 633 nm) Raman spectra of a-co x layers. (a) Raman spectra of a In te n s ity [a.u.] c In te n s ity [a.u.] 6 4 2 4 3 2 1 3 2.5 2 1.5 1 p O 2 3.5 1,5 3, 4,5 R a m a n s h ift [c m -1 ] p ris tin e 1 o C 2 o C 3 o C 4 o C 5 o C b d In te n s ity [a.u.] In te n s ity

More information

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene Supplementary Information for Origin of New Broad Raman D and G Peaks in Annealed Graphene Jinpyo Hong, Min Kyu Park, Eun Jung Lee, DaeEung Lee, Dong Seok Hwang and Sunmin Ryu* Department of Applied Chemistry,

More information

Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films

Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films Supporting Information Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films Jinping Zhao, Songfeng Pei, Wencai Ren*, Libo Gao and Hui-Ming Cheng* Shenyang National

More information

2011 GCEP Report. Project title: Self-sorting of Carbon Nanotubes for High Performance Large Area Transparent Electrodes for Solar Cells

2011 GCEP Report. Project title: Self-sorting of Carbon Nanotubes for High Performance Large Area Transparent Electrodes for Solar Cells 2011 GCEP Report Project title: Self-sorting of Carbon Nanotubes for High Performance Large Area Transparent Electrodes for Solar Cells Investigators Zhenan Bao, Associate Professor, Chemical Engineering

More information

Mesoporous titanium dioxide electrolyte bulk heterojunction

Mesoporous titanium dioxide electrolyte bulk heterojunction Mesoporous titanium dioxide electrolyte bulk heterojunction The term "bulk heterojunction" is used to describe a heterojunction composed of two different materials acting as electron- and a hole- transporters,

More information

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique PRAMANA c Indian Academy of Sciences Vol. 67, No. 2 journal of August 2006 physics pp. 395 400 Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique KHURSHED AHMAD

More information

Band-like transport in highly crystalline graphene films from

Band-like transport in highly crystalline graphene films from Supplementary figures Title: Band-like transport in highly crystalline graphene films from defective graphene oxides R. Negishi 1,*, M. Akabori 2, T. Ito 3, Y. Watanabe 4 and Y. Kobayashi 1 1 Department

More information

OPTICAL ANALYSIS OF ZnO THIN FILMS USING SPECTROSCOPIC ELLIPSOMETRY AND REFLECTOMETRY.

OPTICAL ANALYSIS OF ZnO THIN FILMS USING SPECTROSCOPIC ELLIPSOMETRY AND REFLECTOMETRY. OPTICAL ANALYSIS OF ZnO THIN FILMS USING SPECTROSCOPIC ELLIPSOMETRY AND REFLECTOMETRY Katarína Bombarová 1, Juraj Chlpík 1,2, Soňa Flickyngerová 3, Ivan Novotný 3, Július Cirák 1 1 Institute of Nuclear

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC)

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC) Communications in Physics, Vol. 26, No. 1 (2016), pp. 43-49 DOI:10.15625/0868-3166/26/1/7961 GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC) NGUYEN THAI HA, PHAM DUY LONG,

More information

Beatrice Beyer ISFOE 2014 Thessaloniki, Greece

Beatrice Beyer ISFOE 2014 Thessaloniki, Greece Beatrice Beyer ISFOE 2014 Thessaloniki, Greece What? Graphene which is both highly conductive and transparent Large volume production Process safety Proof of concept for use as transparent electrode Why?

More information

NANO TECHNOLOGY IN POLYMER SOLAR CELLS. Mayur Padharia, Hardik Panchal, Keval Shah, *Neha Patni, Shibu.G.Pillai

NANO TECHNOLOGY IN POLYMER SOLAR CELLS. Mayur Padharia, Hardik Panchal, Keval Shah, *Neha Patni, Shibu.G.Pillai NANO TECHNOLOGY IN POLYMER SOLAR CELLS Mayur Padharia, Hardik Panchal, Keval Shah, *Neha Patni, Shibu.G.Pillai Department of Chemical Engineering, Institute of Technology, Nirma University, S. G. Highway,

More information

Supplementary Information

Supplementary Information Supplementary Information Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride Kun Ba 1,, Wei Jiang 1,,Jingxin Cheng 2, Jingxian Bao 1, Ningning Xuan 1,Yangye Sun 1, Bing Liu 1, Aozhen

More information

Real-time and in-line Optical monitoring of Functional Nano-Layer Deposition on Flexible Polymeric Substrates

Real-time and in-line Optical monitoring of Functional Nano-Layer Deposition on Flexible Polymeric Substrates Real-time and in-line Optical monitoring of Functional Nano-Layer Deposition on Flexible Polymeric Substrates S. Logothetidis Lab for Thin Films, Nanosystems & Nanometrology, Aristotle University of Thessaloniki,

More information

REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS

REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS K. S. Choi, Y. Park, K-.C. Kwon, J. Kim, C. K.

More information

Determining Carbon Nanotube Properties from Raman. Scattering Measurements

Determining Carbon Nanotube Properties from Raman. Scattering Measurements Determining Carbon Nanotube Properties from Raman Scattering Measurements Ying Geng 1, David Fang 2, and Lei Sun 3 1 2 3 The Institute of Optics, Electrical and Computer Engineering, Laboratory for Laser

More information

Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date: th July 2014

Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date: th July 2014 Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date:13-1818 th July 2014 An electrochemical method for the synthesis of single and few layers graphene sheets for high temperature

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/7/e1600322/dc1 Supplementary Materials for Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering Simin Feng, Maria Cristina

More information

Optical Filter Using Graphene/Graphene Oxide Thin Films

Optical Filter Using Graphene/Graphene Oxide Thin Films Optical Filter Using Graphene/Graphene Oxide Thin Films Abhay Varghese Thomas Graduate Student Department of Mechanical, Aerospace and Nuclear Engineering Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition 1 Supporting Information Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition Jaechul Ryu, 1,2, Youngsoo Kim, 4, Dongkwan Won, 1 Nayoung Kim, 1 Jin Sung Park, 1 Eun-Kyu

More information

Supporting Information: Poly(dimethylsiloxane) Stamp Coated with a. Low-Surface-Energy, Diffusion-Blocking,

Supporting Information: Poly(dimethylsiloxane) Stamp Coated with a. Low-Surface-Energy, Diffusion-Blocking, Supporting Information: Poly(dimethylsiloxane) Stamp Coated with a Low-Surface-Energy, Diffusion-Blocking, Covalently Bonded Perfluoropolyether Layer and Its Application to the Fabrication of Organic Electronic

More information

Energy Spectroscopy. Excitation by means of a probe

Energy Spectroscopy. Excitation by means of a probe Energy Spectroscopy Excitation by means of a probe Energy spectral analysis of the in coming particles -> XAS or Energy spectral analysis of the out coming particles Different probes are possible: Auger

More information

The Inclusion of Impurities in Graphene Grown on Silicon Carbide

The Inclusion of Impurities in Graphene Grown on Silicon Carbide The Inclusion of Impurities in Graphene Grown on Silicon Carbide Sara Rothwell May 23, 2013 Goal: Experimentally Fabricate Doped Graphene Procedure: 1. Introduce dopant in substrate ImplantaEon NO Process

More information

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) J Kazunari Matsuda Institute of Advanced Energy, Kyoto University Introduction of optical properties of nano-carbon materials

More information

Electrical Characterisation of TCO thin films (method of four coefficients).

Electrical Characterisation of TCO thin films (method of four coefficients). Electrical Characterisation of TCO thin films (method of four coefficients). Eric Don, SemiMetrics Ltd. Functional Thin Films 4 th Vacuum Symposium Thursday 17 th October 2013 Agenda TCO Basics TCO Applications

More information

Graphene Canada Montreal Oct. 16, 2015 (International Year of Light)

Graphene Canada Montreal Oct. 16, 2015 (International Year of Light) Luminescence Properties of Graphene A. Beltaos 1,2,3, A. Bergren 1, K. Bosnick 1, N. Pekas 1, A. Matković 4, A. Meldrum 2 1 National Institute for Nanotechnology (NINT), 11421 Saskatchewan Drive, Edmonton,

More information

Auger Electron Spectroscopy Overview

Auger Electron Spectroscopy Overview Auger Electron Spectroscopy Overview Also known as: AES, Auger, SAM 1 Auger Electron Spectroscopy E KLL = E K - E L - E L AES Spectra of Cu EdN(E)/dE Auger Electron E N(E) x 5 E KLL Cu MNN Cu LMM E f E

More information

LOW-TEMPERATURE Si (111) HOMOEPITAXY AND DOPING MEDIATED BY A MONOLAYER OF Pb

LOW-TEMPERATURE Si (111) HOMOEPITAXY AND DOPING MEDIATED BY A MONOLAYER OF Pb LOW-TEMPERATURE Si (111) HOMOEPITAXY AND DOPING MEDIATED BY A MONOLAYER OF Pb O.D. DUBON, P.G. EVANS, J.F. CHERVINSKY, F. SPAEPEN, M.J. AZIZ, and J.A. GOLOVCHENKO Division of Engineering and Applied Sciences,

More information

Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV. Heather M. Yates

Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV. Heather M. Yates Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV Heather M. Yates Why the interest? Perovskite solar cells have shown considerable promise

More information

Chemical Vapor Deposition Graphene Grown on Peeled- Off Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties

Chemical Vapor Deposition Graphene Grown on Peeled- Off Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties Supplementary information Chemical Vapor Deposition Graphene Grown on Peeled- Off Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties Hak Ki Yu 1,2, Kannan Balasubramanian 3, Kisoo Kim 4,

More information

Vertical Alignment of Reduced Graphene Oxide/Fe-oxide Hybrids Using the Magneto-Evaporation Method

Vertical Alignment of Reduced Graphene Oxide/Fe-oxide Hybrids Using the Magneto-Evaporation Method Electronic Supplementary Information (ESI) Vertical Alignment of Reduced Graphene Oxide/Fe-oxide Hybrids Using the Magneto-Evaporation Method Sang Cheon Youn, Dae Woo Kim, Seung Bo Yang, Hye Mi Cho, Jae

More information

Supplementary Figures Supplementary Figure 1

Supplementary Figures Supplementary Figure 1 Supplementary Figures Supplementary Figure 1 Optical images of graphene grains on Cu after Cu oxidation treatment at 200 for 1m 30s. Each sample was synthesized with different H 2 annealing time for (a)

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

Recap (so far) Low-Dimensional & Boundary Effects

Recap (so far) Low-Dimensional & Boundary Effects Recap (so far) Ohm s & Fourier s Laws Mobility & Thermal Conductivity Heat Capacity Wiedemann-Franz Relationship Size Effects and Breakdown of Classical Laws 1 Low-Dimensional & Boundary Effects Energy

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Hihly efficient ate-tunable photocurrent eneration in vertical heterostructures of layered materials Woo Jon Yu, Yuan Liu, Hailon Zhou, Anxian Yin, Zhen Li, Yu Huan, and Xianfen Duan. Schematic illustration

More information

30 inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes

30 inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes 30 inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes Sukang Bae 1*, Hyeong Keun Kim 3*, Youngbin Lee 1, Xianfang Xu 5, Jae-Sung Park 7, Yi Zheng 5, Jayakumar

More information

Development of active inks for organic photovoltaics: state-of-the-art and perspectives

Development of active inks for organic photovoltaics: state-of-the-art and perspectives Development of active inks for organic photovoltaics: state-of-the-art and perspectives Jörg Ackermann Centre Interdisciplinaire de Nanoscience de Marseille (CINAM) CNRS - UPR 3118, MARSEILLE - France

More information

Lecture 5: Characterization methods

Lecture 5: Characterization methods Lecture 5: Characterization methods X-Ray techniques Single crystal X-Ray Diffration (XRD) Powder XRD Thin film X-Ray Reflection (XRR) Microscopic methods Optical microscopy Electron microscopies (SEM,

More information

30-Inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes

30-Inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes 30-Inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes Sukang Bae, 1* Hyeong Keun Kim, 3* Xianfang Xu, 5 Jayakumar Balakrishnan, 5 Tian Lei, 1 Young Il Song, 6

More information

The Dielectric Function of a Metal ( Jellium )

The Dielectric Function of a Metal ( Jellium ) The Dielectric Function of a Metal ( Jellium ) Total reflection Plasma frequency p (10 15 Hz range) Why are Metals Shiny? An electric field cannot exist inside a metal, because metal electrons follow the

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Information for Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Figure 1. Simulated from pristine graphene gratings at different Fermi energy

More information

Novel Tooling for Scaling of High Quality CVD Graphene Production. Karlheinz Strobl, Mathieu Monville, Riju Singhal and Samuel Wright

Novel Tooling for Scaling of High Quality CVD Graphene Production. Karlheinz Strobl, Mathieu Monville, Riju Singhal and Samuel Wright Novel Tooling for Scaling of High Quality CVD Graphene Production Karlheinz Strobl, Mathieu Monville, Riju Singhal and Samuel Wright 1 Commercialization of Nano Materials Commercialization Volume production

More information

Graphene devices and integration: A primer on challenges

Graphene devices and integration: A primer on challenges Graphene devices and integration: A primer on challenges Archana Venugopal (TI) 8 Nov 2016 Acknowledgments: Luigi Colombo (TI) UT Dallas and UT Austin 1 Outline Where we are Issues o Contact resistance

More information

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research Graphene Prepared for Solid State Physics II Pr Dagotto Spring 2009 Laurene Tetard 03/23/09 Overview Carbon in all its forms Background & Discovery Fabrication Important properties Overview of current

More information

The Raman Spectroscopy of Graphene and the Determination of Layer Thickness

The Raman Spectroscopy of Graphene and the Determination of Layer Thickness Application Note: 52252 The Raman Spectroscopy of Graphene and the Determination of Layer Thickness Mark Wall, Ph.D., Thermo Fisher Scientific, Madison, WI, USA Key Words DXR Raman Microscope 2D Band D

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Effect of airborne contaminants on the wettability of supported graphene and graphite Zhiting Li 1,ǂ, Yongjin Wang 2, ǂ, Andrew Kozbial 2, Ganesh Shenoy 1, Feng Zhou 1, Rebecca McGinley 2, Patrick Ireland

More information

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis Tim Nunney The world leader in serving science 2 XPS Surface Analysis XPS +... UV Photoelectron Spectroscopy UPS He(I)

More information

Università degli Studi di Bari "Aldo Moro"

Università degli Studi di Bari Aldo Moro Università degli Studi di Bari "Aldo Moro" Table of contents 1. Introduction to Atomic Force Microscopy; 2. Introduction to Raman Spectroscopy; 3. The need for a hybrid technique Raman AFM microscopy;

More information

Carbon Nanomaterials

Carbon Nanomaterials Carbon Nanomaterials STM Image 7 nm AFM Image Fullerenes C 60 was established by mass spectrographic analysis by Kroto and Smalley in 1985 C 60 is called a buckminsterfullerene or buckyball due to resemblance

More information

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL 1. INTRODUCTION Silicon Carbide (SiC) is a wide band gap semiconductor that exists in different polytypes. The substrate used for the fabrication

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Carbon Nanotubes: Development of Nanomaterials for Hydrogen Storage

Carbon Nanotubes: Development of Nanomaterials for Hydrogen Storage Carbon Nanotubes: Development of Nanomaterials for Hydrogen Storage Hongjie Dai Department of Chemistry & Laboratory for Advanced Materials Stanford University GCEP, September 19, 2006 Outline Can carbon

More information