Nanostrukturphysik (Nanostructure Physics)

Size: px
Start display at page:

Download "Nanostrukturphysik (Nanostructure Physics)"

Transcription

1 Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: Office: Unterpoerlitzer Straße 38 (Heisenbergbau) (tel: 3748) Vorlesung: Wedsnesday 9:00 10:30, C 108 Übung: Friday (G), 9:00 10:30, C 110 (a) (b 1 ) (b 2 ) UTAM-prepared free-standing one-dimensional surface nanostructures on Si substrates: Ni nanowire arrays (a) and carbon nanotube arrays (b).

2 Contents of Class 1 A general introduction of fundamentals of nanostructured materials Definition of nanostructures or nano-structured materials Significance of nano-structured materials Structural aspects An outline of all the 10 classes Characterization of nano-strcutures One-dimensional nanostructures Surface Nanostructures realized using UTAM

3 There s plenty of room at the bottom, the principles of physics, as far as I can see, do not speak against the possibility of manoeuvring things atom by atom... By the legendary physicist Richard Feynman in 1959 (Feynman R., Eng Sci, 1960) Progress made in past two decades has proven this statement by the amazing nature of nanomaterials, has achieved exciting technological advancement for the benefit of mankind.

4 Definition of nanostructures or nano-materials The word nanometer has been assigned to indicate the size of 10-9 meter Structures with at least one dimension within nanometer (nm) called nanostructures (Prof. H. Gleiter ) The word nano derived from a Greek word nanos, means dwarf (small) Nanostructures have received high research interest because of their peculiar and fascinating properties, as well as their unique applications superior to their counterparts - bulk materials. Nowadays, nanomaterials and nanostructures are not only one of the hottest fundamental research topics, but also gradually intrude into our daily life.

5 From: J. Henk Introduction to the Theory of Nanostructures (Lecture Notes 2006)

6 Nobel Prizes with research related to nanotechnology: 1986 Physics: G. Binnig, H. Rohrer: design of the scanning tunneling microscope (STM) SPM systems; 1996 Chemistry: R. Curl, H. Kroto, R. Smalley: discovery of fullerenes (C60, bucky balls); 2002 Chemistry: J. Fenn, K. Tanaka, K. Wüthrich: identification and structure analyses of biological macromolecules; 2003 Chemistry: P. Agre, R. MacKinnon: discoveries of channels in cell membranes Physics: A. Geim, K. Novoselov: for groundbreaking experiments regarding the two-dimensional graphene

7 Nobel Prizes with research related to nanostructures: G. Binnig (German) & H. Rohrer (Swiss) Nobel Prize 1986 Physics Designing of the scanning tunneling microscope (STM) SPM systems G. Binnig also designed AFM with other 2 scientists, and started the company Definiens in He worked as honorary professors in some universities, e.g., Uni-Muenchen.

8 Konstantin Novoselov & Andre Geim (Russian) Nobel Prize 2010 Physics for groundbreaking experiments regarding the twodimensional graphene 8

9 Prof. Andre Geim (from: en.wikipedia.org/wiki/andre_geim) obtained first tenured position in 1994, associate professor at Uni-Nijmegen, one doctoral student at Nijmegen was Novoselov. Geim said that he had an unpleasant time during his career in Netherlands. He was offered professorships at Nijmegen and Eindhoven, but turned them down as he found the Dutch academic system too hierarchical and full of politicking. "This can be pretty unpleasant at times," he says. "It's not like the British system where every staff member is an equal quantity. Geim writes in his Nobel lecture that "the situation was a bit surreal because outside the university walls I received a warmhearted welcome from everyone around In 2001 he became a professor at the University of Manchester, and was appointed director of the Manchester Centre for Mesoscience and Nanotechnology in 2002.

10 1996: Curl, Kroto, Smalley 1985 or1986: fullerenes (C60, bucky balls); 2010: Geim, Novoselov : 2D graphene The allotropes of carbon: hardest natural substance, diamond one of the softest known substances, graphite. For carbon nanotubes CNT (by Ijima in 1991) and the equally important discovery of inorganic fullerene structures (by Tenne) Allotropes of carbon: a) diamond; b) graphite; c) lonsdaleite; d f) fullerenes (C 60, C 540, C 70 ); g) amorphous carbon; h) carbon nanotube. from

11 Graphene is a 1-atom thick sheet of sp 2 -bonded carbon atoms that are densely packed in a honeycomb crystal lattice. Graphene is easily visualized as an atomic-scale wire made of carbon atoms and their bonds. Graphite consists of many graphene sheets stacked together. (

12 Zigzag carbon nanotube

13 Armchair carbon nanotube

14 Why are nanostructures interesting? small is different: new properties of materials at nanometer scale look at quantum mechanics nanostructure + functions or properties: revolution in information technology, medicine, media...

15 Many opportunities might be realized by making new types of nanostructures (fabrication ways): 1. simply by down-sizing existing microstructures into nm range: most successful example is microelectronics, where smaller means greater performance (since the invention of integrated circuits): more components per chip, faster operation, lower cost, and less power consumption;

16 Structural aspects of nano-structured materials: Extremely large surface area (very large surface/volume ratio): when the dimensions decrease from micron level to nano level, the surface area increases by 3 orders in magnitude. This will lead to much improved and enhanced physical properties (sensing, optical, catalysis...): Cube Cubic structures divided into 8 pieces surface area 2 times(doubled) Cube Cubic structures divided into 1000 pieces surface area 10 times

17 Many opportunities might be realized by making new types of nanostructures (fabrication ways): 2. Miniaturization also represent the trend in a range of other technologies: Information storage, e.g., many efforts to fabricate magnetic and optical storage components with critical dimensions (feature size) as small as tens of nanometer device miniaturization

18 Dual-core CPU feature-size 45 nm From Intel Homepage, Public Relations

19 Electronic properties: Dimensions of a system - comparable with Bohr (exciton) radius (which is comparable to nanowire diameter): energy bands cease to overlap discrete The typical electronic properties of the nanostructures are a result of tunneling currents and coulomb blockade effects. However, owing to their wavelike nature, electrons can tunnel through between two closely adjacent nanostructures If a voltage is applied between two nanostructures, which aligns discrete energy levels, resonant tunneling occurs largely increases tunneling current

20 The physical properties of functional nanostructure are different from those of the bulk materials, especially for optical properties: Quantum confinement effect (size-reduction down to the nm-sized range) a band-gap shift adjust the optical properties of nanostructures. Quantum confinement effect: It is widely accepted that quantum confinement of electrons by the potential wells of nanometer-sized structures provides the most powerful (and versatile) means to control the electrical, optical, magnetic, and thermoelectric properties of a solid-state materials. Metallic nanostructures (especially Au and Ag) have unique optical properties surface-enhanced plasmon resonance light-scattering and Raman scattering (SERS or SRR).

21 Quantum confinement effect When the feature size of a structure (e.g., particle) is comparable with the size of Bohr (exciton) radius (about 2 50nm, usually below nm), electron becomes more confined in particle, quantum confinement effect lead to an increasing of energy band-gap. Furthermore, the valence and conductive bands break into quantized discrete energy levels. Many exceptional physical properties of nano-materials are attributed to the changes in the total energy and structure of the system. Band-gap shift due to the Quantum confinement effect: ΔEg = h2/8r2μ 1.8e2 /4πεoεR

22 Quantum confinement in semiconductor nanoparticles Optical fluorescence of CdSe nanoparticles of various sizes. The band gap emission is observed to shift through the entire visible range, from red emission for the largest particles, to blue emission for the smallest clusters. (B. O. Dabbousi, J. Phys. Chem. B, 1997, 101, 9463)

23 Global funding status in nanotechnology This course is try to overview this 21st century s leading science and technology based on fundamental and applied research during the last 2 decades Nano - World

24 Deutsches Museum Zentralbau des Deutschen Museums

25 Class 1: a general introduction of fundamentals of nanostructured materials, and definition Class 2: research at 3D-Nanostructuring Class 3: optical properties of 1D nanostructures Class 4: carbon nanotubes Class 5: graphene Class 6: 2D atomically thin nanosheets Class 7: lithium-ion batteries: Si nanostructures Class 8: solar water splitting I: fundamentals Class 9: solar water splitting II: nanostructures for water splitting Class 10: solar cells

26 Class 2: research at 3D-Nanostructuring From template to energy: Sodium-ion batteries Solar water splitting Supercapacitors

27 Class 3: optical properties of 1D nanostructures Features Quantum confinement Nanowire lasing Field emission display

28 Class 4: carbon nanotubes History Fabrication Applications

29 Class 5: graphene Introduction Brief history Characterizing graphene flakes Devices with peeled graphene Alternatives to mechanical exfoliation

30 Class 6: atomically thin nanosheets Characterization of structure Electronic structure regulation Energy device construction

31 Class 7: nanostructured Si anodes for lithium-ion batteries Principle of lithiumion batteries Opportunities and challenges of Si anodes Nanostructured Si anodes

32 Class 8: fundamentals of solar water splitting Related semiconductor physics Thermodynamic and kinetics of semiconductor-liquid interface

33 Class 9: nanostructures for solar water splitting Pros and cons Material designs and nanostrcutured architectures Cathode Electrolyte Anode

34 Class 10: nanostructures for enhancing light absorption in solar cells Semiconductor nanostructures Metal nanostructures: surface plasmons

35 Characterization of nano-strcutures An appropriate characterization will play a crucial role in determining various structures and properties of nanostructures. Three broadly approved aspects of characterization are 1. Morphology 2. Crystalline structure 3. Chemical analysis

36 SEM: Scanning Electron Microscopy; STM/AFM: Scanning Tunneling Microscopy/Atomic Force Microscopy; ATEM: Analytical Transmission Electron Microscopy X-Ray: X-ray Morphology; IP: Image Processing; LM: Lightweight Morphology; RBS: Rutherford Backscattering Spectrometry (Kelsall et al., Nanoscale science and technology. 2005)

37 ATEM: Analytical Transmission Electron Microscopy; AES: Auger Electron Spectrometer; XRD: X-ray Diffraction; RBS: Rutherford Backscattering Spectrometry; XPS: X-ray Photoelectron Spectrometer; (Kelsall et al., Nanoscale science and technology. 2005)

38 SEM: Scanning Electron Microscopy; ATEM: Analytical Transmission Electron Microscopy; AEM: Auger Electron Microscopy. XRD: X-ray Diffraction; LEED: Lowenergy electron diffraction; RBS: Rutherford Backscattering Spectrometry (Kelsall et al., Nanoscale science and technology. 2005)

39 Types of Nanostructure: Two-dimensional nanostructure: nanowalls, quantum wells... One-dimensional nanostructure: nanowires, nanotubes, nanorods, nanobelts... Zero-dimensional nanostructure: quantum dots or nanoparticles

40 Graphene is a 1-atom thick sheets of sp 2 -bonded carbon atoms that are densely packed in a honeycomb crystal lattice. Graphene is easily visualized as an atomicscale wire made of carbon atoms and their bonds. Graphite consists of many graphene sheets stacked together. (

41 Templates with large-scale (1 mm 2 ) perfect rectangular pore arrays without defect

42 Templates with large-scale (1 mm 2 ) perfect rectangular pore arrays without defect

43 Perfect regular 3D nanostructure arrays with different wire configuration

44 One dimensional nanostructures One dimensional (1D) nanostructure: nanowires, nanotubes, nanorods, nanobelts... One dimensional nanostructure refers to the systems with the lateral dimension in the range of nm. In comparison with 0D nanostructures, 1D nanostructures provides a better model system to investigate the dependence of properties (electronic transport, optical, and mechanical) on size confinement and dimension. Nanowires, in particular, plays an important role as both interconnects and active components in preparing nanoscale devices (Nano-devices).

45 One-Dimensional Nanostructures (a) (b 1 ) (b 2 ) UTAM-prepared free-standing one-dimensional surface nanostructures on Si substrates: Ni nanowire arrays (a) and carbon nanotube arrays (b). (Y. Lei et al., Chemistry of Materials, 2004)

46 A schematic summary of the kinds of one dimensional nanostructures already reported: (A) nanowires and nanorods; (B) core shell structures; (C) nanotubes/hollow nanorods; (D) heterostructures; (E) nanobelts/nanoribbons; (F) nanotapes; (G) dendrites; (H) hierarchical nanostructures; (I) nanosphere assembly; (J) nanosprings. (Kolmakov et al., Annu Rev Mater Res 2004)

47 CdS replicated mask Alumina CdS nanodots Highly ordered CdS nanodot arrays, UTAMs and CdS top layer on the surface of the UTAM.

48 Surface patterns in nature Structural color function of surface patterns butterfly 1 µm peacock packing of melanin cylinders (provided by L Chi)

49 Surface patterns and structures (artificial) and their applications in diverse (micro-electronic) devices Dual-core CPU feature-size 45 nm From Intel Homepage, Public Relations

50 Surface Nano-Patterning Fabrication of surface nanostructures Memory devices with high integration density; Field emission devices; Sensors with high sensitivity; Optical devices with tunable properties What is an excellent surface nano-patterning technique? 1. Ability to prepare surface patterns within the nanosized range; 2. Well-defined surface nano-patterns; 3. Large pattern area high throughput; 4. A general process applicable; 5. Low cost. Perfect?

51 Some surface nano-patterning techniques in fabricating ordered surface nanostructures Electron-beam lithography Excellent structural controlling Low throughput High equipment costs Imprint technologies High throughput Wear Structures with low aspect ratio Self assembly Low costs High throughput Limited class of materials Low structural controlling Alternative method that combines these advantages and is applicable for a broad range of surface nanostructures? UTAM (ultra-thin alumina mask) surface nano-patterning: Template-based surface nano-fabrications

52 Porous Alumina Membranes (PAMs) Interesting and useful features: highly ordered pore arrays + large area Nanometer-sized pores High aspect ratio size controllable ( nm) Configuration diagram of the PAMs

53 Porous Alumina Membranes (PAMs) (a) (b) Regular arrays of short (a) and long Ni nanowires (b) after the removal of PAM, the diameter is about 90 nm, the length is about nm (a) and 3-4 μm (b), respectively. thus the aspect ratio of the nanowires are about 10 (a) and 40 (b), respectively.

54 UTAM surface nano-patterning technique Fabrication of Highly Ordered Nanoparticle Arrays Using Ultra-thin Alumina Mask (UTAM) Motivation Use ultra-thin ordered porous alumina as evaporation or etching masks, and transfer the regularity of the pore arrays to the nanostructure arrays on substrates.

55 Fabrication process Fabricating ultra-thin alumina masks (UTAM) on Al foils and then mounting them onto the surface of silicon wafers First alumina layer Al Si foil wafer Ultra-thin Second alumina layer mask

56

57 Fabrication of the nanodot arrays Si wafer Ultra-thin Nanoparticle alumina array mask

58 CdS replicated mask Alumina CdS nanodots Highly ordered CdS nanodot arrays, UTAMs and CdS top layer on the surface of the UTAM.

59 Class 1: a general introduction of fundamentals of nanostructured materials, and definition Class 2: research at 3D-Nanostructuring Class 3: optical properties of 1D nanostructures Class 4: carbon nanotubes Class 5: graphene Class 6: 2D atomically thin nanosheets Class 7: lithium-ion batteries: Si nanostructures Class 8: solar water splitting I: fundamentals Class 9: solar water splitting II: nanostructures for water splitting Class 10: solar cells

60 Thanks for your attention

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Huaping Zhao Fachgebiet Angewandte Nanophysik, Institut für Physik Contact: yong.lei@tu-ilmenau.de; huaping.zhao@tu-ilmenau.de Office: Unterpoerlitzer

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Yong Lei & Fabian Grote Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; fabian.grote@tu-ilmenau.de Office: Heliosbau 1102,

More information

Techniken der Oberflächenphysik (Technique of Surface Physics)

Techniken der Oberflächenphysik (Technique of Surface Physics) Techniken der Oberflächenphysik (Technique of Surface Physics) Yong Lei & Fabian Grote Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; fabian.grote@tu-ilmenau.de

More information

Techniken der Oberflächenphysik (Techniques of Surface Physics)

Techniken der Oberflächenphysik (Techniques of Surface Physics) Techniken der Oberflächenphysik (Techniques of Surface Physics) Prof. Yong Lei & Dr. Yang Xu, Dr. Huaping Zhao Fachgebiet Angewante Nanophysik, Institut für Physik Contact: yong.lei@tu-ilmenau.de yang.xu@tu-ilmenau.de

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

Techniken der Oberflächenphysik (Techniques of Surface Physics)

Techniken der Oberflächenphysik (Techniques of Surface Physics) Techniken der Oberflächenphysik (Techniques of Surface Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de yang.xu@tu-ilmenau.de

More information

Halbleiter Prof. Yong Lei Prof. Thomas Hannappel

Halbleiter Prof. Yong Lei Prof. Thomas Hannappel Halbleiter Prof. Yong Lei Prof. Thomas Hannappel yong.lei@tu-ilmenau.de thomas.hannappel@tu-ilmenau.de http:///nanostruk/ Organic semiconductors Small-molecular materials Rubrene Pentacene Polymers PEDOT:PSS

More information

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica Nanotechnology Yung Liou P601 yung@phys.sinica.edu.tw Institute of Physics Academia Sinica 1 1st week Definition of Nanotechnology The Interagency Subcommittee on Nanoscale Science, Engineering and Technology

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

Techniken der Oberflächenphysik (Techniques of Surface Physics)

Techniken der Oberflächenphysik (Techniques of Surface Physics) Techniken der Oberflächenphysik (Techniques of Surface Physics) Prof. Yong Lei Dr. Ynag Xu and Mr. Grote Fabian Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Nanostrukturphysik Übung 2 (Class 3&4)

Nanostrukturphysik Übung 2 (Class 3&4) Nanostrukturphysik Übung 2 (Class 3&4) Prof. Yong Lei & Dr. Yang Xu 2017.05.03 Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de (3748), yang.xu@tuilmenau.de (4902)

More information

Graphene. Tianyu Ye November 30th, 2011

Graphene. Tianyu Ye November 30th, 2011 Graphene Tianyu Ye November 30th, 2011 Outline What is graphene? How to make graphene? (Exfoliation, Epitaxial, CVD) Is it graphene? (Identification methods) Transport properties; Other properties; Applications;

More information

Nanotechnology Fabrication Methods.

Nanotechnology Fabrication Methods. Nanotechnology Fabrication Methods. 10 / 05 / 2016 1 Summary: 1.Introduction to Nanotechnology:...3 2.Nanotechnology Fabrication Methods:...5 2.1.Top-down Methods:...7 2.2.Bottom-up Methods:...16 3.Conclusions:...19

More information

Materials. Definitions of nanotechnology. The term nanotechnology was invented by Professor Norio Taniguchi at the University of Tokyo in 1971.

Materials. Definitions of nanotechnology. The term nanotechnology was invented by Professor Norio Taniguchi at the University of Tokyo in 1971. Materials Definitions of nanotechnology The term nanotechnology was invented by Professor Norio Taniguchi at the University of Tokyo in 1971. The original definition, translated into English Nano-technology'

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction A nanometer (nm) is one billionth (10-9 ) of a meter. Nanoscience can be defined as the science of objects and phenomena occurring at the scale of 1 to 100 nm. The range of 1 100

More information

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Chapter 12. Nanometrology. Oxford University Press All rights reserved. Chapter 12 Nanometrology Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands in relation to a meter and sub divisions of meter. Nanometrology

More information

Nanostructures. Lecture 13 OUTLINE

Nanostructures. Lecture 13 OUTLINE Nanostructures MTX9100 Nanomaterials Lecture 13 OUTLINE -What is quantum confinement? - How can zero-dimensional materials be used? -What are one dimensional structures? -Why does graphene attract so much

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies Prof. Sherief Reda Division of Engineering Brown University Fall 2008 1 Near-term emerging computing

More information

Nanostrukturphysik. Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik

Nanostrukturphysik. Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Nanostrukturphysik Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de (3748), yang.xu@tuilmenau.de (4902) Office: Gebäude V202, Unterpörlitzer

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

In the name of Allah

In the name of Allah In the name of Allah Nano chemistry- 4 th stage Lecture No. 1 History of nanotechnology 16-10-2016 Assistance prof. Dr. Luma Majeed Ahmed lumamajeed2013@gmail.com, luma.ahmed@uokerbala.edu.iq Nano chemistry-4

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

In today s lecture, we will cover:

In today s lecture, we will cover: In today s lecture, we will cover: Metal and Metal oxide Nanoparticles Semiconductor Nanocrystals Carbon Nanotubes 1 Week 2: Nanoparticles Goals for this section Develop an understanding of the physical

More information

1.1. Introduction to Nanoscience and Nanotechnology

1.1. Introduction to Nanoscience and Nanotechnology 1.1. Introduction to Nanoscience and Nanotechnology 1.1.1. A Brief Historical Overview Before trying to understand and discuss about synthesis, characterization and application of nanomaterials, it is

More information

There's Plenty of Room at the Bottom

There's Plenty of Room at the Bottom There's Plenty of Room at the Bottom 12/29/1959 Feynman asked why not put the entire Encyclopedia Britannica (24 volumes) on a pin head (requires atomic scale recording). He proposed to use electron microscope

More information

The many forms of carbon

The many forms of carbon The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility is connected to the ability of carbon to form two

More information

29: Nanotechnology. What is Nanotechnology? Properties Control and Understanding. Nanomaterials

29: Nanotechnology. What is Nanotechnology? Properties Control and Understanding. Nanomaterials 29: Nanotechnology What is Nanotechnology? Properties Control and Understanding Nanomaterials Making nanomaterials Seeing at the nanoscale Quantum Dots Carbon Nanotubes Biology at the Nanoscale Some Applications

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

Halbleiter. Prof. Yong Lei. Prof. Thomas Hannappel.

Halbleiter. Prof. Yong Lei. Prof. Thomas Hannappel. Halbleiter Prof. Yong Lei Prof. Thomas Hannappel yong.lei@tu-ilemnau.de thomas.hannappel@tu-ilmenau.de Important Events in Semiconductors History 1833 Michael Faraday discovered temperature-dependent conductivity

More information

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research Graphene Prepared for Solid State Physics II Pr Dagotto Spring 2009 Laurene Tetard 03/23/09 Overview Carbon in all its forms Background & Discovery Fabrication Important properties Overview of current

More information

Solutions for Assignment-8

Solutions for Assignment-8 Solutions for Assignment-8 Q1. The process of adding impurities to a pure semiconductor is called: [1] (a) Mixing (b) Doping (c) Diffusing (d) None of the above In semiconductor production, doping intentionally

More information

3-month progress Report

3-month progress Report 3-month progress Report Graphene Devices and Circuits Supervisor Dr. P.A Childs Table of Content Abstract... 1 1. Introduction... 1 1.1 Graphene gold rush... 1 1.2 Properties of graphene... 3 1.3 Semiconductor

More information

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman General concept and defining characteristics of AFM Dina Kudasheva Advisor: Prof. Mary K. Cowman Overview Introduction History of the SPM invention Technical Capabilities Principles of operation Examples

More information

Carbon nanomaterials. Gavin Lawes Wayne State University.

Carbon nanomaterials. Gavin Lawes Wayne State University. Carbon nanomaterials Gavin Lawes Wayne State University glawes@wayne.edu Outline 1. Carbon structures 2. Carbon nanostructures 3. Potential applications for Carbon nanostructures Periodic table from bpc.edu

More information

Techniken der Oberflächenphysik (Techniques of Surface Physics)

Techniken der Oberflächenphysik (Techniques of Surface Physics) Techniken der Oberflächenphysik (Techniques of Surface Physics) Prof. Yong Lei & Dr. Yang Xu (& Liying Liang) Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de;

More information

CHAPTER 11 Semiconductor Theory and Devices

CHAPTER 11 Semiconductor Theory and Devices CHAPTER 11 Semiconductor Theory and Devices 11.1 Band Theory of Solids 11.2 Semiconductor Theory 11.3 Semiconductor Devices 11.4 Nanotechnology It is evident that many years of research by a great many

More information

materials, devices and systems through manipulation of matter at nanometer scale and exploitation of novel phenomena which arise because of the

materials, devices and systems through manipulation of matter at nanometer scale and exploitation of novel phenomena which arise because of the Nanotechnology is the creation of USEFUL/FUNCTIONAL materials, devices and systems through manipulation of matter at nanometer scale and exploitation of novel phenomena which arise because of the nanometer

More information

Nanoelectronics. Topics

Nanoelectronics. Topics Nanoelectronics Topics Moore s Law Inorganic nanoelectronic devices Resonant tunneling Quantum dots Single electron transistors Motivation for molecular electronics The review article Overview of Nanoelectronic

More information

Electrical and Optical Properties. H.Hofmann

Electrical and Optical Properties. H.Hofmann Introduction to Nanomaterials Electrical and Optical Properties H.Hofmann Electrical Properties Ohm: G= σw/l where is the length of the conductor, measured in meters [m], A is the cross-section area of

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Course website: http://www.physics.purdue.edu/academic_programs/courses/phys570p/ 1 Course

More information

CHARACTERIZATION of NANOMATERIALS KHP

CHARACTERIZATION of NANOMATERIALS KHP CHARACTERIZATION of NANOMATERIALS Overview of the most common nanocharacterization techniques MAIN CHARACTERIZATION TECHNIQUES: 1.Transmission Electron Microscope (TEM) 2. Scanning Electron Microscope

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST 2015 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization

More information

Nano Materials and Devices

Nano Materials and Devices Nano Materials and Devices Professor Michael Austin Platform Technologies Research Institute Nano Materials and Devices Program Aim: to develop an integrated capability in nanotechnology Design and modelling

More information

There s plenty of room at the bottom! - R.P. Feynman, Nanostructure: a piece of material with at least one dimension less than 100 nm in extent.

There s plenty of room at the bottom! - R.P. Feynman, Nanostructure: a piece of material with at least one dimension less than 100 nm in extent. Nanostructures and Nanotechnology There s plenty of room at the bottom! - R.P. Feynman, 1959 Materials behave differently when structured at the nm scale than they do in bulk. Technologies now exist that

More information

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 Superconductivity Theory, The Cooper Pair Application of Superconductivity Semi-Conductor Nano-technology Graphene 1 Announcements Your presentations

More information

Electrochemically Synthesized Multi-block

Electrochemically Synthesized Multi-block Electrochemically Synthesized Multi-block Nanorods Sungho Park SungKyunKwan University, Department of Chemistry & SKKU Advanced Institute of Nanotechnology (SAINT) J. Am. Chem. Soc. 2003, 125, 2282-2290

More information

Graphene Fundamentals and Emergent Applications

Graphene Fundamentals and Emergent Applications Graphene Fundamentals and Emergent Applications Jamie H. Warner Department of Materials University of Oxford Oxford, UK Franziska Schaffel Department of Materials University of Oxford Oxford, UK Alicja

More information

Fabrication at the nanoscale for nanophotonics

Fabrication at the nanoscale for nanophotonics Fabrication at the nanoscale for nanophotonics Ilya Sychugov, KTH Materials Physics, Kista silicon nanocrystal by electron beam induced deposition lithography Outline of basic nanofabrication methods Devices

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

ESH Benign Processes for he Integration of Quantum Dots (QDs)

ESH Benign Processes for he Integration of Quantum Dots (QDs) ESH Benign Processes for he Integration of Quantum Dots (QDs) PIs: Karen K. Gleason, Department of Chemical Engineering, MIT Graduate Students: Chia-Hua Lee: PhD Candidate, Department of Material Science

More information

CSCI 2570 Introduction to Nanocomputing

CSCI 2570 Introduction to Nanocomputing CSCI 2570 Introduction to Nanocomputing The Emergence of Nanotechnology John E Savage Purpose of the Course The end of Moore s Law is in sight. Researchers are now exploring replacements for standard methods

More information

1.0 Introduction. 1.1 Nanotechnology Historical Developments

1.0 Introduction. 1.1 Nanotechnology Historical Developments 1.0 Introduction 1.1 Nanotechnology Historical Developments Around 370BC, Democritus a Greek philosopher developed the atomic theory of matter. Nano in GREEK means DWARF. The prefix nano means a billionth

More information

Crystalline Surfaces for Laser Metrology

Crystalline Surfaces for Laser Metrology Crystalline Surfaces for Laser Metrology A.V. Latyshev, Institute of Semiconductor Physics SB RAS, Novosibirsk, Russia Abstract: The number of methodological recommendations has been pronounced to describe

More information

Scripts for High School Visits to the Herman Group at Columbia University

Scripts for High School Visits to the Herman Group at Columbia University Scripts for High School Visits to the Herman Group at Columbia University Evan Spotte-Smith, Jiayang Hu, and Irving P. Herman April, 2017; updated June, 2017 These presentations were developed for visits

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

EE 527 MICROFABRICATION. Lecture 5 Tai-Chang Chen University of Washington

EE 527 MICROFABRICATION. Lecture 5 Tai-Chang Chen University of Washington EE 527 MICROFABRICATION Lecture 5 Tai-Chang Chen University of Washington MICROSCOPY AND VISUALIZATION Electron microscope, transmission electron microscope Resolution: atomic imaging Use: lattice spacing.

More information

Nanoscale Surface Physics PHY 5XXX

Nanoscale Surface Physics PHY 5XXX SYLLABUS Nanoscale Surface Physics PHY 5XXX Spring Semester, 2006 Instructor: Dr. Beatriz Roldán-Cuenya Time: Tuesday and Thursday 4:00 to 5:45 pm Location: Theory: MAP 306, Laboratory: MAP 148 Office

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

Welcome to NANO* 2000

Welcome to NANO* 2000 Lecture Zero Welcome to NANO* 2000 First - the "big picture" of the course and the course outline -grading scheme - exam schedule - review paper - lab (Jay) last revision September 4 2013: MDB 0-1 NANO*

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 04 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 4: outline 2 Characterization of nanomaterials SEM,

More information

Nanotechnology? Source: National Science Foundation (NSF), USA

Nanotechnology? Source: National Science Foundation (NSF), USA 2 2 Nanotechnology? Ability to work at the atomic, molecular and even sub-molecular levels in order to create and use material structures, devices and systems with new properties and functions Source:

More information

Nanotechnology. Gavin Lawes Department of Physics and Astronomy

Nanotechnology. Gavin Lawes Department of Physics and Astronomy Nanotechnology Gavin Lawes Department of Physics and Astronomy Earth-Moon distance 4x10 8 m (courtesy NASA) Length scales (Part I) Person 2m Magnetic nanoparticle 5x10-9 m 10 10 m 10 5 m 1 m 10-5 m 10-10

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Nanotechnology where size matters

Nanotechnology where size matters Nanotechnology where size matters J Emyr Macdonald Overview Ways of seeing very small things What is nanotechnology and why is it important? Building nanostructures What we can do with nanotechnology?

More information

Lectures Graphene and

Lectures Graphene and Lectures 15-16 Graphene and carbon nanotubes Graphene is atomically thin crystal of carbon which is stronger than steel but flexible, is transparent for light, and conducts electricity (gapless semiconductor).

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Carbon Structure Simulations using Crystal Viewer Tool

Carbon Structure Simulations using Crystal Viewer Tool Carbon Structure Simulations using Crystal Viewer Tool The Crystal Viewer tool in nanohub.org can be used to build three carbon nanostructures: graphene sheets, Buckminsterfullerene, Bucky balls (C 60

More information

Quantum Dots for Advanced Research and Devices

Quantum Dots for Advanced Research and Devices Quantum Dots for Advanced Research and Devices spectral region from 450 to 630 nm Zero-D Perovskite Emit light at 520 nm ABOUT QUANTUM SOLUTIONS QUANTUM SOLUTIONS company is an expert in the synthesis

More information

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools 1. Introduction Solid Surfaces Analysis Group, Institute of Physics, Chemnitz University of Technology, Germany 2. Limitations of Conventional Optical Microscopy 3. Electron Microscopies Transmission Electron

More information

Surface atoms/molecules of a material act as an interface to its surrounding environment;

Surface atoms/molecules of a material act as an interface to its surrounding environment; 1 Chapter 1 Thesis Overview Surface atoms/molecules of a material act as an interface to its surrounding environment; their properties are often complicated by external adsorbates/species on the surface

More information

ME 4875/MTE C16. Introduction to Nanomaterials and Nanotechnology. Lecture 2 - Applications of Nanomaterials + Projects

ME 4875/MTE C16. Introduction to Nanomaterials and Nanotechnology. Lecture 2 - Applications of Nanomaterials + Projects ME 4875/MTE 575 - C16 Introduction to Nanomaterials and Nanotechnology Lecture 2 - Applications of Nanomaterials + Projects 1 Project Teams of 4 students each Literature review of one application of nanotechnology

More information

Special Topics in Semiconductor Nanotechnology ECE 598XL

Special Topics in Semiconductor Nanotechnology ECE 598XL Special Topics in Semiconductor Nanotechnology ECE 598XL Fall 2009 ECE 598XL Syllabus Overview: size matters Formation Process Characterization SOA device applications and potentials Homework or quizzes

More information

Like space travel and the Internet before it, the possibilities of the nano world catches the imagination of school children and scientists alike.

Like space travel and the Internet before it, the possibilities of the nano world catches the imagination of school children and scientists alike. The Nano World Preface Nano is the cool thing and it s the buzzword Like space travel and the Internet before it, the possibilities of the nano world catches the imagination of school children and scientists

More information

Raman spectroscopy at the edges of multilayer graphene

Raman spectroscopy at the edges of multilayer graphene Raman spectroscopy at the edges of multilayer graphene Q. -Q. Li, X. Zhang, W. -P. Han, Y. Lu, W. Shi, J. -B. Wu, P. -H. Tan* State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors,

More information

554 Chapter 10 Liquids and Solids

554 Chapter 10 Liquids and Solids 554 Chapter 10 Liquids and Solids above 7376 kpa, CO 2 is a supercritical fluid, with properties of both gas and liquid. Like a gas, it penetrates deep into the coffee beans; like a liquid, it effectively

More information

Initial Stages of Growth of Organic Semiconductors on Graphene

Initial Stages of Growth of Organic Semiconductors on Graphene Initial Stages of Growth of Organic Semiconductors on Graphene Presented by: Manisha Chhikara Supervisor: Prof. Dr. Gvido Bratina University of Nova Gorica Outline Introduction to Graphene Fabrication

More information

NANOSCIENCE AND NANOTECHNOLOGY

NANOSCIENCE AND NANOTECHNOLOGY NANOSCIENCE AND NANOTECHNOLOGY Yuehe Lin WHAT IS NANOTECHNOLOGY Nanotechnology is the understanding and control of matter at dimensions of roughly 1 to 100 nanometers, where unique phenomena enable novel

More information

Molecular Electronics For Fun and Profit(?)

Molecular Electronics For Fun and Profit(?) Molecular Electronics For Fun and Profit(?) Prof. Geoffrey Hutchison Department of Chemistry University of Pittsburgh geoffh@pitt.edu July 22, 2009 http://hutchison.chem.pitt.edu Moore s Law: Transistor

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Supplementary Figure 1. SEM images of perovskite single-crystal patterned thin film with

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

Course file PPY15204 Nanoscience and Nanomaterials Table of Contents

Course file PPY15204 Nanoscience and Nanomaterials Table of Contents Department Physics Nanotechnology : M.sc Physics Course file PPY15204 Table Contents Second Year MSc Physics (2015-2016 Regulation) Detailed Lesson Plan UNIT-I: INTRODUCTION TO NANOTECHNOLOGY History Importance

More information

Nanotechnology Nanofabrication of Functional Materials. Marin Alexe Max Planck Institute of Microstructure Physics, Halle - Germany

Nanotechnology Nanofabrication of Functional Materials. Marin Alexe Max Planck Institute of Microstructure Physics, Halle - Germany Nanotechnology Nanofabrication of Functional Materials Marin Alexe Max Planck Institute of Microstructure Physics, Halle - Germany Contents Part I History and background to nanotechnology Nanoworld Nanoelectronics

More information

NANOSCIENCE: TECHNOLOGY AND ADVANCED MATERIALS

NANOSCIENCE: TECHNOLOGY AND ADVANCED MATERIALS UNIVERSITY OF SOUTHAMPTON PHYS6014W1 SEMESTER 2 EXAMINATIONS 2012-2013 NANOSCIENCE: TECHNOLOGY AND ADVANCED MATERIALS DURATION 120 MINS (2 Hours) This paper contains 8 questions Answer ALL questions in

More information

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy High-Resolution Surface Analysis

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Lesson 4: Tools of the Nanosciences. Student Materials

Lesson 4: Tools of the Nanosciences. Student Materials Lesson 4: Tools of the Nanosciences Student Materials Contents Black Box Lab Activity: Student Instructions and Worksheet Seeing and Building Small Things: Student Reading Seeing and Building Small Things:

More information

GRAPHENE NANORIBBONS Nahid Shayesteh,

GRAPHENE NANORIBBONS Nahid Shayesteh, USC Department of Physics Graduate Seminar 1 GRAPHENE NANORIBBONS Nahid Shayesteh, Outlines 2 Carbon based material Discovery and innovation of graphen Graphene nanoribbons structure Application of Graphene

More information

Final Reading Assignment: Travels to the Nanoworld: pages pages pages

Final Reading Assignment: Travels to the Nanoworld: pages pages pages Final Reading Assignment: Travels to the Nanoworld: pages 152-164 pages 201-214 pages 219-227 Bottom-up nanofabrication Can we assemble nanomachines manually? What are the components (parts)? nanoparticles

More information

Surface Studies by Scanning Tunneling Microscopy

Surface Studies by Scanning Tunneling Microscopy Surface Studies by Scanning Tunneling Microscopy G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel IBM Zurich Research Laboratory, 8803 Ruschlikon-ZH, Switzerland (Received by Phys. Rev. Lett. on 30th April,

More information

Scanning Tunneling Microscopy Transmission Electron Microscopy

Scanning Tunneling Microscopy Transmission Electron Microscopy Scanning Tunneling Microscopy Transmission Electron Microscopy Speakers Burcu Başar Semih Gezgin Yavuz Selim Telis Place Hacettepe University Department of Chemical Engineering It s a small world after

More information

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications CH676 Physical Chemistry: Principles and Applications Contact Information Professor Chia-Kuang (Frank) Tsung Email: frank.tsung@bc.edu Office: Merkert 224; Phone: (617) 552-8927 Office Hours: Monday 5-6

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Imaging Carbon materials with correlative Raman-SEM microscopy. Introduction. Raman, SEM and FIB within one chamber. Diamond.

Imaging Carbon materials with correlative Raman-SEM microscopy. Introduction. Raman, SEM and FIB within one chamber. Diamond. Imaging Carbon materials with correlative Raman-SEM microscopy Application Example Carbon materials are widely used in many industries for their exceptional properties. Electric conductance, light weight,

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have Nanocrystal Growth on Graphene with Various Degrees of Oxidation Hailiang Wang, Joshua Tucker Robinson, Georgi Diankov, and Hongjie Dai * Department of Chemistry and Laboratory for Advanced Materials,

More information