Network Reliability Optimization via the Cross-Entropy Method

Size: px
Start display at page:

Download "Network Reliability Optimization via the Cross-Entropy Method"

Transcription

1 Ntwork Rliility Optimiztion vi th Cross-Entropy Mtho Dirk P. Kros, Kin-Ping Hui, n Sho Nrii Astrt Consir ntwork o unrlil links, h o whih oms with rtin pri n rliility. Givn ix ugt, whih links shoul purhs in orr to mximiz th systm s rliility? W introu nw pproh, s on th Cross-Entropy mtho, whih n l tivly with th onstrints n nois (introu whn stimting th rliilitis vi simultion) in this iiult omintoril optimiztion prolm. Numril rsults monstrt th tivnss o th propos thniqu. Inx Trms Ntwork Rliility, Cross-Entropy Mtho, Mont Crlo Simultion, Noisy Optimiztion, Mrg Pross. NOTATION i i C mx purhs proility o link i ost o link i totl ugt m, n numr o [links, nos] N smpl siz or CE p i rliility o link i r ntwork rliility (r optiml) x ntwork topology (x optiml, X rnom) y systm stt (Y rnom) α smoothing prmtr or CE ϕ x strutur untion o topology x This rsrh ws support y th Austrlin Rsrh Counil, grnt numr DP089. D. P. Kros n S. Nrii r with Dprtmnt o Mthmtis, Th Univrsity o Qunsln, Brisn, QLD 0 Austrli (-mil: kros@mths.uq.u.u; sho@mths.uq.u.u). K.-P. Hui is with th Dn Sin n Thnology Orgnistion, Austrli (-mil: Kin-Ping.Hui@sto.n.gov.u). ρ rrity prmtr or CE I. INTRODUCTION RAPID vlopmnts n improvmnts in inormtion n ommunition thnologis in rnt yrs hv rsult in inrs pitis n highr onntrtion o tri in tlommunition ntworks. Oprting ilurs in suh high-pity ntworks n t th qulity o srvi o lrg numr o onsumrs. Consquntly, th rul plnning o ntwork s inrstrutur n th til nlysis o its rliility om mor n mor importnt, in orr to nsur tht onsumrs otin th st srvi possil. On o th most si n usul pprohs to ntwork rliility nlysis is to rprsnt th ntwork s n unirt grph with unrlil links. Th rliility o th ntwork is usully in s th proility tht rtin nos in th grph r onnt y untioning links. This ppr is onrn with ntwork plnning, whr th ojtiv is to mximiz th ntwork s rliility, sujt to ix ugt. Mor prisly: givn ix mount o mony, n strting with non-xistnt ntwork, th qustion is whih ntwork links shoul purhs in orr to mximiz th rliility o th inish ntwork. Eh link rris prspii pri n rliility. Thr r two rsons why this Ntwork Plnning Prolm (NPP) is iiult to solv. First, th NPP is onstrin intgr progrmming prolm known s th Minimum Stinr Prolm, whih is 0- knpsk prolm with non-linr

2 ojtiv. It is wll known tht suh prolm is NP hr [], n it is lso APX-Complt []. For smll ntworks xt mthos, suh s rnh-n-oun, ynmi progrmming or onvxiition, my sussul (s or xmpl []); ut, sin th omplxity o th prolm inrss xponntilly with th numr o links, suh mthos quikly om insil or mort n lrg-sl prolms. Son, or lrg ntworks th vlu o th ojtiv untion tht is, th ntwork rliility oms iiult or imprtil to vlut [], []. A vil option thn is to us simultion to stimt th ntwork rliility, or xmpl vi th Cru Mont Crlo (CMC) thniqu. This noisy vrsion o th prolm is not vn in NP, us th vlu o givn solution is hr to omput. Morovr, or highly rlil ntworks whih typilly our in ommunition ntworks CMC rquirs vry lrg simultion ort in orr to stimt th rliility urtly. A numr o simultion thniqus hv n vlop to rss th ntwork rliility stimtion prolm. For xmpl, Kummoto t l. [6] propos simpl thniqu ll Dggr Smpling to improv th iiny o CMC simultion. Fishmn [] introu Prour Q, whih n provi rliility stimts s wll s ouns. Colourn n Hrms [8] propos thniqu tht provis progrssiv ouns tht vntully onvrg to n xt rliility vlu. Elprin t l. [9], [0] vlop Evolution Mols or stimting th rliility o highly rlil ntworks. Hui t l. [], [] propos hyri shm tht provis ouns n n provi sp-up y svrl orrs o mgnitu in rtin lsss o ntworks. Thy lso propos nothr shm [] whih mploys th Cross-Entropy thniqu to sp-up th stimtion in gnrl lsss o ntworks. Othr rlvnt rrns on ntwork rliility inlu [], [], [6]. Th litrtur on ntwork plnning rthr thn rliility stimtion is not xtnsiv, n virtully ll stuis prtin to ntworks or whih th systm rliility n ithr vlut xtly, or shrp rliility ouns n stlish. Cnl n Urquhrt [] mploy Simult Annling shm to otin mor rlil ltrntiv ntwork, givn usr-in ntwork topology. Dngiz t l. us Gnti Algorithm to optimiz th sign o ommunition ntwork topologis sujt to th minimum rliility rquirmnt [8]. Yh t l. [9] propos mtho s on Gnti Algorithm to optimiz th k no st rliility sujt to spii pity onstrint. Rihlt t l. [0] us Gnti Algorithm in omintion with rpir huristi to minimiz th ntwork ost sujt to spii ntwork rliility onstrint. Othr huristis n oun in []. To our knowlg, no simpl lgorithm is known tht n tkl t th sm tim th omintoril, onstrint n noisy spts o th NPP, n th purpos o this ppr is to introu suh mtho, n provi nw n tiv pproh to ntwork plnning. Our pproh is s on th Cross-Entropy (CE) mtho [], whih ws introu in [] s n ptiv thniqu or stimting proilitis o rr vnts in omplx stohsti ntworks. It ws soon rliz [], [] tht it oul us not only or rr vnt simultion ut or solving iiult omintoril optimiztion prolms s wll. Morovr, (n this is spilly rlvnt or th NPP) th CE mtho is wll-suit to solving noisy optimiztion prolms; xmpls r th Bur Allotion Prolm [6], th Vhil Routing Prolm [], n th Stohsti Shortst Pth Prolm [8]. For th NPP w will onsir oth th trministi s, whr th ntwork rliility n omput xtly, n th noisy s whr it is stimt vi simultion. A tutoril on th CE mtho n oun in [9], whih is lso vill on-lin rom th CE hompg: Th rst o th ppr is orgniz s ollows: In Stion II w ormult th NPP in mthmtil trms. In Stion III w prsnt th CE pproh to th prolm. This is urthr

3 vlop in Stion IV or th noisy s, in prtiulr with rspt to vrin rution thniqus suh s Prmuttion Mont Crlo n th Mrg Pross. Stion V ouss on implmnttion issus with rgr to sping up th lgorithm. W illustrt th tivnss o th CE pproh vi numr o numril xprimnts in Stion VI. Finlly, in Stion VII w prsnt our onlusion n irtions or utur work. II. PROBLEM DESCRIPTION ssigns to h stt vtor y th stt o th systm (working = or il = 0). Tht is, i ll th trminl nos r onnt, ϕ x (y) = () 0 othrwis. Now, onsir th sitution with rnom stts, whr h purhs link works with proility p. Lt Y rnom stt o link, n lt Y th orrsponing rnom stt vtor. Th rliility o th ntwork in y purhs vtor x is givn y Consir n unirt grph G(V, E), with st V o nos r(x) = E[ ϕ x (Y )] = y ϕ x (y)pr{y = y}. () (vrtis), n st E o links (gs). Suppos th numr o links is E = m. Without loss o gnrlity w my ll th links,...,m. Lt K V st o trminl nos. With h o th links is ssoit ost n rliility p. Th ojtiv is to purhs thos links tht optimiz th rliility o th ntwork in s th proility tht ll th trminl nos r onnt y untioning links sujt to totl ugt C mx. Lt = (,..., m ) not vtor o link osts, n p = (p,..., p m ) th vtor o link rliilitis. W introu th ollowing nottion. For h link lt x suh tht i link is purhs, x = 0 othrwis. W ll th vtor x = (x,..., x m ) th purhs vtor. Th st o ll possil purhs vtors is not y X. To intiy th oprtionl links, w in or h link th link stt y i link is untioning, y = 0 othrwis. Not tht or h link tht is not purhs, th stt y is pr inition qul to 0. Th vtor y = (y,..., y m ) is ll th stt vtor. For h purhs vtor x lt ϕ x th strutur untion o th purhs systm. This untion W ssum rom now on tht th links il s-inpnntly, tht is, Y is vtor o s-inpnnt Brnoulli rnom vrils, with suss proility p or h purhs link n 0 othrwis. Dining p x = (x p,..., x m p m ) s th vtor o proilitis o th omponnts o Y, or givn purhs vtor x, w writ Y Br(p x ). It ollows tht or h x, th rliility is omput s r(x) = m ϕ x (y) (x j p j ) yj ( x j p j ) yj, () y j= whr 0 0 :=. Our min purpos is to trmin mxr(x), () x X sujt to th onstrint on th totl ugt x C mx. () E Lt r := r(x ) not th optiml rliility o th ntwork, whr x is th optiml purhs vtor. III. CROSS-ENTROPY APPROACH In this stion w show how th CE mtho n us to solv th onstrin omintoril optimiztion prolm (), (). Th CE mtho onsists o two stps whih r itrt: ) gnrt rnom purhs vtors X,...,X N oring to som spii rnom mhnism, n ) upt th prmtrs o this mhnism in orr to otin ttr systm rliilitis in th nxt itrtion.

4 An iint mtho to gnrt rnom purhs vtors tht stisy () is s ollows: First, gnrt uniorm prmuttion (,..., m ) o (,...,m), y s-inpnntly rwing m numrs rom th uniorm istriution on [0, ] n ltting,..., m orrspon to th inis o th orr osrvtions. Son, givn suh prmuttion, lip oin with suss proility to i whthr to purhs link or not. I sussul n i thr is nough mony vill to purhs link, st X =, tht is, link is purhs; othrwis st X = 0. W rpt th ov prour or links,, t. For h link i w hk whthr th rmining ugt llows us to purhs th link, n i so, w purhs th link with proility i. Th min lgorithm or gnrting rnom purhs vtor using uniorm prmuttion is thus summriz s ollows: Algorithm [Gnrtion Algorithm]. ) Gnrt uniorm rnom prmuttion (,..., m ). St k =. ) Clult C = k + k i= X i i. ) I C C mx, rw X k Br( k ). Othrwis st X k = 0. ) I k = m, thn stop; othrwis st k = k + n ritrt rom stp. Th usul CE prour [] is to onstrut squn o rrn vtors { t, t 0} (i.., purhs proility vtors), suh tht { t, t 0} onvrgs to th gnrt (i.., inry) proility vtor tht orrspons to th optiml purhs vtor x =. Th squn o rrn vtors is otin vi two-stp prour, involving n uxiliry squn o rliility lvls {γ t, t 0} tht tns to th optiml rliility γ = r t th sm tim s th { t } tn to. At h itrtion t, or givn t, γ t is th ( ρ)-quntil o prormns (rliilitis). Typilly ρ is hosn twn 0.0 n 0.. An stimtor γ t o γ t is th orrsponing smpl ( ρ)-quntil. Tht is, gnrt rnom smpl X,...,X N using th gnrtion lgorithm ov; omput th prormns r(x i ), i =,...,N n lt γ t = r ( ( ρ)n ), (6) whr r ()... r (N) r th orr sttistis o th prormns. Th rrn vtor is upt vi CE minimiztion, whih (s []) rus to th ollowing: For givn ix t n γ t, lt t,j = E t [X j r(x) γ t ]. An stimtor â t o t is omput vi N i= â t,j = I {r(x X i) γ t} ij N i= I, j =,...,m, () {r(x i) γ t} whr w us th sm rnom smpl s in (6), n whr X ij is th j-th oorint o X i. Th min CE lgorithm or optimizing () using th ov gnrtion lgorithm is thus summriz s ollows: Algorithm [Min CE Algorithm]. ) Initiliz â 0. St t= (itrtion ountr). ) Gnrt rnom smpl X,...,X N using Algorithm, with = â t. Comput th smpl ( ρ)- quntil o prormns γ t using (6). ) Us th sm smpl to upt â t, using (). ) I mx(min(â t, â t )) β (8) or som smll ix β, thn stop (lt T th inl itrtion); othrwis st t = t + n ritrt rom stp. Not tht th ost vtor, rliility o links p, th initil rrn vtor â 0, th smpl siz N, totl ugt C mx, th rrity prmtr ρ, n th stopping prmtr β n to spii in vn. Rmrk [Smooth Upting]. Inst o upting irtly using (), on my hoos to us smooth upting prour â t = α ã t + ( α) â t (9)

5 TABLE I LINK COSTS AND RELIABILITIES i i p i i i p i i i p i Fig.. 6-no omplt grph whr ã t is th prmtr vtor otin vi () n α is ll th smoothing prmtr. It is sily sn tht or α = th originl upting prour is otin. By stting th smoothing prmtr twn 0 < α < w tk th pst into ount whn upting th prmtr vtor. Rmrk [Unrliility]. In mny pplitions th link n ntwork rliilitis r los to. Th pproprit quntity to onsir is thn th ntwork unrliility r = r. In suh s Algorithm n rily moii to minimiz th unrliility, rthr thn to mximiz th rliility. Th only irns r tht ˆγ t now rprsnts th smpl ρ-quntil o th unrliilitis, n tht r(x i ) ˆγ t in () is rpl with r(x i ) ˆγ t. Exmpl. On or is 6-no ully onnt grph givn in Figur. Th two lk nos in th grph rprsnt th trminl nos. Th ntwork is untioning i th two trminl nos r onnt y oprtionl links. Th link osts n rliilitis r givn in Tl I. Th totl ugt C mx is qul to 00. Th optiml purhs vtor n lult (y totl numrtion) to x = (, 0,, 0, 0, 0, 0, 0,, 0, 0, 0, 0,, 0), whih givs ntwork unrliility o r = r = Th our lk links orm th optiml ntwork. Tl II isplys th volution o th purhs proility vtor or this prolm. W us th ollowing CE prmtrs: N = 0, ρ = 0., α = 0., β = 0.0 n w took â 0 = (0.,...,0.). W s tht s t, γ t n â t quikly pprohs r n x rsptivly. IV. NOISY OPTIMIZATION As mntion in th introution, or ntworks involving lrg numr o links th xt vlution o th ntwork rliility is in gnrl not sil, n simultion oms vil option. In th orrsponing simultion-s optimiztion prolm th ojtiv untion (th ntwork rliility) is thus orrupt y nois. In this stion w show how th CE mtho n sily moii to tkl suh noisy NPPs. In orr to pt Algorithm w gin, t itrtion t, gnrt rnom smpl X,..., X N oring th Br(â t )-istriution. Howvr, th orrsponing prormns (ntwork rliilitis) r now not omput xtly, ut stimt. For xmpl, stimtion vi CMC involvs, or h vtor X i, rwing rnom smpl o stt vtors Y,..., Y K, h oring to Br(p Xi )-istriution, n stimting th prormn s r(x i ) = K ϕ Xi (Y j ), i =,...,N. (0) K j= Th upting ormul is similr to (). Th only irn is tht r(x i ) is rpl with r(x i ). Thror th upting ormul t t-th itrtion is givn y N i= â t,j = I { r(x X i) γ t} ij N i= I, j =,...,m. () { r(x i) γ t} Th min CE lgorithm or stimting th rliility o ntwork is summriz s ollows: Algorithm [Noisy Vrsion o th CE Algorithm]. ) Initiliz â 0. St t = (itrtion ountr). ) Gnrt rnom smpl X,...,X N using Algorithm. Lt r (),..., r (N) th orr sttistis o

6 6 TABLE II THE EVOLUTION OF THE CE ALGORITHM WITH C mx = 00, N = 0, ρ = 0., α = 0., AND β = 0.0 t γ t â t r(x ),..., r(x N ). Lt γ t = r ( ( ρ)n ). ) Us th sm smpl to upt â t using (). ) Stop i (8) hols or som smll ix β (lt T th inl itrtion); othrwis st t = t + n ritrt rom stp. W oul tk â T s our inl purhs vtor, i th lttr wr inry. Sin â T is los to, ut not xtly inry, w roun â T to th nrst inry vtor, not th solution y â, n tk this roun vtor s our solution or th NPP. I, in ition, w wish to otin n stimt o th optiml rliility r, w gnrt (lrgr) smpl Y,..., Y N rom Br(â ), n stimt r vi r = N ϕâ (Y i ). () N i= Rmrk [Choi o K]. Not tht th simultion tim n ru y hoosing rltivly smll K in (0), sy K = 00 in Exmpl. Howvr, this orrspons to rltivly lrg vrin o th rliility stimtor, whih in turn oul l to suoptiml onvrgn o th lgorithm. On th othr hn, hoosing lrgr K, sy K = 0000 in Exmpl, n inrs th ury n hn o loting n optiml solution ut t ost o inrs simultion tim. To ovrom this, on my hoos K ptivly y stting K = min{ K min N/N uniqu, K mx }, () whr N uniqu is th numr o uniqu ntworks gnrt with no rptitions n K min n K mx r th minimum n mximum vlus o K llow in th simultion. Th i o using () is simpl: In th rly stgs o th simultion, whn N uniqu N, w tk K K min to quikly nrrow th srh sp. During th ours o th simultion th srh sp oms smllr n th lgorithm strts to gnrt ntworks with similr topologis n prormns, so tht N uniqu rss. Whn this strts to hppn, K is inrs utomtilly to urtly istinguish twn ntworks with similr rliilitis. It is importnt to rliz tht CMC only works stistory whn th ntwork rliility is nithr too smll nor too lrg. For xmpl, onsir highly rlil ntwork. For ny givn purhs vtor x th CMC stimtor o th (vry smll) unrliility r(x) = r(x), whih is th pproprit quntity to onsir hr, is givn y ǫ = r(x) := N ( ϕ x (Y i )), N i= n th orrsponing s-rltiv rror is Vr( r(x)) E[ r(x)] = r(x) r(x)n r(x)n, () whih shows tht or ǫ = 0.0, sy, w n smpl siz o t lst N 0 /r(x), whih n prohiitivly lrg. Prmuttion Mont Crlo A mor iint wy o stimting th ntwork unrliility in highly rlil ntworks is Prmuttion Mont Crlo (PMC) [9]. Th i is s ollows. Consir ntwork with strutur untion s in (), n rliility r = r(x) s in (). Lt l th numr o purhs links n lt E x th st o

7 purhs links. W ssum hr tht ϕ x (x) =, so tht th purhs ntwork untions i ll its links work. Now, osrv ynmi ntwork G(V, E) in whih h purhs link hs n xponntil rpir tim with rpir rt λ() = log( p ). Th rpir rt or h link tht is not purhs is st ollows tht Pr{T > } = xp{log( p )} = p. Thror, th proility o link ing oprtionl t tim t = is p, n hn th proility tht th ntwork is untioning t tim t = is prisly th ntwork rliility. By onitioning on Π w hv to λ() =, so tht th link os not om oprtionl in init tim. At tim t = 0 ll links r il. Assum tht ll rpir tims r s-inpnnt o h othr. Th stt o t tim t is not y Y (t) n th stt o th link st E t n r = E[ϕ(Y ())] = Pr{Π = π} Pr{ϕ(Y ()) = Π = π}, π (6) tim t is givn y th vtor Y (t), in in similr wy s or. Thn, (Y (t)) is Mrkov pross with stt sp r = r = Pr{Π = π} Pr{ϕ(Y ()) = 0 Π = π}. π () {0, } m. This pross is ll th Constrution Pross (CP) o th ntwork. Lt Π not th orr in whih th links r onstrut (om oprtionl) in init tim, n lt A 0, A 0 + A,...,A A l th tims t whih thos links r onstrut. Hn th {A i } r sojourn tims o (Y (t)). Π is rnom vril whih tks vlus in th sp {(,..., l ) {,...,m} l : i j, j i}. For ny suh π = (,..., l ) in Lt E 0 = E x, E i = E i \ { i }, i l, λ(e i ) = E i λ(). (π) = min i {ϕ(e x \ E i ) = } th ritil numr o π, tht is, th numr o rpirs rquir to ring th systm up in th orr spii y π. From th gnrl thory o Mrkov prosss it is not iiult to s tht Pr{Π = π} = l j= λ( j ) λ(e j ). () Morovr, onitionl on {Π = π}, th sojourn tims A 0,...,A l r s-inpnnt n h A i is xponntilly istriut with prmtr λ(e i ), i = 0,...,l. Rll tht h link hs n xponntil rpir rt λ() = log( p ). Lt T th orrsponing rpir tim. It Using th initions o A i n (π), w n writ th lst proility in trms o onvolutions o xponntil istriution untions. Nmly, or ny t 0 w hv Lt Pr{ϕ(Y (t)) = 0 Π = π} = Pr{A A (π) > t Π = π} = Conv 0 i (π) { xp[ λ(e i)t]}. (8) G(π) = Pr{ϕ(Y ()) = 0 Π = π}, (9) s givn in (8). Eqution () n thn rwrittn s r = E[G(Π)], (0) n this shows how th CP simultion shm works. Nmly, lt Π (),..., Π (K) s-inpnnt intilly istriut rnom vtors, h istriut oring to Π. Thn r = K K G(Π (i) ) () i= is n unis stimtor or r, whr h G(Π (i) ) n lult s th onvolution o xponntil untions. Mrg Pross A rul stuy o th volution o th CP shows tht mny o th rsults rmin vli whn w omin vrious stts to orm supr-stts t vrious stgs o th pross. Th mthmtil ormultion is s ollows (s [9], [0] or mor

8 8 Fig.. A rig ntwork, th propr prtition σ = {{}, {,, }}, n its orrsponing losur F σ = {,, }. tils): Givn th grph G(V, E) n sust F E o gs, prtition σ = {V,..., V k } o V is si to propr (with rspt to F) i h inu sugrph G(V i ) o th sugrph G(V, F) is onnt. Lt F i th g-st o th inu sugrph G(V i ). Th st F σ = k i= F i o gs is th losur o F. Th sist wy to visuliz th supr-stt σ is to intiy it with th grph G(V, F σ ), s in Figur. Hr F = {, }, whih inus th propr prtition σ = {{}, {,, }}, so tht F = n F = {,, } n F σ = {,, }. Lt L(G) th olltion o ll propr prtitions o V, orr y th rltion σ τ F σ F τ, whr τ is otin y mrging omponnts o σ. Rll th CP (Y (t)) o th ntwork in y x. Th CP inus Mrkov pross (Y(t)) on L(G), ll th Mrg Pross (MP). Initilly, this pross strts in th supr-stt σ 0 in whih ll nos r isolt rom h othr, n it ns in th supr-stt σ ω orrsponing to th originl ntwork with ll gs untioning. Furthrmor, t ny tim t 0, ϕ(y (t)) = ϕ(y(t)). For h σ L(G), th sojourn tim in σ hs n xponntil istriution with prmtr λ(σ) := E σ λ(), s- inpnnt o othr prtitions, whr E σ = E F σ n th trnsition rom urrnt prtition σ to on o its sussors τ ours with proility λ(σ) λ(τ) λ(σ) W in trjtory o (Y(t)) s squn θ = (σ 0,..., σ (θ) ), whr (θ) is qul to th numr o trnsitions rquir in orr or th ntwork to om oprtionl.. Fig.. () σ 0 = {{},{},{},{}}. () σ = {{,}, {,}}. () σ = {{,}, {},{}}. () σ = {{,,,}}. A possil trnsition squn o th MP (Y(t)). For xmpl, onsir th rig ntwork givn in Figur. Th ntwork is oprtionl whn th two lk nos r onnt y oprtionl links. A possil trnsition squn rom th initil stt is shown in Figur. Th ntwork oms oprtionl upon th trnsition rom σ to σ. Thror (θ) =. Sin ϕ(y (t)) = ϕ(y(t)), th proility tht th ntwork is not untioning t tim t = is qul to th ntwork unrliility. Thus th ntwork unrliility n writtn s r = θ Pr{Θ = θ}pr{ϕ(y()) = 0 Θ = θ}. () For ny t 0, w n writ th lst proility s Lt Pr{ϕ(Y(t)) = 0 Θ = θ} = Conv 0 j (θ) { xp[ λ(σ j)t]}. () G MP (θ) = Pr{ϕY() = 0 Θ = θ}. () s givn in (). Eqution () n rwrittn s r = E[G MP (Θ)] () whr Θ is th rnom trjtory in (Y(t)). Lt Θ,...,Θ K th s-inpnnt n intilly istriut rnom tr-

9 9 jtoris, h istriut oring to Θ. Thn r = K G MP (Θ i ) (6) K i= is n unis stimtor or r. A simpl wy o gnrting suh trjtoris is y irst gnrting rnom vtor Π xtly s in th CP. Th squn o istint prtitions otin rom th orr in whih th links om up (givn Fig.. Exmpl ntwork. y Π) trmins uniqu trjtory Θ V. IMPLEMENTATION ISSUES Algorithm is sign to in singl optiml solution. Howvr, thr r situtions whr th purhs proility () Ntwork A. () Ntwork B. o rtin link i, â t,i, i {,...,m}, oul osillt or vry long tim or onvrging to ithr 0 or, nmly whn ) mny o th nit ntworks hv rliilitis tht () Ntwork C. () Ntwork D. r vry los to th optiml ntwork rliility; Fig.. Cnit ntworks. ) thr r suprluous links in th ntwork, tht is, links tht o not t th ovrll ntwork rliility. Th rsult o suh osilltory hvior is tht th simultion tim inrss signiintly. In this stion, w introu two lgorithms, th hyri CE lgorithm n th suprluous link rmovl lgorithm, whih n ru th omputtionl ort. A. Hyri CE Mtho In th sitution whr only on optiml ntwork xists ut whr mny ntworks n purhs whos ntwork (un)rliilitis r vry los to th optiml on, th lmnts o th purhs proility vtor oul osillt, n this woul inrs th omputtionl ort. In suh ss, on my trmint th lgorithm on th numr o purhs proilitis tht li twn [β, β] lls low rtin thrshol, sy δ, n thn gnrt ll nit ntworks oring to th purhs proility vtor. W vlut th prormns o ths ntworks n tk th ntwork with th st prormn s our inl solution to th prolm. As n xmpl, onsir th 6-no ully onnt grph givn in Figur. Th lk n gry soli lins init tht th purhs proilitis o ths links li in th rngs [ β, ] n [0, β] rsptivly. Th two sh links init tht th orrsponing purhs proilitis li in th intrvl [β, β]. In suh s, w trmint th min CE loop (stps n o th lgorithm) n gnrt ll nit ntworks, nmly th our ntworks shown in Figur. W thn vlut th ntwork unrliilitis to trmin whih ntwork topology is optiml. Th min hyri CE lgorithm or stimting th rliility o ntwork is thus summriz s ollows: Algorithm [Hyri CE Mtho]. ) Initiliz â 0. St t =. ) Gnrt rnom smpl X,...,X N using Algorithm, with = â t. Comput th smpl ( ρ)- quntil o prormns γ t using (6).

10 0 6 9 h B B 8 g Fig.. B A grph G with 8 loks. Fig. 6. Systm with thr trminl nos not y lk nos. ) Us th sm smpl to upt â t, using (). ) I th numr o purhs proilitis in th rng [β, β] is lss thn or qul to rtin thrshol, pro to th nxt stp (lt T th inl itrtion); othrwis st t = t + n ritrt rom stp. ) Gnrt ll nit ntworks oring to th purhs proility vtor â t n vlut th ntwork unrliilitis. Output th ntwork with th smllst unrliility s solution to th prolm. B. Suprluous Links W nxt isuss th rol o suprluous links in purhs ntwork. Ths r links tht o not t th ovrll ntwork rliility, whthr thy r untioning or not. As n xmpl, onsir th 8-no ntwork with trminl nos in Figur 6. In this ntwork, thr r iv suprluous links in totl, nmly links,,, 8, n 9. Sin ths links o not t th rliility o th ntwork, th CE lgorithm oul, unnssrily, hv iiulty iing whthr or not to purhs thm. In prtiulr, th purhs proilitis o ths links, â t,i with i {,,, 8, 9}, oul osillt or long tim or thy onvrg to ithr 0 or. This inrss th omputtionl ort signiintly. Not tht w only n to onsir rmoving suprluous links whn ϕ x (x) = ; tht is, i ll trminl nos r onnt givn tht ll purhs links r in untioning. Fortuntly, th intiition o suprluous links n B B B Fig. 8. Th lok-utvrtx tr o G. rlt to wll-unrstoo prolm in grph thory, nmly tht o intiying th loks in grph []. To illustrt th onpts, onsir Figur. Th opn irls in th grph r th so-ll utvrtis. Whn ny o ths is rmov, th grph sprts into isjoint omponnts. A similr onpt is tht o rig: n g whos ltion sprts th grph. A sugrph is ll lok i it is () rig inluing its nvrtis, () omplt grph with vrtis, or () grph with or mor vrtis suh tht no singl vrtx sprts it. Exmpls o h o th ss (), () n () r givn in th igur s B, B n B, rsptivly. Th nxt stp in th nlysis is to orm lok-utvrtx tr whos vrtis r intii with th loks n utvrtis o th grph, n whos gs join utvrtis to loks. Figur 8 givs th lok-utvrtx o th grph G o Figur. Th lrg lk n gry vrtis orrspon to loks; th smll whit vrtis orrspon to th utvrtis. Th thr lk vrtis r th trminl loks whih n to onnt in orr or th systm to untion. Th prour or rmoving suprluous links now oms lr: I lok is ithr () n isolt lok ( lok o

11 gr 0), () n n lok whih ontins no trminl no, or () n n no whih ontins xtly on trminl no n its jnt lok ontins th sm trminl no, lok n rmov. W rpt this prour until ll suprluous loks r rmov rom th lok-utvrtx tr. Thr xist iint lgorithms or ining ll th loks in grph,.g., Algorithm. o []. Th ollowing lgorithm n ppli to rmov suprluous links rom th grph. Algorithm [Suprluous Link Rmovl]. ) Fin ll isolt loks n rmov rom th lokutvrtx tr. ) Fin ll singl gr loks tht o not ontin ny trminl no n rmov rom th lok-utvrtx tr. ) Lt G n unmrk singl gr lok in th lokutvrtx tr tht ontins xtly on trminl no n pro to stp. Trmint i no suh lok xists. ) Lt G th lok to whih G is onnt. I G ontins th sm trminl no s G, prun G ; othrwis mrk G to kp in th lok-utvrtx tr. Rturn to stp. Not tht suprluous link in ntwork in y x os not mn tht th link is lso suprluous in x. By rmoving suprluous link with proility, th omputtionl ort rss, us th orrsponing purhs proility no longr osillts. Howvr, lik in th hyri CE mtho, th ury oul ngtivly t i th purhs proility onvrgs too quikly to 0, whih might l to suoptiml solution. To ovrom this iiulty, on oul hoos to rmov th link with proility lp, 0 lp. In Stion VI, w invstigt t wht proility suprluous link shoul rmov in orr to otin th mximum prormn o th lgorithms with minimum omputtionl ort. VI. NUMERICAL EXPERIMENTS In this stion, w prsnt thr tst ss. For ll tst ss w ompr th prormn o th trministi CE lgorithm (CE-DET) n th hyri CE lgorithm (CE-HYBRID) with thos o th noisy vrsions using CMC simultion (CE-CMC) n MP simultion (CE-MP). Thus, in th ormr s th systm rliilitis or h purhs vtor r stimt vi Cru Mont Crlo simultion, n in th lttr s vi th Mrg Pross. In stp o th hyri CE lgorithm, w rnk th nit ntworks using ithr trministi pproh (CE-HYBRID-DET) or MP simultion (CE-HYBRID-MP). All xprimnts wr rpt tims in orr to ssss th vriility n ury o th sttistis. Tst Cs : For th irst xprimnt w rturn to Exmpl, whr th optiml purhs vtor is givn y x = (, 0,, 0, 0, 0, 0, 0,, 0, 0, 0, 0,, 0), whih givs minimum ntwork unrliility o r = Th orrsponing optiml ntwork is pit in Figur. W tk th sm CE prmtrs s in Exmpl n st K min = 000, K mx = 000, n δ =. In CE- HYBRID-MP, 0000 smpls wr us to rnk nit solutions. Tls III n IV show typil volutions o CE- CMC n CE-MP rsptivly. As ws th s with th trministi vrsion (s Tl II), oth mthos oun th optiml purhs vtor vry quikly. Th ntry in Tl III mns tht th orrsponing ntwork unrliility ws stimt (vi CMC) s 0. Not tht this n our whn th smpl siz K is rltivly smll. Tl V summrizs th sttistis ovr inpnnt rplitions. Hr Mtho rprsnts th mtho us in simultion; worst is th worst ntwork unrliility otin ovr th rplitions; st is th st unrliility otin in simultion; mn(t ) is th vrg numr o itrtions; n how otn is th numr o tims th mtho otin th optiml solution. Eh mtho prorm xptionlly wll, otining th

12 TABLE III A TYPICAL EVOLUTION OF CE-CMC FOR TEST PROBLEM t γ t â t TABLE IV A TYPICAL EVOLUTION OF CE-MP FOR TEST PROBLEM t γ t â t TABLE V NUMERICAL RESULTS FOR TEST CASE Mtho worst st mn(t ) how otn CE-DET CE-CMC CE-MP CE-HYBRID-DET CE-HYBRID-MP optiml purhs vtor in most o rplitions. This suggsts tht th propos noisy CE lgorithms using th CMC simultion n MP simultion n th hyri CE lgorithm n prorm s tivly n rlily s th trministi vrsion. Th s-rltiv rror in th rliility stimtion (or K = 00) ws roun 0 to 0% or CMC n % or CE- MP. Thus vn with this mount o unrtinty ll lgorithms n tivly lot th optiml ntwork topology or this prolm h j i 9 g Fig. 9. Ntwork topology or tst s. Tst Cs : Tst s is onrn with th 0-no ully onnt ntwork with trminl nos pit in Figur 9. This tst s is lot hrr thn th prvious on, not only us thr r nit ntworks, ut lso us mny o ths nit ntworks hv unrliilitis tht r vry los to th st oun solution (lss thn 0 0 wy).

13 TABLE VI THE PSEUDO CODE FOR GENERATING THE COST AND PROBABILITY VECTORS FOR TEST CASE i 0, j whil j m i i + 6 (mo 98 + i)/0 i > 0.99 n p k, or ll k =,..., j o p j thn j 0/ xp(8 ) j j + Fig.. l 6 8 s m 6 v h 9 p t k 6 n o 8 0 i x r u 8 w 0 q j Ntwork with nos n links. g g Fig. 0. Th st oun ntwork or tst s. h 0 9 j i TABLE VIII PSEUDO CODE FOR GENERATING THE LINK COST AND RELIABILITIES FOR CASE i 0, j whil j m i i + 6 (mo i)/0 i > 0.99 n p k, or ll k =,..., j o p j thn j 0/ xp(8 ) j j + Th totl ugt is C mx = 0, n w tk th ollowing CE prmtrs: N = 0, K min = 000, K mx = 0000, ρ = 0.0, α = 0., β = 0.0, n δ =. In CE- HYBRID-MP, 0000 smpls wr us to rnk nit solutions. Tl VI givs th psuo o or gnrting th link osts n rliilitis. Bs on inpnnt trils, th st oun solution or tst s is givn in Figur 0, with ntwork unrliility o Th rsults o rplitions or h mtho r summriz in Tl VII, with th xption o CE-CMC, whih il to prou solution th rson is tht CMC simultion rquir too lrg omputtionl ort (tht is, lrg smpl siz) to urtly stimt th vry smll ntwork unrliility;. (). It is nourging tht CE-HYBRID-DET otin th st oun ntwork in ll trils. CE-MP n CE-HYBRID-MP prorm rlily, otining n tims rsptivly. W oun tht CE-DET i not prorm s wll s othr mthos. On rson is tht th sp o onvrgn ws too st. Exprimnts show tht y hoosing smllr α, sy α = 0., CE-DET prorm s wll s its noisy ountrprt. Tst Cs : Th ntwork topology or tst s, tkn rom th survivl ix tlommunition ntwork sign lirry wsit ompriss nos, links n trminl nos, s Figur. In this prolm, w invstigt how suprluous link rmovl (Algorithm ) ts th ovrll prormn o th mthos, using irnt vlus or lp. For this tst s, w us th ollowing CE prmtrs: N = 000, K min = 000, K mx = 0000, ρ = 0.0, α = 0., β = 0.0, n δ =. Th totl ugt C mx = 000. In CE-HYBRID-MP, 0 smpls wr us to rnk nit solutions. Th psuo o or gnrting n p is givn low. Th st oun solution or tst s is givn in Figur,

14 TABLE VII NUMERICAL RESULTS FOR TEST CASE Mtho worst st mn(t ) how otn CE-DET CE-MP CE-HYBRID-DET CE-HYBRID-MP l 6 8 s m v 8 9 h p t k n 6 o 8 0 i x r u 8 w 0 q j g Fig.. Th st oun ntwork or tst s. with ntwork unrliility o Tl IX shows th numril rsults or tst s, vrg ovr inpnnt rplitions or irnt vlus o lp. Hr how otn is th numr o tims th mtho otin th st oun solution or nr-st solutions, tht is, solutions whos ntwork unrliilitis r lss thn % wy rom th st oun solution. CPU nots th vrg simultion tim in sons. W s tht pplying Algorithm hivs signiint rution in omputtionl tim. Howvr or vlus o lp 0.8, ll our mthos il to otin th st oun or nr-st solutions. Th rson is tht som o th links in th ntwork my hv n onsir s suprluous links in rly itrtions. This us th purhs proilitis to onvrg to 0 vry quikly. This n voi y tking smllr lp. It is intrsting to not tht CE-MP prorm wors with suprluous link rmovl thn without. A likly rson is tht th s-rltiv rror in th ntwork rliility stimtor ws quit lrg, so tht th ntworks oul not urtly rnk. Howvr, to rs th rltiv rror to out 0.0 smpl siz o t lst K = 0000 woul rquir, whih woul signiintly inrs th omputtionl ort. In ontrst to CE-MP, th othr thr mthos prorm s wll with 0. lp 0. s with lp = 0, otining th st oun or nr-st solutions roun th sm numr o tims. This shows tht y rmoving suprluous links with proility 0. lp 0., w wr l to ru th omputtionl tim up to % without ting th ury o th mthos. Morovr, oth hyri CE lgorithms, with or without suprluous link rmovl, signiintly ru th omputtion tim, without ting signiintly th ury. VII. CONCLUSIONS AND FUTURE RESEARCH In this ppr, w propos CE pproh or solving th Ntwork Plnning Prolm, whih is iiult onstrin omintoril optimiztion prolm with noisy ojtiv untion. This nois is introu whn th ojtiv untion (th systm rliility) is stimt rthr thn vlut xtly. W rviw svrl thniqus or ruing this nois. W xplin how th trministi vrsion o th CE lgorithm (whn th ojtiv untion is known) oul rily moii to hnl th noisy sitution. Th numril rsults show tht th noisy CE lgorithm n prorm s tivly n rlily s its trministi ountrprt. W propos two thniqus to sp up th onvrgn o th lgorithm: proilisti suprluous links rmovl n hyri CE. Exprimnts show tht with n pproprit hoi o prmtrs ths thniqus n sp up th optimiztion

15 TABLE IX NUMERICAL RESULTS FOR TEST CASE WITH DIFFERENT VALUES FOR DELP lp Mtho worst st mn(t ) how otn CPU CE-DET CE-MP CE-HYBRID-DET CE-HYBRID-MP CE-DET CE-MP CE-HYBRID-DET CE-HYBRID-MP CE-DET CE-MP CE-HYBRID-DET CE-HYBRID-MP CE-DET CE-MP CE-HYBRID-DET CE-HYBRID-MP CE-DET CE-MP CE-HYBRID-DET CE-HYBRID-MP CE-DET CE-MP CE-HYBRID-DET CE-HYBRID-MP CE-DET CE-MP CE-HYBRID-DET CE-HYBRID-MP pross y ovr 00% with vry littl impt on th ury o th lgorithm. W hv tkn prgmti pproh rgring onvrgn, osrving tht numrilly th CE lgorithms tns to onvrg in glol rthr thn lol sns. Although svrl CE onvrgn rsults r isuss in [], [], this topi rmins n intrsting hllng or utur rsrh. Anothr possil irtion is to invstigt whthr rliility rnking [] n urthr improv th prormn o th lgorithms. Hr only th rltiv rnkings o th ntworks r importnt, rthr thn th xt vlus o thir rliilitis. In som ss th ormr r sir to stimt thn th lttr. This oul l to n improvmnt o th prormn o th CE lgorithm. A urthr improvmnt oul hiv y xmining t wht stg in th simultion on shoul strt using suprluous link rmovl, n wht vlu o lp shoul tkn. Finlly, vloping n iint rr vnt prigm tht n ru th nois in th ntwork rliility stimtion with rltivly low omputtionl ort is nothr importnt r or utur rsrh.

16 6 REFERENCES [] M. R. Gry n D. S. Johnson, Computrs n Intrtility: A Gui to th Thory o NP-Compltnss. Sn Frniso: Frmn, 99. [] M. Brn n P. Plssmn, Th stinr prolm with g lngths n, Inormtion Prossing Lttrs, vol., pp. 6, 989. [] D. Li, X. L. Sun, n K. MKinnon, An xt solution mtho or rliility optimiztion in omplx systms, Annls o Oprtions Rsrh, vol., pp. 9, 00. [] C. J. Colourn, Th Comintoris o Ntwork Rliility. Oxor Univrsity Prss, 98. [] J. S. Provn n M. O. Bll, Th omplxity o ounting uts n o omputing th proility tht grph is onnt, SIAM Journl o Computing, vol., pp. 8, 98. [6] H. Kummoto, K. Tnk, K. Inou, n E. J. Hnly, Dggr smpling Mont Crlo or systm unvilility vlution. IEEE Trnstions on Rliility, vol. R-9, no., pp. 6 80, 980. [] G. Fishmn, A Mont Crlo smpling pln or stimting ntwork rliility, Oprtions Rsrh, vol., no., pp. 8 9, Jul-Aug 986. [8] C. J. Colourn n D. D. Hrms, Evluting prormility: Most prol stts n ouns, Tlommunition Systms, vol., pp. 00, 99. [9] T. Elprin, I. B. Grtskh, n M. Lomonosov, Estimtion o ntwork rliility using grph volution mols, IEEE Trnstions on Rliility, vol. 0, no., pp. 8, D 99. [0], An volution mol or Mont Crlo stimtion o quilirium ntwork rnwl prmtrs, Proility in th Enginring n Inormtionl Sins, vol. 6, pp. 69, 99. [] K.-P. Hui, N. Bn, M. Krtzl, n D. P. Kros, Th tr ut n mrg lgorithm or stimtion o ntwork rliility, Proility in th Enginring n Inormtionl Sins, vol., no., pp., 00. [], Ntwork rliility stimtion using th tr ut n mrg lgorithm with importn smpling, Proings. Fourth Intrntionl Workshop on Dsign o Rlil Communition Ntworks, pp. 6, 00. [], Th ross-ntropy mtho or ntwork rliility stimtion, Annls o Oprtions Rsrh, vol., no., pp. 0 8, 00. [] W.-C. Yh, A nw Mont Crlo mtho or th ntwork rliility, Proings o First Intrntionl Conrn on Inormtion Thnologis n Applitions(ICITA00), Novmr 00. [] C. Srivr-rtn n A. E. Smith, Estimting ll-trminl ntwork rliility using nurl ntwork, Proings o th 998 IEEE Intrntionl Conrn on Systms, Mn, n Cyrntis, vol., pp. 0, Otor 998. [6] I. B. Grtskh, Sttistil Rliility Thory. Nw York: Mrl Dkkr, In., 989. [] H. Cnl n M. E. Urquhrt, Simult nnling or ommunition ntwork rliility improvmnts, in Proings o th XXI Ltin Amrin Conrn On Inormtis. CLEI-SBC, July 99. [8] B. Dngiz, F. Altiprmk, n A. E. Smith, Lol srh gnti lgorithm or optiml sign o rlil ntworks, IEEE Trnstions on Evolutionry Computtion, vol., no., pp. 9 88, Sptmr 99. [9] Y.-S. Yh, C. C. Chiu, n R.-S. Chn, A gnti lgorithm or k- no st rliility optimiztion with pity onstrint o istriut systm, Pro. Ntl. Si. Coun. ROC(A), vol., no., pp., 00. [0] D. Rihlt, F. Rothlu, n P. Bmilkowsky, Dsigning rlil ommunition ntworks with gnti lgorithm using rpir huristi, in Evolutionry Computtion in Comintoril Optimiztion. Springr- Vrlg Hilrg, 00. [] W. Kuo n V. Prs, An nnott ovrviw o systm rliility optimiztion, IEEE Trns. Rliility, pp. 6 8, 000. [] R. Y. Ruinstin n D. P. Kros, Th Cross-Entropy Mtho: A unii pproh to Comintoril Optimiztion, Mont Crlo Simultion n Mhin Lrning. Nw York: Springr Vrlg, 00. [] R. Y. Ruinstin, Optimiztion o omputr simultion mols with rr vnts, Europn Journl o Oprtions Rsrh, vol. 99, pp. 89, 99. [], Th simult ntropy mtho or omintoril n ontinuous optimiztion, Mthoology n Computing in Appli Proility, vol., pp. 90, 999. [], Comintoril optimistion, ross-ntropy, nts n rr vnts, in Stohsti Optimiztion: Algorithms n Applitions, S. Urysv n P. M. Prlos, Es., Kluwr, 00, pp [6] G. Alon, D. P. Kros, T. Rviv, n R. Y. Ruinstin, Applition o th ur llotion prolm in simultion-s nvironmnt, Annls o Oprtions Rsrh, vol., no., pp., 00. [] K. Chpuri n T. Homm Mllo, Solving th vhil routing prolm with stohsti mns using th ross-ntropy mtho, Annls o Oprtions Rsrh, vol., no., pp. 8, 00. [8] D. P. Brtsks n J. N. Tsitsiklis, An nlysis o stohsti shortst pth prolms, Mthmtis o Oprtions Rsrh, vol. 6, pp. 80 9, 99. [9] P. T. Bor, D. P. Kros, S. Mnnor, n R. Y. Ruinstin, A tutoril on th ross-ntropy mtho, Annls o Oprtions Rsrh, vol., no., pp. 9 6, 00. [0] M. Lomonosov, On Mont Crlo stimts in ntwork rliility, Proility in th Enginring n Inormtionl Sins, vol. 8, pp. 6, 99. [] B. Bolloás, Grph Thory: An Introutory Cours. Springr-Vrlg, 99. [] G. Chrtrn n O. R. Ollrmnn, Appli n Algorithmi Grph Thory. MGrw-Hill, 99.

17 [] L. Mrgolin, On th onvrgn o th ross-ntropy mtho, Annls o Oprtions Rsrh, vol., no., pp. 0, 00. [] A. Cost, O. Jons, n D. P. Kros, Convrgn proprtis o th ross-ntropy mtho or isrt optimiztion, Oprtions Rsrh Lttrs, 00, to ppr. [] K.-P. Hui, Mont Crlo ntwork rliility rnking stimtion, IEEE Trnstions on Rliility, April 00. Dirk P. Kros hs wi rng o pulitions in ppli proility n simultion. H is pionr o th wll-known Cross-Entropy mtho n outhor (with R.Y. Ruinstin) o th irst monogrph on this mtho. H is ssoit itor o Mthoology n Computing in Appli Proility n gust itor o Annls o Oprtions Rsrh. H hs hl rsrh n thing positions t Printon Univrsity n th Univrsity o Mlourn, n is urrntly working t th Dprtmnt o Mthmtis o th Univrsity o Qunsln. Kin-Ping Hui is urrntly rsrh nginr t th Dn Sin n Thnology Orgniztion in Austrli. His rsrh intrsts inlu ntwork rliility stimtion, ntwork optimiztion, ntwork survivility, n ntwork rovry. Sho Nrii is PhD stunt in th Dprtmnt o Mthmtis t th Univrsity o Qunsln. His rsrh intrsts inlu pplitions o th Cross-Entropy mtho to ntwork sign prolms, ontinuous optimiztion, n noisy optimiztion.

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently? Rgistr Allotion Rgistr Allotion How to ssign vrils to initly mny rgistrs? Wht to o whn it n t on? How to o so iintly? Mony, Jun 3, 13 Mmory Wll Disprity twn CPU sp n mmory ss sp improvmnt Mony, Jun 3,

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

New challenges on Independent Gate FinFET Transistor Network Generation

New challenges on Independent Gate FinFET Transistor Network Generation Nw hllngs on Inpnnt Gt FinFET Trnsistor Ntwork Gnrtion Viniius N. Possni, Anré I. Ris, Rnto P. Ris, Flip S. Mrqus, Lomr S. Ros Junior Thnology Dvlopmnt Cntr, Frl Univrsity o Plots, Plots, Brzil Institut

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method: Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE Y.Fujit 1*, T. Kurshii 1, H.Ymtsu 1, M. Zo 2 1 Dpt. o Mngmnt

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13 4//3 RAM Mol 5-853: Algorithms in th Rl Worl Lolity I: Ch-wr lgorithms Introution Sorting List rnking B-trs Bur trs Stnr thortil mol or nlyzing lgorithms: Ininit mmory siz Uniorm ss ost Evlut n lgorithm

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

Module 2 Motion Instructions

Module 2 Motion Instructions Moul 2 Motion Instrutions CAUTION: Bor you strt this xprimnt, unrstn tht you r xpt to ollow irtions EXPLICITLY! Tk your tim n r th irtions or h stp n or h prt o th xprimnt. You will rquir to ntr t in prtiulr

More information

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW Smll Pth Quiz ML n Dtss Cn you giv n xprssion tht rturns th lst / irst ourrn o h istint pri lmnt? Ltur 8 Strming Evlution: how muh mmory o you n? Sstin Mnth NICTA n UNSW

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

An Efficient FPGA Implementation of the Advanced Encryption Standard Algorithm G. Mohan 1 K. Rambabu 2

An Efficient FPGA Implementation of the Advanced Encryption Standard Algorithm G. Mohan 1 K. Rambabu 2 IJSRD - Intrntionl Journl or Sintii Rsrh & Dvlopmnt Vol., Issu, ISSN (onlin): - An Eiint FPGA Implmnttion o th Avn Enryption Stnr Algorithm G. Mohn K. Rmu M.Th Assistnt Prossor Dprtmnt o Eltronis n ommunition

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

Layout Decomposition for Triple Patterning Lithography

Layout Decomposition for Triple Patterning Lithography Lyout Domposition or Tripl Pttrning Lithogrphy Bi Yu, Kun Yun, Boyng Zhng, Duo Ding, Dvi Z. Pn ECE Dpt. Univrsity o Txs t Austin, Austin, TX USA 7871 Cn Dsign Systms, In., Sn Jos, CA USA 9514 Emil: {i,

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings PAGES Primry Primry Mths Bsis Sris THE SUBTRACTION BOOK A prorssion o sutrtion skills writtn y Jillin Cokins INTRODUCTION This ook is intn to hlp sur th mthmtil onpt o sutrtion in hilrn o ll s. Th mstry

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

arxiv: v1 [cs.ar] 11 Feb 2014

arxiv: v1 [cs.ar] 11 Feb 2014 Lyout Domposition or Tripl Pttrning Lithogrphy Bi Yu, Kun Yun, Boyng Zhng, Duo Ding, Dvi Z. Pn ECE Dpt. Univrsity o Txs t Austin, Austin, TX USA 7871 Cn Dsign Systms, In., Sn Jos, CA USA 9514 Emil: {i,

More information

CS553 Lecture Register Allocation 1

CS553 Lecture Register Allocation 1 Low-Lvl Issus Lst ltur Livnss nlysis Rgistr llotion Toy Mor rgistr llotion Wnsy Common suxprssion limintion or PA2 Logistis PA1 is u PA2 hs n post Mony th 15 th, no lss u to LCPC in Orgon CS553 Ltur Rgistr

More information

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications Proings of th 6th WSEAS Intrntionl Confrn on Miroltronis, Nnoltronis, Optoltronis, Istnul, Turky, My 27-29, 27 32 A Low Nois n Rlil CMOS I/O Buffr for Mix Low Voltg Applitions HWANG-CHERNG CHOW n YOU-GANG

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information