Quantum dynamics in Single-Molecule Magnets - towards molecular spintronics

Size: px
Start display at page:

Download "Quantum dynamics in Single-Molecule Magnets - towards molecular spintronics"

Transcription

1 Quantum dynamics in Single-Molecule Magnets - towards molecular spintronics Wolfgang Wernsdorfer Institut Néel CNRS - Grenoble S = 10 2 to 10 6 S = 1/2 to 30

2 Magnets nanoworld Mm 1 km 1 m 1 mm 1 µm 1 nm

3 permanent magnets macroscopic micron particles Magnetic structures nanoparticles clusters atomic molecular clusters atoms S = multi - domains single - domains spins 1 mm 20 nm 3 nm 1 nm

4 Magnetization reversal in magnetic structures permanent magnets macroscopic micron particles nanoparticles clusters atomic molecular clusters atoms S = multi - domains nucleation, propagation and annihilation of domain walls single - domains uniform rotation, curling, etc. spins quantum tunneling, interference, coherence 1 S 1 S 1 S Fe 8 0.7K M/M -1 M/M -1 M/M 1K 0.1K µ 0 H(mT) µ 0 H(mT) µ 0 H(T)

5 Magnetization reversal in magnetic structures permanent magnets macroscopic micron particles nanoparticles clusters atomic molecular clusters atoms S = multi - domains nucleation, propagation and annihilation of domain walls single - domains uniform rotation, curling, etc. spins quantum tunneling, interference, coherence Classical magnetism Micromagnetics Landau Lifshitz Gilbert equation Quantum magnetism Schrödinger equation Operator formalism Path intergrals ab-initio calulations etc.

6 Micro-SQUID magnetometry particle stray field B 1 µm fabricated by electron beam lithography (D. Mailly, LPN, Marcoussis - Paris) sensitivity : 10-4 Φo µ B i.e. (2 nm) 3 of Co Josephson junctions A. Benoit, CRTBT, emu

7 Roadmap of the micro-squid technique 1 S(µ B ) Quantum limit of a SQUID 0 3 nm? information storage Years

8 nano-squid G1 SWNT Gnd G2 500 nm J.-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, Th. Ondarçuhu, M. Monthioux, Nature Nanotechnology, 1, 53 (2006)

9 Cobalt cluster of 3 nm V. Dupuis, A. Perez, LPMCN, Lyon: LASER vaporization and inert gas condensation source Low Energy Cluster Beam Deposition regime HRTEL along a [110] direction fcc - structure, faceting blue: 1289-atoms truncated octahedron grey: added atomes, total of 1388 atomes Ideal case: truncated octagedron with 1289 or 2406 atoms for diameters of 3.1 or 3.8 nm

10 Giant spin approximation 1000 atoms S 1000

11 Uniform rotation of magnetization: Stoner - Wohlfarth model (1949) single domain magnetic particle one degree of freedom: orientation θ of magnetization M potential: E=K sin 2 θ µ 0 M S H cos(θ ϕ) K=K µ 0M S 2 (Nb N a ) 2 E(θ) 1 h = h 0 h > 0 H ψ ϕ b h = 0 M 0 θ z T = 0 K a θ B B

12 Stoner - Wohlfarth switching field M 1 0 h sw = ( sin 2/3 θ+cos 2/3 θ) 3/2 h sw hard axis easy axis h Stoner - Wohlfarth astroid

13 Temperature dependence of the switching fields of a 3 nm Co cluster µ 0 H z (T) K 1 K 2 K 4 K 8 K 0.04 K T B - 14 K t 1 s µ 0 H y (T) => in agreement with the Néel Brown theory PRL 86, 4676 (2001)

14 Finding the anisotropy from 3D switching field measurements E 0 = m 2 z + 0.4m 2 x 0.1[ m 2 x m 2 y + m 2 x m 2 z + m 2 2 y m ] z PRL 86, 4676 (2001)

15 Switching of magnetization by non-linear resonance studied in single nanoparticles Energy H Magnetization angle H Dynamical astroid C. Thirion, W. Wernsdorfer, D. Mailly Nature Mat.2, 524 (2003)

16 Magnetization reversal via precession Measurement Simulation 0.15 t = 10 ns static 4.4 GHz 3.2 GHz 2.4 GHz µ 0 H z (T) µ 0 H x (T) C. Thirion, W. Wernsdorfer, D. Mailly, Nature Mat.2, 524 (2003)

17 Lis, 1980 Single-molecule magnets (SMM) Giant spins Mn 12 S = 10 Tb J = 6 Ni 12 S = 12 QuickTime et un décompresseur Animation sont requis pour visualiser cette image. Mn 84 S 6 Fe 8 S = 10 Christou, 2004 Winpenny, 1999 Wiegart, 1984

18 Crystal of SMMs QuickTime et un décompresseur Animation sont requis pour visualiser cette image.

19 Micro-SQUID array crystal B crystalsize> fewµm to emu temperature K field < 1.4 T and < 20 T/s rotation of field transverse field several SQUIDs at different positions 50 µm

20 Micro-magnetometry µ-hall Effect µ-squid B sample B sample 1 µm Hall bars 1 to 10 µm Jospheson Junctions Based on Lorentz Force Measures magnetic field V H = αi ne M Large applied in-plane magnetic fields (>20 T) Broad temperature range Single magnetic particles Ultimate sensitivity ~10 2 µ B Based on flux quantization Measures magnetic flux Applied fields below the upper critical field (~1 T) Low temperature (below T c ) Single magnetic particles Ultimate sensitivity ~1 µ B

21 Giant spin approximation (Fe 8 ) S = 10 Fe III : s = 5/2

22 Giant spin model Spin Hamiltonian: Η= DS 2 z + E S 2 r ( 2 x S y )+ gµ B S H r (2S + 1) energy states: M = -S, -S+1,, S magnetic anisotropy Zeeman energy Energy levels: Zeeman diagram 10 Energy H = 0 Energy (K) quantum number M µ 0 H z (T) with S = 10, D = 0.27 K, E = 0.046K

23 Tunneling probability at an avoided level crossing Landau-Zener model (1932) S, m' > S, m > energy ² 1 - P 1 P P =1 exp c 2 dh /dt S, m > magnetic field S, m' > c = π 2h gµ B m m' µ 0

24 M/M S mk v=140 mt/s v=70 mt/s v=14 mt/s v=2.8 mt/s µ 0 H(T) Application of Landau-Zener tunneling Fe 8 S = Energy (K) µ 0 H z (T) 10 Η= DS 2 z + E S 2 r 2 ( x S y )+ gµ B S H r with S = 10, D = 0.27 K, E = 0.046K A.-L. Barra et al. EPL (1996)

25 Magnetization reversal in magnetic structures permanent magnets macroscopic micron particles nanoparticles clusters atomic molecular clusters atoms S = multi - domains single - domains spins Tunneling splitting ~ E D ~ H x D S 2S E << D Tunneling probability P =1 exp c 2 dh /dt 2 Η= DS z + E ( 2 Sx 2 r Sy )+ gµ B S H r

26 easy axis Barium ferrite nanoparticle(10 nm) Macroscopic Quantum Tunneling of Magnetization of Single Ferrimagnetic Nanoparticles of Barium Ferrite (10 nm) W.W. et al, PRL, 79, 4014, (1997) T c (θ) µ 0 H a ε 1/4 cot θ 1/ 6 ( 1 + cot θ 2/3 ) 1 T c ( θ)/t c (45 ) Tc(45 ) = 0.31 K angle θ

27 Temperature dependence Spin Hamiltonian: Η= DS 2 z + E S 2 2 r ( x S y )+ gµ B S H r (2S + 1) energy states: M = -S, -S+1,, S Spin-phonon coupling : M = ±1, ±2 Energy E thermally assisted tunneling Anisotropy barrier E Anisotropy constant D S 2 Spin quantum number M

28 Spin ground states of Mn based SMMs S Mn 4 Mn 2 Mn 9 Mn 19 Mn 25 Mn 18 Mn 12 Mn 30 Mn 84 Mn number of Mn-ions

29 Anisotropy barriers of Mn based SMMs Mn 6 60 Mn 12 E (K) 40 Mn 5 Mn 9 20 Mn 4 Mn 18 Mn 70 0 Mn 2 Mn 30 Mn 25 Mn number of Mn-ions

30 Quantum Tunneling of Magnetization in Lanthanide Single-Molecule Magnets Bis(phthalocyaninato)terbium Naoto Ishikawa, Department of Applied Chemistry, Chuo University, Tokyo 0.5 nm E (K) 600 K 1.5 nm N.Ishikawa, et al., J.Phys.Chem. A 106, 9543 (2002) J. Am.Chem.Soc. 125, 8694 (2003) Inorg.Chem. 42, 2440 (2003) J.Phys.Chem. A 107, 9543 (2003) J. Phys.Chem.B 108, (2004) H (T)

31 Quantum Tunneling of Magnetization in Lanthanide Single-Molecule Magnets Bis(phthalocyaninato)terbium Naoto Ishikawa, Department of Applied Chemistry, Chuo University, Tokyo T/s 2% Tb M/M s 0 E (K) 600 K K 2.0 K 7 K µ 0 H (T) H (T) N. Ishikawa, M. Sugita, W. Wernsdorfer, Angew. Chem. Int. Ed. 44,2 (2005) N. Ishikawa, M. Sugita, W. Wernsdorfer, J. Am. Chem. Soc. 127, 3650 (2005)

32 Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets QuickTime et un décompresseur Animation sont requis pour visualiser cette image. 9/2-9/2 J J -9/2 9/2 W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson & G. Christou Nature 416, 406 (2002)

33 Premières mesures micro-squid sur une molécules aimants photo-commutables MoCu6 (coll. V. Marvaud, M. Verdaguer et al.) Transfert d électron photo-induit Mo IV hν Cu II Mo V Cu I S=1/2 isolés T/s S=3 2 M/N µ B h 10 h 0.04 K 1 K 4 K 0.04 K 1 K 4 K µ 0 H (T)

34 Premières mesures micro-squid sur les analogues photo-magnétiques du bleu de Prusse (coll. A. Bleuzen, M. Verdaguer et al.) Fe Co Rb C N Aimant moléculaire photo-commutable Rb I Co III [Fe II (CN) 6 ] Co III (LS) + Fe II hν (LS) Co II (HS) + Fe III (LS) S= 0 S= 0 S= 3/2 S= 1/ K A50 M/M s irradiation with white light µ 0 H (T) En cours : mesure d une seule nanoparticule photo-commutable 0 min 1 min 5 min 20 min 30 min 70 min 100 min 3 h 4 h 12 h

35 Quantum computing in molecular magnets Michael N. Leuenberger & Daniel Loss NATURE, 410, 791 (2001) implementation of Grover's algorithm storage unit of a dynamic random access memory device. fast electron spin resonance pulses can be used to decode and read out stored numbers of up to 10 5 with access times as short as 0.1 nanoseconds.

36 MCEUEN group (Cornell)

37 Molecular spintronics Nicolas Roch Franck Balestro Edgar Bonet Vincent Bouchiat Wolfgang Wernsdorfer V gate

38 Molecular spintronics : first devices.. Molecular transistor : Cornell Delft Harvard QuickTime et un décompresseur TIFF (LZW) sont requis pour visionner cette image. Liang et al., Nature 417, Ferromagnetic electrodes : Park et al., Nature 417, H. Heersche et al., PRL 96, (2006) QuickTime et un décompresseur TIFF (LZW) sont requis pour visionner cette image. Harvard, Cornell, Berkeley, Cornell Pasupathy et al., Science 306, M.-H. Jo et al., Nano Lett., 6, 2014 (2006)

39 Cecile Delacour Clemens Winkelmann Lapo Bogani Laetitia Marty Romain Maurand Vincent Bouchiat Wolfgang Wernsdorfer Molecular spintronics V gate

40 Single-walled carbon nanotube junction S G SWNT D

41 Magnetic flux coupling: nano-squid G1 SWNT Gnd G2 500 nm J.-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, Th. Ondarçuhu, M. Monthioux, Nature Nanotechnology, 1, 53 (2006)

42 Magnetization switching of single molecules micro-squid versus nano-squid (CNT-SQUID) Optimising the flux coupling factor 50 nm stray field particle nanoparticle junction 20 nm 1000 nm substrate micro-bridge Josephson junctions stray field molecule S QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. carbon nanotube junction S 0.6 nm molecule 1 nm nanotube substrate

43 Carbon nanotube SQUID fabrication G1 Gnd G2 SWNT 500 nm single-walled CNTs: Rice University. dispersed in water by sonication using sodium dodecyl sulphate (SDS) surfactant. n-doped silicon substrate with 350 nm thick thermally grown SiO 2 => backgate functionalized => monolayer of aminopropyltriethoxysilane substrate was dipped in the dispersion of CNTs and withdrawn (combing technique) thoroughly washed in distilled water nanotube location with AFM aligned e-beam lithography metal electrodes: 3 nm Pd + 50 nm Al R 30 kω and no significant gate effect at 300 K fabricated about 100 CNT-SQUIDs and 300 CNT-superconducting transistors using singlewalled CNTs, ropes of CNTs, and multi-walled CNTs: 30 % worked J.-P. Cleuziou, CEMES-CNRS, Toulouse, France F. Carcenac, RTB-LAAS, Toulouse, France

44 Combing technique substrate was dipped in the dispersion of CNTs and withdrawn Competition between: Nanotube adsorption on silanized surface Capillary alignment S. Gerdes, T. Ondarcuhu, S. Cholet, C. Joachim, Europhys. Lett. 48, 292 (1999).

45 CNT 2.0µm Ropes Individual SWNT diameter 0.8 nm deposition Combing technique S. Gerdes, T. Ondarcuhu, S. Cholet, C. Joachim, Europhys. Lett. 48, 292 (1999).

46 Nanotube E-beam lithography PMMA e-beam SiO 2 Si n++ (a) Nanotube deposition (combing) (b) Resist deposit (c) Insolation with e-beam Al (50 nm) Pd (3 nm) gate (d) Development (e) Metal evaporation (f) Lift-off

47 G1 CNT Carbon nanotube SQUID V BG G2 500 nm I On On V G1 II Off On V G1 III Off Off V G1 V G2 V G2 V G2

48 V ( µv) Case I on-on CNT-SQUID characteristics 0 Φ 0 /4 Φ 0 /2 I ( na) I (na) µ 0 H z (mt) Case III off-off V ( µv) I (pa) I (pa) µ 0 H z (mt)

49 Preliminary estimation of the flux sensitivity of CNT-SQUIDs CNT-SQUID characteristics I sw histogram na/φ N = I (na) Count Φ/ Φ I (na) Flux sensitivity: [3.5 pa]/([3 na/φ 0 ]*sqrt[10000]) 10-5 Φ 0 when averaging I sw during 1 s at a rate of 10 khz.

50 Estimation of magnetic flux variation for Mn12 with S = 10 stray field molecule S QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. carbon nanotube junction S 0.6 nm molecule 1 nm nanotube substrate The total magnetic flux Φ of a uniformly magnetized sphere, R = 0.5 nm. 1 2 Φ = µ0 m R Φ = 1.1 x 10-4 Φ0 for Mn12 with S = 10 Flux sensitivity for the CNT-SQUIDs: 10-5 Φ0 when averaging Isw during 1 s at a rate of 10 khz further improvement, Irfan Siddiqi, Berkeley

51 Conclusion - SMMs nice quantum systems (tunneling, interference, coherence, etc.) increasing the anisotropy barrier (S, D) interconnecting of SMMs (switchable) Molecular spintronics V gate V gate

52 Collaborations (Physics) L. Thomas PhD 1996: Mn 12 -ac F. Lionti PhD 1997: Mn 12 -ac, Fe 17/19 I. Chiorescu PhD 2000: Mn 12 -ac, V 15 R. Giraud PhD 2002: Ho 3+ C. Thirion PhD 2003: nanoparticles, GHz R. Tiron PhD 2004: [Mn 4 ] 2 S. Bahr PhD started 2005: GHz K. Petukhov post-doc : GHz F. Balestro, E. Bonet, W. Wernsdorfer, B. Barbara, LLN, CNRS, Grenoble T. Ohm PhD 1998: Fe 8 V. Villar PhD 2001: Fe 8, chaines E. Lhotel PhD 2004: chaines V. Bouchiat, C. Paulsen, A. Benoit, CRTBT, CNRS, Grenoble L. Sorace, post-doc 2003: GHz A.-L. Barra, LCMI - CNRS, Grenoble J. Villain, CEA, Grenoble D. Mailly, LPN, CNRS, Marcoussis

53 Winpenny, 2003 Collaborations (Chemistry) Group of G. Christou, Dept. of Chemistry, Florida Group of R. Sessoli, D. Gatteschi, Univ. de Firenze, Italie Group of A. Cornia, Univ. de Modena, Italie Group of R.E.P. Winpenny, Univ. de Manchester, UK Group of E. Brechin, Univ. de Manchester, UK Group of T. Mallah, Orsay Group of V. Marvaud, Univ. P. et M. Curie, Paris Group of A. Müller, Univ. de Bielefeld, Germany Group of A. Powell, Univ. de Kahlsruhe, Germany Group of D. Hendrickson, Dept. of Chemistry, San Diego Group of E. Coronado, Univ. de Valence, Spain Group of D. Luneau, Univ. of Lyon, France Group of G. Royal, Univ. J. Fourier, Grenoble Group of R. Clerac & C. Coulon, Univ. Bordeaux, Pessac Group of H. Miyasaka, Tokyo Metropolitan Uni. Group of M. Verdaguer, Univ. P. et M. Curie, Paris Group of M. Julve, Univ. de Valence, Spain SMMs SCMs Mn 84 QuickTime et un décompresseur Animation sont requis pour visualiser cette image. Christou, 2004

54 Acknowledgement G1 SWNT Gnd J.-P. Cleuziou, CEMES-CNRS, Toulouse G2 500 nm F. Carcenac, RTB-LAAS, Toulouse, France J.-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, Th. Ondarçuhu, M. Monthioux, Nature Nanotechnology, 1, 53 (2006)

Quantum dynamics in Single-Molecule Magnets

Quantum dynamics in Single-Molecule Magnets Quantum dynamics in Single-Molecule Magnets Wolfgang Wernsdorfer Laboratoire de Magnétisme Louis Néel C.N.R.S. - Grenoble S = 10 2 to 10 6 S = 1/2 to 30 permanent magnets macroscopic micron particles Magnetic

More information

Voyage dans le nanomonde des aimants

Voyage dans le nanomonde des aimants Voyage dans le nanomonde des aimants Wolfgang Wernsdorfer Laboratoire de Magnétisme Louis Néel C.N.R.S. - Grenoble S = 10 2 to 10 6 S = 1/2 to 30 Magnets nanoworld 10 6 10 3 10 0 10-3 10-6 10-9 1 Mm 1

More information

Intermolecular interactions (dipolar and exchange)

Intermolecular interactions (dipolar and exchange) Intermolecular interactions (dipolar and exchange) SMM ideal Mn 2 ac Mn 4 (SB) spin chains, etc. MM...? doped Fe 6 Fe 5 Ga Fe 8 [Mn 4 ] 2 J/D Mn 4 singlemolecule magnet Mn 4 O 3 (OSiMe 3 )(O 2 CMe) 3 (dbm)

More information

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble The Nanotube SQUID J.-P. Cleuziou,, Th. Ondarçuhu uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble Outline Sample fabrication Proximity effect in CNT The CNT superconducting

More information

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants MolNanoSpin: Spintronique moléculaire avec des molécules-aimants W. Wernsdorfer : Institut Néel T. Mallah : Institut de Chimie Moléculaire et des Matériaux d'orsay P. Mialane : Institut Lavoisier Journées

More information

Spins Dynamics in Nanomagnets. Andrew D. Kent

Spins Dynamics in Nanomagnets. Andrew D. Kent Spins Dynamics in Nanomagnets Andrew D. Kent Department of Physics, New York University Lecture 1: Magnetic Interactions and Classical Magnetization Dynamics Lecture 2: Spin Current Induced Magnetization

More information

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)-

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- Quantum tunneling of magnetization in lanthanide single-molecule magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- dysprosium anions** Naoto Ishikawa, * Miki Sugita and Wolfgang Wernsdorfer

More information

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006 Quantum Tunneling of Magnetization in Molecular Magnets ANDREW D. KENT Department of Physics, New York University Tutorial T2: Molecular Magnets, March 12, 2006 1 Outline 1. Introduction Nanomagnetism

More information

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS B. Barbara, W. Wernsdorfer, E. Bonet, L. Thomas (IBM), I. Chiorescu (FSU), R. Giraud (LPN) Laboratory Louis Néel, CNRS, Grenoble Collaborations with other groups

More information

arxiv:cond-mat/ v1 9 Jan 2001

arxiv:cond-mat/ v1 9 Jan 2001 arxiv:cond-mat/0101104 v1 9 Jan 2001 Classical and quantum magnetization reversal studied in nanometer-sized particles and clusters Edited by to be published in: Advances in Chemical Physics invitation

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supramolecular Spin Valves M. Urdampilleta, 1 J.-P. Cleuziou, 1 S. Klyatskaya, 2 M. Ruben, 2,3* W. Wernsdorfer 1,* 1 Institut Néel, associé á l Université Joseph Fourier, CNRS, BP 166, 38042 Grenoble Cedex

More information

Recent Developments in Quantum Dynamics of Spins

Recent Developments in Quantum Dynamics of Spins Recent Developments in Quantum Dynamics of Spins B. Barbara, R. Giraud*, I. Chiorescu*, W. Wernsdorfer, Lab. Louis Néel, CNRS, Grenoble. Collaborations with other groups: D. Mailly (Marcoussis) D. Gatteschi

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Liquid nanodispensing

Liquid nanodispensing Liquid nanodispensing Thierry Ondarçuhu, Laure Fabié, Erik Dujardin, Aiping Fang Nanosciences group, CEMES-CNRS, Toulouse (France) Nanopatterning, molecule deposition Dynamics of liquids at sub-micron

More information

Spin electric coupling and coherent quantum control of molecular nanomagnets

Spin electric coupling and coherent quantum control of molecular nanomagnets Spin electric coupling and coherent quantum control of molecular nanomagnets Dimitrije Stepanenko Department of Physics University of Basel Institute of Physics, Belgrade February 15. 2010 Collaborators:

More information

The First Cobalt Single-Molecule Magnet

The First Cobalt Single-Molecule Magnet The First Cobalt Single-Molecule Magnet En-Che Yang and David N Hendrickson Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92037, USA Wolfgang Wernsdorfer

More information

B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion

B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion Quantum tunnelling and coherence of mesoscopic spins B. Barbara, Institut Néel, CNRS, Grenoble Brief history From classical to quantum nanomagnetism Quantum nanomagnetism From relaxation to coherence Ensemble

More information

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate transport through the single molecule magnet Mn12 Herre van der Zant H.B. Heersche, Z. de Groot (Delft) C. Romeike, M. Wegewijs (RWTH Aachen) D. Barreca, E. Tondello (Padova) L. Zobbi, A. Cornia (Modena)

More information

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy Nuclear spin dynamics in quantum regime of a single-molecule magnet Andrea Morello UBC Physics & Astronomy Kamerlingh Onnes Laboratory Leiden University Nuclear spins in SMMs Intrinsic source of decoherence

More information

nano Josephson junctions Quantum dynamics in

nano Josephson junctions Quantum dynamics in Permanent: Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Cécile Naud Bernard Pannetier Quantum dynamics in nano Josephson junctions CNRS Université Joseph Fourier Institut Néel- LP2MC GRENOBLE

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube Objective: learn about nano-manipulation techniques with a STM or an AFM. 5.1: With a nanotube Moving a nanotube Cutting a nanotube Images at large distance At small distance : push the NT Voltage pulse

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

Nano devices for single photon source and qubit

Nano devices for single photon source and qubit Nano devices for single photon source and qubit, Acknowledgement K. Gloos, P. Utko, P. Lindelof Niels Bohr Institute, Denmark J. Toppari, K. Hansen, S. Paraoanu, J. Pekola University of Jyvaskyla, Finland

More information

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent Spin Dynamics in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University Collaborators: Gregoire de Loubens, Enrique del Barco Stephen Hill Dmitry Garanin Myriam Sarachik, Yosi

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Josephson junction team Olivier Buisson, Bernard Pannetier,

More information

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Spin electronics at the nanoscale Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Principles of spin electronics: ferromagnetic metals spin accumulation Resistivity of homogeneous

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Bellaterra: anuary 2011 Architecture & Design of Molecule Logic Gates and Atom Circuits Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Fernando LUIS Instituto de Ciencia de Materiales

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Outline - Goals of the course. What is electronic device?

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Polyhedron 22 (2003) 1783/1788 www.elsevier.com/locate/poly New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Mònica Soler a, Wolfgang Wernsdorfer b, *, Ziming Sun c,

More information

Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids

Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids Physica B 280 (2000) 264}268 Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids W. Wernsdorfer *, E. Bonet Orozco, B. Barbara, A. Benoit,

More information

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets Lorenzo Sorace, Roberta Sessoli, Andrea Cornia Department of Chemistry & INSTM, University of Florence, Italy Department

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet April 28 EPL, 82 (28) 175 doi: 1.129/295-575/82/175 www.epljournal.org Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet M. Bal 1, Jonathan R. Friedman 1(a),W.Chen 2,

More information

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Presenter: Tulika Mitra Swarup Bhunia, Massood Tabib-Azar, and Daniel Saab Electrical Eng. And

More information

Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger

Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger Infineon Technologies Corporate Research Munich, Germany Outline

More information

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels Gage Redler and Stephen Hill Department of Physics, University of Florida Abstract High Frequency Electron Paramagnetic Resonance

More information

Concepts in Spin Electronics

Concepts in Spin Electronics Concepts in Spin Electronics Edited by Sadamichi Maekawa Institutefor Materials Research, Tohoku University, Japan OXFORD UNIVERSITY PRESS Contents List of Contributors xiii 1 Optical phenomena in magnetic

More information

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid Magnetism Electromagnetic Fields in a Solid SI units cgs (Gaussian) units Total magnetic field: B = μ 0 (H + M) = μ μ 0 H B = H + 4π M = μ H Total electric field: E = 1/ε 0 (D P) = 1/εε 0 D E = D 4π P

More information

Exotic Kondo effects in nanostructures

Exotic Kondo effects in nanostructures Exotic Kondo effects in nanostructures S. Florens Ne el Institute - CNRS Grenoble e d 1.0 NRG S=1 A(E,B,T=0) A(E,B,T=0) 1.0 NRG S=1/2 0.8 0.6 0.8 0.6 0.4 0.4-1.0 0.0 E/kBTK 1.0-1.0 0.0 E/kBTK 1.0 Some

More information

Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study

Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study O.Fruchart Laboratoire Louis Néel (CNRS-UJF-INPG) Grenoble Jan. 17th, 2007 Olivier Fruchart

More information

MOLECULAR SPINTRONICS. Eugenio Coronado

MOLECULAR SPINTRONICS. Eugenio Coronado MOLECULAR SPITROICS Eugenio Coronado Spintronics Manipulation of the spin by electrical means (current, electric field) optical means (light) mechanical means (pressure). At the nanoscale Molecular Spintronics

More information

Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets

Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets W. Wernsdorfer, 1 S. Bhaduri, 2 A. Vinslava, 2 and G. Christou 2 1 Laboratoire L.

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation Fabrication and Measurement of Spin Devices Zhihong Chen School of Electrical and Computer Engineering Birck Nanotechnology Center, Discovery Park Purdue University Purdue Birck Presentation zhchen@purdue.edu

More information

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation EUROPHYSICS LETTERS 1 July 2005 Europhys. Lett., 71 (1), pp. 110 116 (2005) DOI: 10.1209/epl/i2005-10069-3 Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity

More information

INTRIQ. Coherent Manipulation of single nuclear spin

INTRIQ. Coherent Manipulation of single nuclear spin INTRIQ Coherent Manipulation of single nuclear spin Clément Godfrin Eva Dupont Ferrier Michel Pioro-Ladrière K. Ferhat (Inst. Néel) R. Ballou (Inst. Néel) M. Ruben (KIT) W. Wernsdorfer (KIT) F. Balestro

More information

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Department of Physics, Hamburg University, Hamburg, Germany SPICE Workshop, Mainz Outline Tune magnetic

More information

What are Carbon Nanotubes? What are they good for? Why are we interested in them?

What are Carbon Nanotubes? What are they good for? Why are we interested in them? Growth and Properties of Multiwalled Carbon Nanotubes What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? - our vision Where do we stand - our

More information

There's Plenty of Room at the Bottom

There's Plenty of Room at the Bottom There's Plenty of Room at the Bottom 12/29/1959 Feynman asked why not put the entire Encyclopedia Britannica (24 volumes) on a pin head (requires atomic scale recording). He proposed to use electron microscope

More information

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 Spin transfer torques in high anisotropy magnetic nanostructures S. Mangin 1, Y. enry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 1) Laboratoire de Physique des

More information

Low temperature dynamics of magnetic nanoparticles

Low temperature dynamics of magnetic nanoparticles Low temperature dynamics of magnetic nanoparticles J.-P. Bouchaud, V. Dupuis, J. Hammann, M. Ocio, R. Sappey and E. Vincent Service de Physique de l Etat Condensé CEA IRAMIS / SPEC (CNRS URA 2464) CEA

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum

Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum Hua Chen Course: Solid State II, Instructor: Elbio Dagotto, Semester: Spring 2008 Department of Physics and Astronomy, the University of

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT S. Krompiewski Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland OUTLINE 1. Introductory

More information

Experimental Studies of Single-Molecule Transistors

Experimental Studies of Single-Molecule Transistors Experimental Studies of Single-Molecule Transistors Dan Ralph group at Cornell University Janice Wynn Guikema Texas A&M University Condensed Matter Seminar January 18, 2006 p.1 Cornell Image from http://www.cornell.edu/

More information

Beyond the Giant Spin Approximation: The view from EPR

Beyond the Giant Spin Approximation: The view from EPR Beyond the Giant Spin Approximation: The view from EPR Simple is Stephen Hill, NHMFL and Florida State University At UF: Saiti Datta, Jon Lawrence, Junjie Liu, Erica Bolin better In collaboration with:

More information

Chapter 3. Magnetic Model. 3.1 Magnetic interactions

Chapter 3. Magnetic Model. 3.1 Magnetic interactions Chapter 3 Magnetic Model In this chapter, the micromagnetic model for the description of the magnetic properties of a laterally nanostructured film during growth is presented. The main physical idea of

More information

CONDUCTIVITY AND INDUCED SUPERCONDUCTIVITY IN DNA

CONDUCTIVITY AND INDUCED SUPERCONDUCTIVITY IN DNA CONDUCTIVITY AND INDUCED SUPERCONDUCTIVITY IN DNA A.Yu. Kasumov 1,2, K.Tsukagoshi 1,3, M. Kawamura 1, T. Kobayashi 1, Y.Aoyagi 1,4, V.T. Volkov 2, Yu.A. Kasumov 2, D.V. Klinov 5, M. Kociak 6, P.-E. Roche

More information

Photon-induced magnetization changes in single-molecule magnets invited

Photon-induced magnetization changes in single-molecule magnets invited JOURNAL OF APPLIED PHYSICS 99, 08D103 2006 Photon-induced magnetization changes in single-molecule magnets invited M. Bal and Jonathan R. Friedman a Department of Physics, Amherst College, Amherst, Massachusetts

More information

Magnetic Force Microscopy practical

Magnetic Force Microscopy practical European School on Magnetism 2015 From basic magnetic concepts to spin currents Magnetic Force Microscopy practical Organized by: Yann Perrin, Michal Staňo and Olivier Fruchart Institut NEEL (CNRS & Univ.

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon. Nanotubes. Yung-Fu Chen and M. S. Fuhrer

Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon. Nanotubes. Yung-Fu Chen and M. S. Fuhrer Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon Nanotubes Yung-Fu Chen and M. S. Fuhrer Department of Physics and Center for Superconductivity Research, University of Maryland,

More information

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction D. Chiba 1, 2*, Y. Sato 1, T. Kita 2, 1, F. Matsukura 1, 2, and H. Ohno 1, 2 1 Laboratory

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation OFFPRINT Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation G. de Loubens, D. A. Garanin, C. C. Beedle, D. N. Hendrickson and A. D. Kent EPL, 83 (2008) 37006

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Outline - Goals of the course. What is electronic device?

More information

Challenges for Materials to Support Emerging Research Devices

Challenges for Materials to Support Emerging Research Devices Challenges for Materials to Support Emerging Research Devices C. Michael Garner*, James Hutchby +, George Bourianoff*, and Victor Zhirnov + *Intel Corporation Santa Clara, CA + Semiconductor Research Corporation

More information

Interaction between a single-molecule

Interaction between a single-molecule Interaction between a single-molecule magnet Mn 12 monolayer and a gold surface 12 Kyungwha Park Department of Physics, Virginia Tech Salvador Barraza-Lopez (postdoc) Michael C. Avery (undergraduate) Supported

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

Carbon Nanotubes in Interconnect Applications

Carbon Nanotubes in Interconnect Applications Carbon Nanotubes in Interconnect Applications Page 1 What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? Comparison of electrical properties

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 14: Spin Transfer Torque And the future of spintronics research Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24

More information

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS Chaire de Physique Mésoscopique Michel Devoret Année 2007, Cours des 7 et 14 juin INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

More information

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs)

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) PHY 300 - Junior Phyics Laboratory Syed Ali Raza Roll no: 2012-10-0124 LUMS School of Science and Engineering Thursday,

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

Introduction to magnetic recording + recording materials

Introduction to magnetic recording + recording materials Introduction to magnetic recording + recording materials Laurent Ranno Institut Néel, Nanoscience Dept, CNRS-UJF, Grenoble, France I will give two lectures about magnetic recording. In the first one, I

More information

Ferromagnetism and Anomalous Hall Effect in Graphene

Ferromagnetism and Anomalous Hall Effect in Graphene Ferromagnetism and Anomalous Hall Effect in Graphene Jing Shi Department of Physics & Astronomy, University of California, Riverside Graphene/YIG Introduction Outline Proximity induced ferromagnetism Quantized

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Nanoelectronics. Topics

Nanoelectronics. Topics Nanoelectronics Topics Moore s Law Inorganic nanoelectronic devices Resonant tunneling Quantum dots Single electron transistors Motivation for molecular electronics The review article Overview of Nanoelectronic

More information

Spin amplification, reading, and writing in transport through anisotropic magnetic molecules

Spin amplification, reading, and writing in transport through anisotropic magnetic molecules PHYSICAL REVIEW B 73, 235304 2006 Spin amplification, reading, and writing in transport through anisotropic magnetic molecules Carsten Timm 1,2, * and Florian Elste 2, 1 Department of Physics and Astronomy,

More information

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón Martes cuántico Zaragoza, 8 th October 2013 Atomic and molecular spin qubits Fernando LUIS Instituto de Ciencia de Materiales de Aragón Outline Quantum information with spins 1 0 Atomic defects in semiconductors

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

Magnon-drag thermopile

Magnon-drag thermopile Magnon-drag thermopile I. DEVICE FABRICATION AND CHARACTERIZATION Our devices consist of a large number of pairs of permalloy (NiFe) wires (30 nm wide, 20 nm thick and 5 µm long) connected in a zigzag

More information

The Physics of Ferromagnetism

The Physics of Ferromagnetism Terunobu Miyazaki Hanmin Jin The Physics of Ferromagnetism Springer Contents Part I Foundation of Magnetism 1 Basis of Magnetism 3 1.1 Basic Magnetic Laws and Magnetic Quantities 3 1.1.1 Basic Laws of

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

Graphene Fundamentals and Emergent Applications

Graphene Fundamentals and Emergent Applications Graphene Fundamentals and Emergent Applications Jamie H. Warner Department of Materials University of Oxford Oxford, UK Franziska Schaffel Department of Materials University of Oxford Oxford, UK Alicja

More information