Quantum dynamics in Single-Molecule Magnets

Size: px
Start display at page:

Download "Quantum dynamics in Single-Molecule Magnets"

Transcription

1 Quantum dynamics in Single-Molecule Magnets Wolfgang Wernsdorfer Laboratoire de Magnétisme Louis Néel C.N.R.S. - Grenoble S = 10 2 to 10 6 S = 1/2 to 30

2 permanent magnets macroscopic micron particles Magnetic structures nanoparticles clusters atomic molecular clusters atoms S = multi - domains single - domains spins 1 mm 20 nm 3 nm 1 nm

3 Magnetization reversal in magnetic structures permanent magnets macroscopic micron particles nanoparticles clusters atomic molecular clusters atoms S = multi - domains nucleation, propagation and annihilation of domain walls single - domains uniform rotation, curling, etc. spins quantum tunneling, interference, coherence M / M S 0 M / M S 0 M / M S 0 Fe 8 1 K 0.7K 0.1K µ 0 H(mT) µ 0 H(mT) µ 0 H(T)

4 Magnetization reversal in magnetic structures permanent magnets macroscopic micron particles nanoparticles clusters atomic molecular clusters atoms S = multi - domains nucleation, propagation and annihilation of domain walls single - domains uniform rotation, curling, etc. spins quantum tunneling, interference, coherence Classical magnetism Micromagnetics Landau Lifshitz Gilbert equation Quantum magnetism Schrödinger equation Operator formalism Path intergrals ab-initio calulations etc.

5 Interactions in magnetic quantum systems (decoherence) Photons Conduction electrons Phonons Magnetic quantum system - spin - molecule - nanoparticle - spin chain Spin bath - nuclear spins - paramagnetic spins - intermolecular interactions etc.

6 Lis, 1980 Single-molecule magnets (SMM) Giant spins Müller, 1993 Mn 12 S = 10 V 15 S = 1/2 Ni 12 S = 12 Mn 84 S 6 Fe 8 S = 10 Christou, 2004 Winpenny, 1999 Wiegart, 1984

7 Micro-SQUID magnetometry particle stray field B 1 µm fabricated by electron beam lithography (D. Mailly, LPN, Marcoussis - Paris) sensitivity : 10-4 Fo µ B i.e. (2 nm) 3 of Co emu Josephson junctions A. Benoit, CRTBT, 1989

8 Roadmap of the micro-squid technique

9 Crystal of SMMs

10 crystal Micro-SQUID array B crystal size > few µm to emu temperature K field < 1.4 T and < 20 T/s rotation of field transverse field several SQUIDs at different positions 50 µm

11 Micro-magnetometry µ-hall Effect µ-squid B sample B sample 1 µm Hall bars 1 to 10 µm Jospheson Junctions Based on Lorentz Force Measures magnetic field V H =!I ne M Large applied in-plane magnetic fields (>20 T) Broad temperature range Single magnetic particles Ultimate sensitivity ~10 2 µ B Based on flux quantization Measures magnetic flux Applied fields below the upper critical field (~1 T) Low temperature (below T c ) Single magnetic particles Ultimate sensitivity ~1 µ B

12 Outline I. A simple tunnel picture (Mn 12, Fe 8 ) Giant spin model Landau Zener tunneling Berry phase II. Coupling with environment

13 Mn 12 -tbuac [Mn 12 O 12 (O 2 CCH 2 Bu t ) 16 (CH 3 OH) 4 ].CH 3 OH Mn III : s = 2 Mn IV : s = 3/2

14 Mn 12 -Ac Comparison between Mn 12 -tbuac [Mn 12 O 12 (O 2 CCH 3 ) 16 (H 2 O) 4 ].2CH 3 CO 2 H.4H 2 O [Mn 12 O 12 (O 2 CCH 2 Bu t ) 16 (CH 3 OH) 4 ].CH 3 OH not aligned well aligned!! larger unit cell less disorder

15 Giant spin approximation (Mn 12 ) S = 10 Mn III : s = 2 Mn IV : s = 3/2

16 Giant spin approximation Example: Mn12-ac Hilbert space: (2x2 + 1) 8 (2x3/2 + 1) Mn Mn 4+ J 1 J 2 J 4 J 3 J K J 2 J 3-86 K J 4 < 43 K Energy(K) K S = 10 D = 0.63 K S = 9 D' = 0.57 K quantum number M I. Tupitsyn (2000)

17 Spin Hamiltonian: Giant spin model " = #D S z 2 # B S z 4 +" tr # gµ B r S r H (2S + 1) energy states: M = -S, -S+1,, S Energy levels: Zeeman diagram Energy H = 0 energy 8-10! quantum number M -10 magnetic field 8 with S = 10, D = 0.56 K, B = 1.5 mk

18 Tunneling probability at an avoided level crossing Landau-Zener model (1932) S, m' > S, m > energy! 1 P 1 - P $ P =1" exp "c #2 ' & ) %& dh /dt() S, m > magnetic field S, m' > c = " 2h gµ B m # m' µ 0 L. Landau, Phys. Z. Sowjetunion 2, 46 (1932); C. Zener, Proc. R. Soc. London, Ser. A 137, 696, (1932); E.C.G. Stückelberg, Helv. Phys. Acta 5, 369 (1932); S. Miyashita, J. Phys. Soc. Jpn. 64, 3207 (1995); V.V. Dobrovitski and A.K. Zvezdin, Euro. Phys. Lett. 38, 377 (1997); L. Gunther, Euro. Phys. Lett. 39, 1 (1997); G.Rose and P.C.E. Stamp, Low Temp. Phys. 113, 1153 (1999); M. Leuenberger and D. Loss, Phys. Rev. B 61, (2000); M. Thorwart, M. Grifoni, and P. Hänggi, Phys. Rev. Lett. 85, 860 (2000);

19 0.1 K Application of Landau-Zener tunneling Mn 12 S = " = #D S z 2 # B S z 4 +" tr # gµ B r S r H with D = 0.56 K, B = 1.5 mk

20 Interactions in magnetic quantum systems (decoherence) Photons Conduction electrons Phonons Magnetic quantum system - spin - molecule - nanoparticle - chain Spin bath - nuclear spins - paramagnetic spins - intermolecular interactions etc.

21

22 Landau-Zener tunneling & temperature Mn 12 S = " = #D S z 2 # B S z 4 +" tr # gµ B r S r H with D = 0.56 K, B = 1.5 mk

23 Field derivative of M(H) at different temperatures Mn 12 -tbuac W. Wernsdorfer, M. Murugesu, G. Christou, cond-mat/

24 Temperature dependence of the peak positions of dm/dh Mn 12 -tbuac 5 4 (10:0) (10:1) (10:2) (10:3) (9:0) (9:1) (9:2) (9:3) (8:0) (8:1) (8:2) (8:3) (7:0) (7:1) 2 mt/s µ 0 H z (T) 3 2 (7:2) (7:3) (6:0) (7:4) (6:1) (6:2) (6:3) (6:4) (5:3) (5:4) (5:5) (4:3) (4:4) (4:5) 1 (2:4) (2:5) (2:6) (3:4) (3:5) (3:6) (1:5) (1:6) (1:7) T (K) W. Wernsdorfer, M. Murugesu, G. Christou, cond-mat/

25 Mn 12 -Ac Comparison between Mn 12 -tbuac I. Chiorescu, B. Barbara, et al., Phys. Rev. Lett. 85, 4807 (2000) W. Wernsdorfer, M. Murugesu, G. Christou, cond-mat/

26 Mn 12 -Ac Comparison between Mn 12 -tbuac A. D. Kent, et al., EPL 49, 521 (2000) and J. Appl. Phys. 87, 5493 (2000) W. Wernsdorfer, M. Murugesu, G. Christou, cond-mat/

27 Mn 12 -Ac Comparison between Mn 12 -tbuac K. M. Mertes, M. P. Sarachik, et al. Phys. Rev. B 65, (2002) W. Wernsdorfer, M. Murugesu, G. Christou, cond-mat/

28 Mn 12 -Ac Comparison between Mn 12 -tbuac sharp crossover L. Bokacheva, A. D. Kent, et al., PRL 85, 4803 (2000) smooth crossover I. Chiorescu, B. Barbara, et al., PRL 85, 4807 (2000) W. Wernsdorfer, M. Murugesu, G. Christou, cond-mat/ sharp crossover in agreement with theory E. M. Chudnovsky and D. A. Garanin, Phys. Rev. Lett. 79, (1997)

29 M/M S mk v=140 mt/s v=70 mt/s v=14 mt/s v=2.8 mt/s µ 0 H(T) Application of Landau-Zener tunneling Fe 8 S = Energy (K) µ 0 H z (T) 10! = "D S 2 z + E S 2 2 r ( x " S y ) + gµ B S H r with S = 10, D = 0.27 K, E = 0.046K A.-L. Barra et al. EPL (1996)

30 Giant spin Hamiltonian of Fe 8! = "D S 2 z + E S 2 2 r ( x " S ) y + gµ B S H r easy axis Z S x H x + S y H y + S z H z j H trans Y X hard axis easy plan YZ

31 Hysteresis loops at different transverse fields H t r a n s = 0 T M/M S d H z /dt = 1.4 mt/s dh z /dt = 14 mt/s T T T H trans = T T T T µ 0 H z (T)

32 Quantum phase interference (Berry phase) in single-molecule magnets Tunnel splitting!(10-7 K) 10!! 90!! 50!! 20 easy axis Z!! 7 1 j H trans!! 0 X M = hard axis Transverse field (T) easy plan YZ W. Wernsdorfer and R. Sessoli, Science 284, 133 (1999) Y

33 Transverse field dependence of tunnel splitting (operator formalism) Tunnel splitting!(10-7 K) 10 1! " 90! " 50! " 20 M = -10 -> 10! " 7! " Magnetic transverse field (T) Tunnel spitting!(10-7 K) ! = Magnetic tranverse field (T) 5 0 W. Wernsdorfer and R. Sessoli, Science 284, 133 (1999)

34 Path integrals (Feynman) Path-integral partition function: where L E is the Euclidean magnetic Lagrangian related to the real-time Lagrangian L through L E = - L (t -it ) extremal trajectories that minimize the Euclidian action, at T = 0 Z A destructive interference occures whenever the shaded area is kp/s, for odd k. X! H B Y A. Garg, Europhys. Lett. 22, 205 (1993)

35 Transverse field dependence of tunnel splitting (path integrals formalism) Z 10 7 A 10 5! = ! Y! (10-8 K) X H B µ 0 H t r a n s ( T )! = "D S 2 z + E S 2 2 r ( x " S ) y + gµ B S H r 0 A. Garg, Europhys. Lett. 22, 205 (1993)

36 Quantum phase interference and spin parity in Mn 12 [Mn 12 ] -e S = 19/2 [Mn 12 ] -2e S = K K 1.2 K!M/M s K 1.6 K!M/M s K K K µ 0 H (T) µ 0 H (T) W. Wernsdorfer, N. E. Chakov, G. Christou, PRL 95, (2005)

37

38 2004 Spin ground states of Mn based SMMs Mn 25 S 15 Mn Mn 4 Mn 12 5 Mn 2 Mn 9 Mn30 Mn 70 Mn number of Mn-ions

39 Anisotropy barriers of Mn based SMMs Mn 12!E (K) Mn 4 Mn 9 Mn 18 Mn Mn 2 Mn Mn Mn number of Mn-ions

40 Quantum Tunneling of Magnetization in Lanthanide Single-Molecule Magnets Bis(phthalocyaninato)terbium Naoto Ishikawa, Department of Applied Chemistry, Chuo University, Tokyo 0.5 nm E (K) 600 K 1.5 nm N.Ishikawa, et al., J.Phys.Chem. A 106, 9543 (2002) J. Am.Chem.Soc. 125, 8694 (2003) Inorg.Chem. 42, 2440 (2003) J.Phys.Chem. A 107, 9543 (2003) J. Phys.Chem.B 108, (2004) H (T)

41 Quantum Tunneling of Magnetization in Lanthanide Single-Molecule Magnets Bis(phthalocyaninato)terbium Naoto Ishikawa, Department of Applied Chemistry, Chuo University, Tokyo T/s 2% Tb M/M s 0 E (K) 600 K K 2.0 K 7 K µ 0 H (T) H (T) N. Ishikawa, M. Sugita, W. Wernsdorfer, Angew. Chem. Int. Ed. 44,2 (2005) N. Ishikawa, M. Sugita, W. Wernsdorfer, J. Am. Chem. Soc. 127, 3650 (2005)

42 H = Zeeman + LF term + A hf J I + P quad {I z 2 + (1/3)I(I+1)} M/M s K 2% Tb A hf =0.0173cm -1 P quad =0.010cm - 1 :avoided crossing occurs by off-diagonal LF term :avoided crossing occurs by transverse field Others :avoided crossing does not occur by either LF term nor transverse field T/s T/s T/s T/s T/s T/s T/s T/s T/s µ 0 H (T) N. Ishikawa, M. Sugita, W. Wernsdorfer, Angew. Chem. Int. Ed. 44,2 (2005) N. Ishikawa, M. Sugita, W. Wernsdorfer, J. Am. Chem. Soc. 127, 3650 (2005)

43 Interactions in magnetic quantum systems (decoherence) Photons Conduction electrons Phonons Magnetic quantum system - spin - molecule - nanoparticle - chain Spin bath - nuclear spins - paramagnetic spins - intermolecular interactions etc.

44 Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets 9/2-9/2-9/2 J J 9/2 W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson & G. Christou Nature 416, 406 (28 March 2002)

45 Single-chain magnets (SCM) Mn 2 Ni - chain of S = 3 units R. Clérac, H. Miyasaka, M. Yamashita, and C. Coulon, J. Am. Chem. Soc.124, (2002). See talk of L. Bogani Monday, 16:15 Quantum nucleation in a single-chain magnet WW et al. cond-mat/

46 Interactions in magnetic quantum systems (decoherence) Photons Conduction electrons Phonons Magnetic quantum system - spin - molecule - nanoparticle - chain Spin bath - nuclear spins - paramagnetic spins - intermolecular interactions etc.

47 Quantum computing in molecular magnets Michael N. Leuenberger & Daniel Loss NATURE, 410, 791 (2001) implementation of Grover's algorithm storage unit of a dynamic random access memory device. fast electron spin resonance pulses can be used to decode and read out stored numbers of up to 10 5 with access times as short as 0.1 nanoseconds.

48 Photon assisted tunneling Absorption of circular polarized microwaves H = 0 0 Energy M = +1 hw tunneling quantum number m M = -1 hw Energy (K) PRB 68, (R) (2003) h!!m = ± µ 0 H z (T) 7 8 9

49 Photon assisted tunneling Absorption of circular polarized microwaves 115 GHz PRB 68, (R) (2003)

50 Absorption of circular polarized microwaves mk 115 GHz T/s (115 GHz) PRB 68, (R) (2003) M/M s P/P 0 = µ 0 H z (T)

51 Interactions in magnetic quantum systems (decoherence) Photons Conduction electrons Phonons Magnetic quantum system - spin - molecule - nanoparticle - chain Spin bath - nuclear spins - paramagnetic spins - intermolecular interactions etc.

52 Conclusion Beginning: Mn 12 -ac L. Thomas, B. Barbara, et al., Nature (1996) T. Lis, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 36, 2042 (1980) R. Sessoli, D. Gatteschi, M. Novak, D. Hendrikson, G. Christou, et al. ( ) M. Novak, C. Paulsen, B. Barbara, et al. (1994) J. Friedman, M. Sarachik, et al., PRL (1996) L. Thomas, B. Barbara et al., Nature (1996)

53 Followed by: >250 systems (in our group) Mn, Mn 2, Mn 3, Mn 4, [Mn 4 ] 2, Mn 5, Mn 6, Mn 7, Mn 8, Mn 9, Mn 10, Mn 11, Mn 12, Mn 13, Mn 16, Mn 18, Mn 21, Mn 22, Mn 24, Mn 26, Mn 30, Mn 70, Mn 84 Fe 2, Fe 3, Fe 4, Fe 5, Fe 6, Fe 7, Fe 8, Fe 10, Fe 11, Fe 13, Fe 17/19, Fe 19, Fe 30 Ni 4, Ni 5, Ni 6, Ni 8, Ni 12, Ni 21, Ni 24 Co 4, Co 5, Co 6, Co 7, Co 10 Co 2 Gd 2, Co 2 Dy 2, Cr 12, CrNi 6, CrNi 2, CrCo 3, Fe 10 Na 2, Fe 2 Ni 3, Mn 2 Dy 2, Mn 2 Nd 2, V 15, Ho, Fe 2 Ho 2, Mn 11 Ln 4,... Only few of these molecules are SMMs!! S = 0, 1/2, 1, 3/2, 2, 5/2, 4, 9/2, 5,. 51/2

54 Development of molecular Spin-Electronics APS March Meeting 2004

55 Mesoscopic Physics 4 nm Mn 30 Mn 4 Mn 12 Mn 84 N Quantum world Classical world A. J.Tasiopoulos, A. Vinslava, W. Wernsdorfer, K. A.Abboud, and G. Christou, Angew. Chem. Int. Ed., 43, 2117 (2004)

56 Collaborations (Physics) L. Thomas PhD 1996: Mn 12 -ac F. Lionti PhD 1997: Mn 12 -ac, Fe 17/19 I. Chiorescu PhD 2000: Mn 12 -ac, V 15 R. Giraud PhD 2002: Ho 3+ C. Thirion PhD 2003: nanoparticles, GHz R. Tiron PhD 2004: [Mn 4 ] 2 S. Bahr PhD started 2005: GHz K. Petukhov post-doc : GHz F. Balestro, E. Bonet, W. Wernsdorfer, B. Barbara, LLN, CNRS, Grenoble T. Ohm PhD 1998: Fe 8 V. Villar PhD 2001: Fe 8, chaines E. Lhotel PhD 2004: chaines V. Bouchiat, C. Paulsen, A. Benoit, CRTBT, CNRS, Grenoble L. Sorace, post-doc 2003: GHz A.-L. Barra, LCMI - CNRS, Grenoble J. Villain, CEA, Grenoble D. Mailly, LPN, CNRS, Marcoussis

57 Winpenny, 2003 Collaborations (Chemistry) Group of G. Christou, Dept. of Chemistry, Florida Group of R. Sessoli, D. Gatteschi, Univ. de Firenze, Italie Group of A. Cornia, Univ. de Modena, Italie Group of R.E.P. Winpenny, Univ. de Manchester, UK Group of E. Brechin, Univ. de Manchester, UK Group of T. Mallah, Orsay Group of V. Marvaud, Univ. P. et M. Curie, Paris Group of A. Müller, Univ. de Bielefeld, Germany Group of A. Powell, Univ. de Kahlsruhe, Germany Group of D. Hendrickson, Dept. of Chemistry, San Diego Group of E. Coronado, Univ. de Valence, Spain Group of D. Luneau, Univ. of Lyon, France Group of G. Royal, Univ. J. Fourier, Grenoble Group of R. Clerac & C. Coulon, Univ. Bordeaux, Pessac Group of H. Miyasaka, Tokyo Metropolitan Uni. Group of M. Verdaguer, Univ. P. et M. Curie, Paris Group of M. Julve, Univ. de Valence, Spain SMMs SCMs Mn 84 Christou, 2004

Voyage dans le nanomonde des aimants

Voyage dans le nanomonde des aimants Voyage dans le nanomonde des aimants Wolfgang Wernsdorfer Laboratoire de Magnétisme Louis Néel C.N.R.S. - Grenoble S = 10 2 to 10 6 S = 1/2 to 30 Magnets nanoworld 10 6 10 3 10 0 10-3 10-6 10-9 1 Mm 1

More information

Intermolecular interactions (dipolar and exchange)

Intermolecular interactions (dipolar and exchange) Intermolecular interactions (dipolar and exchange) SMM ideal Mn 2 ac Mn 4 (SB) spin chains, etc. MM...? doped Fe 6 Fe 5 Ga Fe 8 [Mn 4 ] 2 J/D Mn 4 singlemolecule magnet Mn 4 O 3 (OSiMe 3 )(O 2 CMe) 3 (dbm)

More information

Quantum dynamics in Single-Molecule Magnets - towards molecular spintronics

Quantum dynamics in Single-Molecule Magnets - towards molecular spintronics Quantum dynamics in Single-Molecule Magnets - towards molecular spintronics Wolfgang Wernsdorfer Institut Néel CNRS - Grenoble S = 10 2 to 10 6 S = 1/2 to 30 Magnets nanoworld 10 6 10 3 10 0 10-3 10-6

More information

Spins Dynamics in Nanomagnets. Andrew D. Kent

Spins Dynamics in Nanomagnets. Andrew D. Kent Spins Dynamics in Nanomagnets Andrew D. Kent Department of Physics, New York University Lecture 1: Magnetic Interactions and Classical Magnetization Dynamics Lecture 2: Spin Current Induced Magnetization

More information

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006 Quantum Tunneling of Magnetization in Molecular Magnets ANDREW D. KENT Department of Physics, New York University Tutorial T2: Molecular Magnets, March 12, 2006 1 Outline 1. Introduction Nanomagnetism

More information

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)-

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- Quantum tunneling of magnetization in lanthanide single-molecule magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- dysprosium anions** Naoto Ishikawa, * Miki Sugita and Wolfgang Wernsdorfer

More information

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent Spin Dynamics in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University Collaborators: Gregoire de Loubens, Enrique del Barco Stephen Hill Dmitry Garanin Myriam Sarachik, Yosi

More information

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants MolNanoSpin: Spintronique moléculaire avec des molécules-aimants W. Wernsdorfer : Institut Néel T. Mallah : Institut de Chimie Moléculaire et des Matériaux d'orsay P. Mialane : Institut Lavoisier Journées

More information

Recent Developments in Quantum Dynamics of Spins

Recent Developments in Quantum Dynamics of Spins Recent Developments in Quantum Dynamics of Spins B. Barbara, R. Giraud*, I. Chiorescu*, W. Wernsdorfer, Lab. Louis Néel, CNRS, Grenoble. Collaborations with other groups: D. Mailly (Marcoussis) D. Gatteschi

More information

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS B. Barbara, W. Wernsdorfer, E. Bonet, L. Thomas (IBM), I. Chiorescu (FSU), R. Giraud (LPN) Laboratory Louis Néel, CNRS, Grenoble Collaborations with other groups

More information

Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets

Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets W. Wernsdorfer, 1 S. Bhaduri, 2 A. Vinslava, 2 and G. Christou 2 1 Laboratoire L.

More information

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy Nuclear spin dynamics in quantum regime of a single-molecule magnet Andrea Morello UBC Physics & Astronomy Kamerlingh Onnes Laboratory Leiden University Nuclear spins in SMMs Intrinsic source of decoherence

More information

B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion

B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion Quantum tunnelling and coherence of mesoscopic spins B. Barbara, Institut Néel, CNRS, Grenoble Brief history From classical to quantum nanomagnetism Quantum nanomagnetism From relaxation to coherence Ensemble

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Polyhedron 22 (2003) 1783/1788 www.elsevier.com/locate/poly New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Mònica Soler a, Wolfgang Wernsdorfer b, *, Ziming Sun c,

More information

NYU An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets. Andrew D. Kent

NYU An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets. Andrew D. Kent An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University 1 Outline I. Introduction Quantum tunneling

More information

Photon-induced magnetization changes in single-molecule magnets invited

Photon-induced magnetization changes in single-molecule magnets invited JOURNAL OF APPLIED PHYSICS 99, 08D103 2006 Photon-induced magnetization changes in single-molecule magnets invited M. Bal and Jonathan R. Friedman a Department of Physics, Amherst College, Amherst, Massachusetts

More information

Quantum step heights in hysteresis loops of molecular magnets

Quantum step heights in hysteresis loops of molecular magnets PHYSICAL REVIEW B, VOLUME 65, 224401 Quantum step heights in hysteresis loops of molecular magnets Jie Liu, 1 Biao Wu, 1 Libin Fu, 2 Roberto B. Diener, 1 and Qian iu 1 1 Department of Physics, The University

More information

The First Cobalt Single-Molecule Magnet

The First Cobalt Single-Molecule Magnet The First Cobalt Single-Molecule Magnet En-Che Yang and David N Hendrickson Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92037, USA Wolfgang Wernsdorfer

More information

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation EUROPHYSICS LETTERS 1 July 2005 Europhys. Lett., 71 (1), pp. 110 116 (2005) DOI: 10.1209/epl/i2005-10069-3 Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity

More information

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet April 28 EPL, 82 (28) 175 doi: 1.129/295-575/82/175 www.epljournal.org Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet M. Bal 1, Jonathan R. Friedman 1(a),W.Chen 2,

More information

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets Lorenzo Sorace, Roberta Sessoli, Andrea Cornia Department of Chemistry & INSTM, University of Florence, Italy Department

More information

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation OFFPRINT Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation G. de Loubens, D. A. Garanin, C. C. Beedle, D. N. Hendrickson and A. D. Kent EPL, 83 (2008) 37006

More information

arxiv:cond-mat/ v2 10 Dec 1998

arxiv:cond-mat/ v2 10 Dec 1998 Quantum Coherence in Fe 8 Molecular Nanomagnets E. del Barco 1, N. Vernier 1, J.M. Hernandez 2, J.Tejada 2, E.M. Chudnovsky 3, E. Molins 4 and G. Bellessa 1 1 Laboratoire de Physique des Solides, Bâtiment

More information

nano Josephson junctions Quantum dynamics in

nano Josephson junctions Quantum dynamics in Permanent: Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Cécile Naud Bernard Pannetier Quantum dynamics in nano Josephson junctions CNRS Université Joseph Fourier Institut Néel- LP2MC GRENOBLE

More information

Single-molecule magnets: Jahn Teller isomerism and the origin of two magnetization relaxation processes in Mn 12 complexes

Single-molecule magnets: Jahn Teller isomerism and the origin of two magnetization relaxation processes in Mn 12 complexes Polyhedron 20 (2001) 1139 1145 www.elsevier.nl/locate/poly Single-molecule magnets: Jahn Teller isomerism and the origin of two magnetization relaxation processes in Mn 12 complexes Sheila M.J. Aubin a,

More information

Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids

Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids Physica B 280 (2000) 264}268 Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids W. Wernsdorfer *, E. Bonet Orozco, B. Barbara, A. Benoit,

More information

Beyond the Giant Spin Approximation: The view from EPR

Beyond the Giant Spin Approximation: The view from EPR Beyond the Giant Spin Approximation: The view from EPR Simple is Stephen Hill, NHMFL and Florida State University At UF: Saiti Datta, Jon Lawrence, Junjie Liu, Erica Bolin better In collaboration with:

More information

Spin electric coupling and coherent quantum control of molecular nanomagnets

Spin electric coupling and coherent quantum control of molecular nanomagnets Spin electric coupling and coherent quantum control of molecular nanomagnets Dimitrije Stepanenko Department of Physics University of Basel Institute of Physics, Belgrade February 15. 2010 Collaborators:

More information

www.mrs.org/publications/bulletin Single-Molecule Magnets George Christou, Dante Gatteschi, David N. Hendrickson, and Roberta Sessoli Introduction Magnets are widely used in a large number of applications,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supramolecular Spin Valves M. Urdampilleta, 1 J.-P. Cleuziou, 1 S. Klyatskaya, 2 M. Ruben, 2,3* W. Wernsdorfer 1,* 1 Institut Néel, associé á l Université Joseph Fourier, CNRS, BP 166, 38042 Grenoble Cedex

More information

magnet Mn 12 -t-butylacetate thermally-activated down to 400 mk

magnet Mn 12 -t-butylacetate thermally-activated down to 400 mk Polyhedron 26 (2007) 2320 2324 www.elsevier.com/locate/poly 55 Mn nuclear spin relaxation in the truly axial single-molecule magnet Mn 12 -t-butylacetate thermally-activated down to 400 mk A.G. Harter

More information

LARGE-SCALE QUANTUM PHENOMENA COURSE. UNIVERSITY of INNSBRUCK. (June 2010)

LARGE-SCALE QUANTUM PHENOMENA COURSE. UNIVERSITY of INNSBRUCK. (June 2010) LARGE-SCALE QUANTUM PHENOMENA COURSE to be given at the UNIVERSITY of INNSBRUCK (June 2010) INTRODUCTION 1.BASIC PHENOMENA 2.EXPERIMENTAL OBSERVATIONS 3.THEORETICAL FRAMEWORK LARGE-SCALE QUANTUM PHENOMENA:

More information

Rapidly changing magnetic field uncovers low-lying energy spectrum of the molecular magnet {Mo 72 Fe 30 }

Rapidly changing magnetic field uncovers low-lying energy spectrum of the molecular magnet {Mo 72 Fe 30 } Rapidly changing magnetic field uncovers low-lying energy spectrum of the molecular magnet {Mo 72 Fe 30 } Jürgen Schnack Department of Physics - University of Osnabrück http://obelix.physik.uni-osnabrueck.de/

More information

High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution

High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution F. El Hallak, 1 J. van Slageren, 1, * J. Gómez-Segura, 2 D. Ruiz-Molina, 2

More information

Low temperature dynamics of magnetic nanoparticles

Low temperature dynamics of magnetic nanoparticles Low temperature dynamics of magnetic nanoparticles J.-P. Bouchaud, V. Dupuis, J. Hammann, M. Ocio, R. Sappey and E. Vincent Service de Physique de l Etat Condensé CEA IRAMIS / SPEC (CNRS URA 2464) CEA

More information

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble The Nanotube SQUID J.-P. Cleuziou,, Th. Ondarçuhu uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble Outline Sample fabrication Proximity effect in CNT The CNT superconducting

More information

arxiv:cond-mat/ v1 9 Jan 2001

arxiv:cond-mat/ v1 9 Jan 2001 arxiv:cond-mat/0101104 v1 9 Jan 2001 Classical and quantum magnetization reversal studied in nanometer-sized particles and clusters Edited by to be published in: Advances in Chemical Physics invitation

More information

arxiv:cond-mat/ Jan 2000

arxiv:cond-mat/ Jan 2000 arxiv:cond-mat/0001144 11 Jan 000 Macroscopic Quantum Phase Interference in Antiferromagnetic Particles Yi-Hang Nie 1,Yan-Hong Jin 1 5, J.-Q.Liang 1 3,H.J.W.Muller-Kirsten 3,D.K.Park 3 4,F.-C.Pu 5 6 1

More information

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Bellaterra: anuary 2011 Architecture & Design of Molecule Logic Gates and Atom Circuits Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Fernando LUIS Instituto de Ciencia de Materiales

More information

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels Gage Redler and Stephen Hill Department of Physics, University of Florida Abstract High Frequency Electron Paramagnetic Resonance

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum

Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum Hua Chen Course: Solid State II, Instructor: Elbio Dagotto, Semester: Spring 2008 Department of Physics and Astronomy, the University of

More information

arxiv: v1 [cond-mat.mes-hall] 22 Aug 2014

arxiv: v1 [cond-mat.mes-hall] 22 Aug 2014 Resonant Spin Tunneling in Randomly Oriented Nanospheres of Mn Acetate S. Lendínez, R. Zarzuela, J. Tejada Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Martí i Franquès,

More information

Introduction to SCMs. Dr. Rodolphe Clérac

Introduction to SCMs. Dr. Rodolphe Clérac Introduction to SCMs Dr. Rodolphe Clérac CNRS - Researcher Centre de Recherche Paul Pascal, CNRS - UPR 8641 115, Avenue du Dr. A. Schweitzer 336 Pessac France clerac@crpp-bordeaux.cnrs.fr Introduction

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Search for new iron single-molecule magnets

Search for new iron single-molecule magnets Polyhedron 22 (2003) 1865/1870 www.elsevier.com/locate/poly Search for new iron single-molecule magnets Evan M. Rumberger a, Stephen Hill b, Rachel S. Edwards b, Wolfgang Wernsdorfer c, Lev N. Zakharov

More information

[Mn 18 ] 2 and [Mn 21 ] 4 single-molecule magnets

[Mn 18 ] 2 and [Mn 21 ] 4 single-molecule magnets Polyhedron 22 (2003) 2267/2271 www.elsevier.com/locate/poly [Mn 18 ] 2 and [Mn 21 ] 4 single-molecule magnets E.C. Sañudo a, E.K. Brechin b, C. Boskovic b, W. Wernsdorfer c, J. Yoo d, A. Yamaguchi e, T.R.

More information

arxiv: v2 [cond-mat.mes-hall] 4 Aug 2010 Jonathan R. Friedman

arxiv: v2 [cond-mat.mes-hall] 4 Aug 2010 Jonathan R. Friedman Single-Molecule Nanomagnets 1 Single-Molecule Nanomagnets arxiv:1001.4194v2 [cond-mat.mes-hall] 4 Aug 2010 Jonathan R. Friedman Department of Physics, Amherst College, Amherst, MA 01002, USA Myriam P.

More information

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Spin electronics at the nanoscale Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Principles of spin electronics: ferromagnetic metals spin accumulation Resistivity of homogeneous

More information

THERMAL RELAXATION AND QUANTUM TUNNELLING OF THE MAGNETIZATION IN Mn 12 -ACETATE. ERNEST MEŠTROVIĆb. HR Zagreb, Croatia

THERMAL RELAXATION AND QUANTUM TUNNELLING OF THE MAGNETIZATION IN Mn 12 -ACETATE. ERNEST MEŠTROVIĆb. HR Zagreb, Croatia ISSN1330 0008 CODEN FIZAE4 THERMAL RELAXATION AND QUANTUM TUNNELLING OF THE MAGNETIZATION IN Mn 12 -ACETATE DAMIR PAJIĆa,1,KREŠO ZADROa, TOMISLAV FRIŠČIĆb, NENAD JUDAŠb and ERNEST MEŠTROVIĆb a Department

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón Martes cuántico Zaragoza, 8 th October 2013 Atomic and molecular spin qubits Fernando LUIS Instituto de Ciencia de Materiales de Aragón Outline Quantum information with spins 1 0 Atomic defects in semiconductors

More information

Interaction between a single-molecule

Interaction between a single-molecule Interaction between a single-molecule magnet Mn 12 monolayer and a gold surface 12 Kyungwha Park Department of Physics, Virginia Tech Salvador Barraza-Lopez (postdoc) Michael C. Avery (undergraduate) Supported

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Experimental Evidence of the Néel-Brown Model of Magnetization Reversal

Experimental Evidence of the Néel-Brown Model of Magnetization Reversal Experimental Evidence of the Néel-Brown Model of Magnetization Reversal W. Wernsdorfer, E Bonet Orozco, K. Hasselbach, A. Benoît, B. Barbara, N. Demoncy, A. Loiseau, H. Pascard, D. Mailly To cite this

More information

arxiv: v1 [cond-mat.mes-hall] 12 May 2017

arxiv: v1 [cond-mat.mes-hall] 12 May 2017 Landau-Zener transition in a continuously measured single-molecule spin transistor arxiv:1705.04512v1 [cond-mat.mes-hall] 12 May 2017 F. Troiani, 1 C. Godfrin, 2 S. Thiele, 2 F. Balestro, 2 W. Wernsdorfer,

More information

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction D. Chiba 1, 2*, Y. Sato 1, T. Kita 2, 1, F. Matsukura 1, 2, and H. Ohno 1, 2 1 Laboratory

More information

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Imprinting domain/spin configurations in antiferromagnets A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Dr. J. Sort Institució Catalana de Recerca i Estudis Avançats (ICREA)

More information

PI 2 -ICMA. Título del proyecto: Understanding the magnetic anisotropy in Single- Molecule-Magnets for future molecular spintronic applications

PI 2 -ICMA. Título del proyecto: Understanding the magnetic anisotropy in Single- Molecule-Magnets for future molecular spintronic applications PI 2 -ICMA Título del proyecto: Understanding the magnetic anisotropy in Single- Molecule-Magnets for future molecular spintronic applications Nombre del supervisor: Javier Campo / Javier Luzón Memoria

More information

MAGNETIC QUBITS AS HARDWARE FOR QUANTUM COMPUTERS.

MAGNETIC QUBITS AS HARDWARE FOR QUANTUM COMPUTERS. MAGNETIC QUBITS AS HARDWARE FOR QUANTUM COMPUTERS. J. Tejada*, E. M. Chudnovsky, E. del Barco*, J. M. Hernandez* and T. P. Spiller * Physics Department. University of Barcelona, Diagonal 647, 08028 Barcelona,

More information

Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Möbius strip

Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Möbius strip Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Möbius strip Olivier Cador, a Dante Gatteschi, a Roberta Sessoli, a * Anne-Laure Barra, b Grigore A. Timco c and Richard

More information

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Douglas Natelson Department of Physics and Astronomy Department of Electrical and Computer Engineering Rice Quantum Institute

More information

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid Magnetism Electromagnetic Fields in a Solid SI units cgs (Gaussian) units Total magnetic field: B = μ 0 (H + M) = μ μ 0 H B = H + 4π M = μ H Total electric field: E = 1/ε 0 (D P) = 1/εε 0 D E = D 4π P

More information

Multi-bit magnetic memory using Fe 8 high spin molecules. Oren Shafir Magnetism Group, Physics Department

Multi-bit magnetic memory using Fe 8 high spin molecules. Oren Shafir Magnetism Group, Physics Department Multi-bit magnetic memory using Fe 8 high spin molecules Oren Shafir Magnetism Group, Physics Department Outline Preface: memory unit Fe8 as a high spin molecule Quantum tunneling In Fe8 Experiments: Faraday

More information

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain.

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain. This journal is The Royal Society of Chemistry 13 Electronic Supplementary Information {Dy(α-fur) 3 } n : from double relaxation Single-Ion Magnet behavior to 3D ordering E.Bartolomé, a J. Bartolomé, b

More information

Manipulation of Dirac cones in artificial graphenes

Manipulation of Dirac cones in artificial graphenes Manipulation of Dirac cones in artificial graphenes Gilles Montambaux Laboratoire de Physique des Solides, Orsay CNRS, Université Paris-Sud, France - Berry phase Berry phase K K -p Graphene electronic

More information

Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study

Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study O.Fruchart Laboratoire Louis Néel (CNRS-UJF-INPG) Grenoble Jan. 17th, 2007 Olivier Fruchart

More information

Quantum characterization of Ni4 magnetic clusters using electron paramagnetic resonance

Quantum characterization of Ni4 magnetic clusters using electron paramagnetic resonance Quantum characterization of Ni4 magnetic clusters using electron paramagnetic resonance S. Maccagnano a, R. S. Edwards b, E. Bolin b, S. Hill b, D. Hendrickson c, E. Yang c a Department of Physics, Montana

More information

High-Temperature Criticality in Strongly Constrained Quantum Systems

High-Temperature Criticality in Strongly Constrained Quantum Systems High-Temperature Criticality in Strongly Constrained Quantum Systems Claudio Chamon Collaborators: Claudio Castelnovo - BU Christopher Mudry - PSI, Switzerland Pierre Pujol - ENS Lyon, France PRB 2006

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Many-body correlations in a Cu-phthalocyanine STM single molecule junction

Many-body correlations in a Cu-phthalocyanine STM single molecule junction Many-body correlations in a Cu-phthalocyanine STM single molecule junction Andrea Donarini Institute of Theoretical Physics, University of Regensburg (Germany) Organic ligand Metal center Non-equilibrium

More information

arxiv: v1 [cond-mat.mes-hall] 29 Oct 2015

arxiv: v1 [cond-mat.mes-hall] 29 Oct 2015 Narrow Zero-Field Tunneling Resonance in Triclinic Mn 12 Acetate Ribbons I. Imaz 1, J. Espin 1, D. Maspoch 1,2 1 Institut Català de Nanotecnologia, ICN2, Esfera Universitat Autónoma Barcelona (UAB), Campus

More information

Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments

Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments Maximilian Schlosshauer Department of Physics University of Washington Seattle, Washington Very short biography Born in

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

Disordered Solids. real crystals spin glass. glasses. Grenoble

Disordered Solids. real crystals spin glass. glasses. Grenoble Disordered Solids real crystals spin glass glasses Grenoble 21.09.11-1 Tunneling of Atoms in Solids Grenoble 21.09.11-2 Tunneln Grenoble 21.09.11-3 KCl:Li Specific Heat specific heat roughly a factor of

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Inelastic Neutron Scattering Study of Electron Reduction in Mn 12 Derivatives

Inelastic Neutron Scattering Study of Electron Reduction in Mn 12 Derivatives Inorg. Chem. 2005, 44, 649 653 Inelastic Neutron Scattering Study of Electron Reduction in Mn 12 Derivatives Reto Basler, Andreas Sieber, Grégory Chaboussant,* and Hans U. Gu1del Department of Chemistry

More information

Magnetic qubits as hardware for quantum computers

Magnetic qubits as hardware for quantum computers INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY Nanotechnology 12 (2001) 181 186 www.iop.org/journals/na PII: S0957-4484(01)20911-8 Magnetic qubits as hardware for quantum computers J Tejada 1,4, E M Chudnovsky

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

The end is (not) in sight: exact diagonalization, Lanczos, and DMRG

The end is (not) in sight: exact diagonalization, Lanczos, and DMRG The end is (not) in sight: exact diagonalization, Lanczos, and DMRG Jürgen Schnack, Matthias Exler, Peter Hage, Frank Hesmer Department of Physics - University of Osnabrück http://www.physik.uni-osnabrueck.de/makrosysteme/

More information

Magnetic quantum tunnelling in subsets of

Magnetic quantum tunnelling in subsets of Magnetic quantum tunnelling in subsets of Mn -Ac molecules D. Phalen a, S. Hill b a Department of Physics, Rice University, Houston, TX 77005 b Department of Physics, University of Florida, Gainesville,

More information

Multiphoton antiresonance in large-spin systems

Multiphoton antiresonance in large-spin systems PHYSICAL REVIEW B 76, 054436 2007 Multiphoton antiresonance in large-spin systems C. Hicke and M. I. Dykman Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824,

More information

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine in the de Haas van Alphen effect Magnetic domains of non-spin origine related to orbital quantization Jörg Hinderer, Roman Kramer, Walter Joss Grenoble High Magnetic Field laboratory Ferromagnetic domains

More information

Simulations of Quantum Dimer Models

Simulations of Quantum Dimer Models Simulations of Quantum Dimer Models Didier Poilblanc Laboratoire de Physique Théorique CNRS & Université de Toulouse 1 A wide range of applications Disordered frustrated quantum magnets Correlated fermions

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics

Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics PCE STAMP DECOHERENCE in REAL SYSTEMS: MECHANISMS of DECOHERENCE (7 PINES, May 08, 2010) Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics SOME HISTORICAL PERSPECTIVE 1: OLD-STYLE

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov October 2018 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

The effect of uniaxial pressure on the magnetic anisotropy of the Mn 12 -Ac single-molecule magnet

The effect of uniaxial pressure on the magnetic anisotropy of the Mn 12 -Ac single-molecule magnet May 2013 EPL, 102 (2013) 47008 doi: 10.1209/0295-5075/102/47008 www.epljournal.org The effect of uniaxial pressure on the magnetic anisotropy of the Mn 12 -Ac single-molecule magnet James H. Atkinson 1,2,K.Park

More information

Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors. Khashayar Khazen Condensed Matter National Lab-IPM

Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors. Khashayar Khazen Condensed Matter National Lab-IPM Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors Khashayar Khazen Condensed Matter National Lab-IPM IPM School of Physics School of Nano Condensed Matter National Lab Technology:

More information

Fabio Chiarello IFN-CNR Rome, Italy

Fabio Chiarello IFN-CNR Rome, Italy Italian National Research Council Institute for Photonics and Nanotechnologies Elettronica quantistica con dispositivi Josephson: dagli effetti quantistici macroscopici al qubit Fabio Chiarello IFN-CNR

More information

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Josephson junction team Olivier Buisson, Bernard Pannetier,

More information

Mn 4 single-molecule magnets with a planar diamond core and S/9

Mn 4 single-molecule magnets with a planar diamond core and S/9 Polyhedron 22 (2003) 1857/1863 www.elsevier.com/locate/poly Mn 4 single-molecule magnets with a planar diamond core and S/9 En-Che Yang a, Nicholas Harden b, Wolfgang Wernsdorfer c,lev Zakharov d, Euan

More information

Interference: from quantum mechanics to nanotechnology

Interference: from quantum mechanics to nanotechnology Interference: from quantum mechanics to nanotechnology Andrea Donarini L. de Broglie P. M. A. Dirac A photon interferes only with itself Double slit experiment: (London, 1801) T. Young Phil. Trans. R.

More information

/ nd August Issue. Biologically Active Molecules with a Light Switch G. Mayer and A. Heckel

/ nd August Issue. Biologically Active Molecules with a Light Switch G. Mayer and A. Heckel D 3461 www.angewandte.org 2006 45/30 2nd August Issue Biologically Active Molecules with a Light Switch G. Mayer and A. Heckel Reactions at a Self-Assembled Monolayer I. S. Choi and Y. S. Chi Construction

More information

Distribution of eigenstate populations and dissipative beating dynamics in uniaxial single-spin magnets

Distribution of eigenstate populations and dissipative beating dynamics in uniaxial single-spin magnets Distribution of eigenstate populations and dissipative beating dynamics in uniaxial single-spin magnets Takuya Hatomura, Bernard Barbara, Seiji Miyashita To cite this version: Takuya Hatomura, Bernard

More information

Current-induced Domain Wall Dynamics

Current-induced Domain Wall Dynamics Current-induced Domain Wall Dynamics M. Kläui, Fachbereich Physik & Zukunftskolleg Universität Konstanz Konstanz, Germany Starting Independent Researcher Grant Motivation: Physics & Applications Head-to-head

More information

Lectures on magnetism at the Fudan University, Shanghai October 2005

Lectures on magnetism at the Fudan University, Shanghai October 2005 Lectures on magnetism at the Fudan University, Shanghai 10. 26. October 2005 Klaus Baberschke Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 D Berlin-Dahlem Germany 1 Introduction

More information