Intermolecular interactions (dipolar and exchange)

Size: px
Start display at page:

Download "Intermolecular interactions (dipolar and exchange)"

Transcription

1 Intermolecular interactions (dipolar and exchange) SMM ideal Mn 2 ac Mn 4 (SB) spin chains, etc. MM...? doped Fe 6 Fe 5 Ga Fe 8 [Mn 4 ] 2 J/D

2 Mn 4 singlemolecule magnet Mn 4 O 3 (OSiMe 3 )(O 2 CMe) 3 (dbm) 3 Mn IV S = 3/2 Mn III S 2 = 2 S = 9/2

3 Mn 4 O 3 (OSiMe 3 )(O 2 CMe) 3 (dbm) 3 (SB) Symmetry space group: P6(3) Top view Side view

4 Dipolar coupling r B ( r ) = 4 3( r m r ) r ( r r ) r m r 5 2 z y B z 3cosθ r 3 2 x H Mn 4 (SB) mt

5 Intermolecular exchange coupling S 2 S Mn IV Mn III S S 2 S J' Mn IV Mn III J' S dipolar & exchange coupling S 2 S Mn IV Mn III S Mn4 (SB) 36 mt

6 Chainlike dipolar & exchange coupling Case Case 2 Case 3 J no reversed neighbors J J they have one reversed neighbor J J J J J it has two reversed neighbors

7 Hysteresis loops of a Mn 4 singlemolecule magnet Mn 4 O 3 (OSiMe 3 )(O 2 CMe) 3 (dbm) 3 Mn IV S = 3/2 Mn III S 2 = 2 S = 9/2

8 2 sqrt 3 Distribution of internal fields.4 K two one no reversed neighbor 4 36 mt 36 mt M in O µ H z (T)

9 Collective quantum phenomena Onebody tunnel transitions Twobody tunnel transitions JS 2.2 K S = 9/2

10 H i = D S 2 i,z H trans r i gµ B µ S i Two coupled SMM of S = 9/2 r H H = H H 2 J r S r S 2 (2S i ) energy states S i = 9/2 : energy states M i = S i, S i,, S i (2S )(2S 2 ) energy states S i = 9/2 : energy states M = S, S,, S M 2 = S 2, S 2,, S 2 D =.72 K ; E =.3 K ; J =. K E (K) 5 Energy (K) µ H z µ H z (T)

11 Zeeman diagram of two coupled SMM of S = 9/ Energy (K) (9/2,9/2) 6 (9/2,9/2) (9/2,9/2) (7/2,7/2) 2 3 (9/2,7/2) (9/2,3/2) (9/2,5/2) (9/2,7/2) µ H z (T)

12 Spinspin crossrelaxation the happy collaboration of two spins Examples: Transition 7 Initial state: (9/2,9/2) After tunneling: (7/2,9/2) Final state: (9/2,9/2) Transition 3 Initial state: (9/2,9/2) After tunneling: (7/2,7/2) Final state: (9/2,9/2)

13 M/M s.5.5 Hysteresis loop at 4 mk T/s.4 T/s.8 T/s.7 T/s.35 T/s.7 T/s.4 T/s µ H z (T) 3

14 Virtual phonon transitions H = H H 2 J r r S S 2 H i = D S 2 i,z H trans r i gµ B µ S i r H D =.72 K ; E =.3 K ; J =. K E (K) Energy (K) µ H z µ H z (T)

15 Parity of level crossing (9/2,9/2) M = 9 (K) 6 (9/2,9/2) (9/2,9/2) (7/2,9/2) total quantum number: M = m m2 M = H trans (T)

16 2 Spinspin crossrelaxation in Mn 2 ac E (K) µ H z (T)

17 Decoherence in magnetic mesoscopic systems Photons Conduction electrons Phonons Magnetic quantum system spin molecule nanoparticle chain Spin bath nuclear spins paramagnetic spins intermolecular interactions etc.

18 Interaction with photons (microwaves: to 5 GHz)

19 Quantum computing in molecular magnets Michael N. Leuenberger & Daniel Loss NATURE, 4, 79 (2) implementation of Grover's algorithm storage unit of a dynamic random access memory device. fast electron spin resonance pulses can be used to decode and read out stored numbers of up to 5 with access times as short as. nanoseconds.

20 Energy (K) /2 S = /2 hω Absorption of microwaves.4.6 / µ H (T) V 5 S = /2.5.4 K GHz. T/s M/M s.5 period: ms s. ms.5 ms ms 2 ms 3 ms µ H (T)

21 D =.5 K Energy (K) 2 /2 /2 Reducing intermolecular couplings Fe6 wheels: S = 3/2 3/2 5/2 5/ µ Hz (T) K M/M s T/s T/s T/s T/s T/s µ Hz (T) Doping with Ga Fe5Ga : S = 5/2

22 D =.5 K Energy (K) 2 /2 /2 Fe6 wheels: S = 3/2 3/ Reducing intermolecular couplings hω 5/2.4 5/2.2 µ Hz (T).2.4 M/M s K 8 db 6 db 5 db.4 T/s.8. T/s 2 GHz µ Hz (T) Doping with Ga Fe5Ga : S = 5/2

23 Photon assisted tunneling Absorption of circular polarized microwaves Energy M = hω tunneling H = 5 5 quantum number m Energy (K) M = hω hω M = ± µ H z (T) 7 8 9

24 Absorption of circular polarized microwaves (5 GHz).5 6 mk 5 GHz.7 T/s M/M s.5 P/P =.5.5 µ H z (T)

25 Absorption of circular polarized microwaves (95 GHz) M/M s mk 95 GHz.7 T/s P/P = µ H z (T)

26 Photon induced tunnel probability P EPR = P n ± P ± PEPR T S (K) n = n = (au) 6 7 n = n =... (au)

27 Perspectives concerning microwave experiments Quantum dynamic: spinecho like experiments

28 Conclusion Beginning: Mn 2 ac,5 M/M S, B L (T).5K.6K.9K 2.4K L. Thomas, B. Barbara, et al., Nature (996) R. Sessoli, D. Gatteschi, D. Hendrikson, G. Christou, et al. (993) M. Novak, C. Paulsen, B. Barbara, et al. (994) J. Friedman, M. Sarachik, et al., PRL (996) L. Thomas, B. Barbara et al., Nature (996)

29 Followed by: 3 systems Mn, Mn 2, Mn 3, Mn 4, [Mn 4 ] 2, Mn 5, Mn 6, Mn 7, Mn 8, Mn 9, Mn, Mn, Mn 2, Mn 3, Mn 6, Mn 8, Mn 2, Mn 24, Mn 26, Mn 3 Fe 2, Fe 3, Fe 4, Fe 5, Fe 6, Fe 7, Fe 8, Fe, Fe, Fe 3, Fe 7/9, Fe 9 Ni 4, Ni 5, Ni 6, Ni 8, Ni 2, Ni 2, Ni 24 Co 4, Co 6, Co Co 2 Gd 2, Co 2 Dy 2, Cr 2, CrNi 6, CrNi 2, CrCo 3, Fe Na 2, Fe 2 Ni 3, Mn 2 Dy 2, Mn 2 Nd 2, V 5, Ho,... S =, /2,, 3/2, 2, 5/2, 4, 9/2, 5,. 33/2

30 Size dependence? [Mn 3 O(OAc) 6 (py) 3 ]py Mn 4 O 3 (OSiMe 3 )(O 2 CMe) 3 (dbm) 3 (PPh 4 ) 2 [Mn 2 O 2 (O 2 CCH 2 Cl) 6 (H 2 O) 3 ] Mn 3 O 24 (OH) 8 (O 2 CCH 2 C(CH 3 ) 3 ) 32 (H 2 O) 2 (CH 3 NO 2 )

31 Mn 4 O 3 (O 2 CEt) 4 (dbm) 3 Control / origin of the magnetic anisotropy? S = 9/2 Mn 4 O 3 Cl(OAC) 3 (dbm) 3 Mn 4 O 3 (O 2 CPh) 4 (dbm) 3 Mn 4 O 3 (OSiMe 3 )(O 2 CMe) 3 (dbm) 3

32 Exchange biased Mn 4 M/M s NA.4 K.5.5 µ H (T).4 K NA3.4 T/s.7 T/s.35 T/s.7 T/s.8 T/s.4 T/s.2 T/s M/M s M/M s.5.5 NA2 newrod.4 K.5.5 µ H (T) M/M s.5.35 T/s.7 T/s.8 T/s.4 T/s.2 T/s. T/s.5 T/s.3 T/s.5 NA.4 K.4 T/s.7 T/s.35 T/s.7 T/s.8 T/s.5.5 µ H (T) M/M s µ H (T) K NA2.4 T/s.7 T/s.35 T/s.7 T/s.8 T/s.4 T/s.35 T/s.7 T/s.8 T/s.4 T/s.5.5 µ H (T)

33 Rareearth ions: Ho 3 in Y.998 Ho.2 LiF 4 Effects of Strong Hyperfine Interactions, M/MS Ho 3 Tetragonal symmetry (Ho in S4) J = LS = 8; g J =5/4,5,,5, 2 mk 5 mk 5 mk H z (mt) / dm/dhz (/T) n= dh/dt > n=2 n= n= n= R. Giraud, W. Wernsdorfer, A.~M. Tkachuk, D. Mailly, and B. Barbara, Phys. Rev. Lett. 87, 5723 (2).

34 Slow dynamics in spinchains NC[Fe(III)(CN)Co(II)]NC A. R. Lescouezec, M. Julve, F. Lloret, Valencia University, Spain P. Herson, Y. Dromzée, M. Verdaguer Chimie Inorganique et Matériaux Moléculaires, CNRS, Paris.5 2. K H b M/M s µ H (T).7 T/s.35 T/s.7 T/s.8 T/s.4 T/s.2 T/s. T/s

35 Conclusion J. Villain: a school of physics & chemistry

36 Collaborations L. Thomas PhD 996: Mn 2 ac F. Lionti PhD 997: Mn 2 ac, Fe 7/9 I. Chiorescu PhD 2: Mn 2 ac, V 5 R. Giraud PhD 22: Ho 3 C. Thirion PhD 23: nanoparticles, GHz R. Tiron PhD 24: [Mn 4 ] 2, E. Bonet, W. Wernsdorfer, B. Barbara LLN, CNRS, Grenoble C. Paulsen, V. Villar, A. Sulpice, A. Benoit CRTBT, CNRS, Grenoble A.L. Barra, L. Sorace, LCMI CNRS, Grenoble D. Mailly LPN, CNRS, Marcoussis

37 Collaborations Concerning SMMs and spin chains C. Paulsen, A. Sulpice, V. Villar, T. Ohm, CRTBT CNRS A.L. Barra, L. Sorace, LCMI CNRS, Grenoble Group of G. Christou, Dept. of Chemistry, Florida Group of D. Hendrickson, Dept. of Chemistry, San Diego Group of D. Gatteschi et R. Sessoli, Univ. de Firenze, Italie Group of A. Cornia, Univ. de Modena, Italie Group of A. Müller, Univ. de Bielefeld, Germany Group of A. Powell, Univ. de Kahlsruhe, Germany Group of M. Verdaguer, Univ. P. et M. Curie, Paris Group of M. Julve, Univ. de Valence, Spain Group of R.E.P. Winpenny, Univ. de Manchester, UK Group of E. Coronado, Univ. de Valence, Spain Group of P. Rey et D. Luneau, CEA, Grenoble

38 Merci!

39 Mn 3 Giant spin approximation Example: Mn2ac Hilbert space: (2x2 ) 8 (2x3/2 ) 4 8 Mn 4 J J 2 J 4 J 3 J 25 K J 2 J 3 86 K J 4 < 43 K Energy(K) K S = D =.63 K S = 9 D' =.57 K quantum number M I. Tupitsyn (2)

40 One member of the Mn2 family easy axis z 58 y tilted JahnTeller axis [Mn 2 O 2 (O 2 CCH 2 Bu t ) 6 (H 2 O) 4 ] CH 2 Cl 2 CH 3 NO 2

41 Hysteresis loops M/M s K.6 K.7 K.5 K.4 K.8 T/s.3 K.2 K.5 K.9 K.8 K.7.4 K µ H z (T)

42 First attempt to find a model based on two spin multiplets: M/M s K.7 K.6 K even even odd odd odd odd.5 K.4 K.3 K.8 T/s.2 K Energy (K).5 K.9 K.8 K.7.4 K µ H z (T) even even even odd odd odd even even even even odd S= S= H z odd S = 9, D =.6 K S =, D =.5 K

43 MQT Strategy of single particle measurements Quasistatic measurements hysteresis loops H sw (θ,ϕ) magnetic anisotropy (forme, crystalline, surface) Dynamic measurements relaxation (T,H) P(T,H), H sw (T,dH/dt) activation volume damping factor "all" parameters are defined in the classical regime deviations for T > studying the crossover Tc and the escape rate QT as a function of external parameters: transverse fields, field directions, microwaves, etc.

44 Macroscopic Quantum Tunneling of magnetization.2 E( ) h > thermal activation Γ TA = Γ e E/k B T Γ QT = Γ ' e B.8 E k B T MQT.4 T K B 4*6/ 4 9 E k B T = E (θ, γ) k B T ε3/ 2 Sε 5/4 cotθ /6 K /3 ( cot θ2 ) K Crossover temperature: E k B T c = B T c = 9 4 *6 / 4 E k S ε/4 K K 2/ 3 ( cotθ ) cotθ / 6 Miguel and Chudnovsky, PRB (996) GwangHee Kim and Dae Sung Hwang, PRB (997)

45 easy axis Barium ferrite nanoparticle( nm) Macroscopic Quantum Tunneling of Magnetization of Single Ferrimagnetic Nanoparticles of Barium Ferrite ( nm) W.W. et al, PRL, 79, 44, (997) (45 ) T c (θ) µ H a ε /4 cotθ /6 ( cotθ 2/3 ) Tc(45 ) =.3 K T c ( )/T c T*(K) part. II.2 T(K) angle

46 Quantization of the magnetization Schematic view of the resonance fields of a giant spin S. The continuous red line is the classical switching fields of StonerWohlfarth. h z easy axis P(H) dh/dt H' H' The inset presents schematically a switching field histogram with H H H' H a 2S cos h x hard axis

47 Fe clusters ( 3 nm)

48 Fe clusters ( 3 nm) sample oxidation?!? surface spin frustration?!?

49 Comparison of Josephson and magnetic grain systems System Rf SQUID ring or currentbiased junction Single domain ferro or antiferromagnetic particle Macroscopic variable Control parameters q Form of potential near instability Trapped flux or Cooper pair phase External flux or Bias current I = I/Ic Critical current Ic dissipation Magnetization or Néel vector Applied magnetic field H = H/Hsw Magnetic anisotropy field Hsw Field directions or transverse fields dissipation q 2 q 3 q 2 q 3 or q 2 q 4 (depending on field direction) Number of particles involved in tunneling 5 23 electrons (SQUID) 8 magnetic moments

Quantum dynamics in Single-Molecule Magnets

Quantum dynamics in Single-Molecule Magnets Quantum dynamics in Single-Molecule Magnets Wolfgang Wernsdorfer Laboratoire de Magnétisme Louis Néel C.N.R.S. - Grenoble S = 10 2 to 10 6 S = 1/2 to 30 permanent magnets macroscopic micron particles Magnetic

More information

Voyage dans le nanomonde des aimants

Voyage dans le nanomonde des aimants Voyage dans le nanomonde des aimants Wolfgang Wernsdorfer Laboratoire de Magnétisme Louis Néel C.N.R.S. - Grenoble S = 10 2 to 10 6 S = 1/2 to 30 Magnets nanoworld 10 6 10 3 10 0 10-3 10-6 10-9 1 Mm 1

More information

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006 Quantum Tunneling of Magnetization in Molecular Magnets ANDREW D. KENT Department of Physics, New York University Tutorial T2: Molecular Magnets, March 12, 2006 1 Outline 1. Introduction Nanomagnetism

More information

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS B. Barbara, W. Wernsdorfer, E. Bonet, L. Thomas (IBM), I. Chiorescu (FSU), R. Giraud (LPN) Laboratory Louis Néel, CNRS, Grenoble Collaborations with other groups

More information

Spins Dynamics in Nanomagnets. Andrew D. Kent

Spins Dynamics in Nanomagnets. Andrew D. Kent Spins Dynamics in Nanomagnets Andrew D. Kent Department of Physics, New York University Lecture 1: Magnetic Interactions and Classical Magnetization Dynamics Lecture 2: Spin Current Induced Magnetization

More information

Recent Developments in Quantum Dynamics of Spins

Recent Developments in Quantum Dynamics of Spins Recent Developments in Quantum Dynamics of Spins B. Barbara, R. Giraud*, I. Chiorescu*, W. Wernsdorfer, Lab. Louis Néel, CNRS, Grenoble. Collaborations with other groups: D. Mailly (Marcoussis) D. Gatteschi

More information

Quantum dynamics in Single-Molecule Magnets - towards molecular spintronics

Quantum dynamics in Single-Molecule Magnets - towards molecular spintronics Quantum dynamics in Single-Molecule Magnets - towards molecular spintronics Wolfgang Wernsdorfer Institut Néel CNRS - Grenoble S = 10 2 to 10 6 S = 1/2 to 30 Magnets nanoworld 10 6 10 3 10 0 10-3 10-6

More information

B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion

B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion Quantum tunnelling and coherence of mesoscopic spins B. Barbara, Institut Néel, CNRS, Grenoble Brief history From classical to quantum nanomagnetism Quantum nanomagnetism From relaxation to coherence Ensemble

More information

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent Spin Dynamics in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University Collaborators: Gregoire de Loubens, Enrique del Barco Stephen Hill Dmitry Garanin Myriam Sarachik, Yosi

More information

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy Nuclear spin dynamics in quantum regime of a single-molecule magnet Andrea Morello UBC Physics & Astronomy Kamerlingh Onnes Laboratory Leiden University Nuclear spins in SMMs Intrinsic source of decoherence

More information

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)-

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- Quantum tunneling of magnetization in lanthanide single-molecule magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- dysprosium anions** Naoto Ishikawa, * Miki Sugita and Wolfgang Wernsdorfer

More information

Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets

Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets W. Wernsdorfer, 1 S. Bhaduri, 2 A. Vinslava, 2 and G. Christou 2 1 Laboratoire L.

More information

Photon-induced magnetization changes in single-molecule magnets invited

Photon-induced magnetization changes in single-molecule magnets invited JOURNAL OF APPLIED PHYSICS 99, 08D103 2006 Photon-induced magnetization changes in single-molecule magnets invited M. Bal and Jonathan R. Friedman a Department of Physics, Amherst College, Amherst, Massachusetts

More information

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Polyhedron 22 (2003) 1783/1788 www.elsevier.com/locate/poly New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Mònica Soler a, Wolfgang Wernsdorfer b, *, Ziming Sun c,

More information

Beyond the Giant Spin Approximation: The view from EPR

Beyond the Giant Spin Approximation: The view from EPR Beyond the Giant Spin Approximation: The view from EPR Simple is Stephen Hill, NHMFL and Florida State University At UF: Saiti Datta, Jon Lawrence, Junjie Liu, Erica Bolin better In collaboration with:

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

www.mrs.org/publications/bulletin Single-Molecule Magnets George Christou, Dante Gatteschi, David N. Hendrickson, and Roberta Sessoli Introduction Magnets are widely used in a large number of applications,

More information

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation EUROPHYSICS LETTERS 1 July 2005 Europhys. Lett., 71 (1), pp. 110 116 (2005) DOI: 10.1209/epl/i2005-10069-3 Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity

More information

NYU An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets. Andrew D. Kent

NYU An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets. Andrew D. Kent An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University 1 Outline I. Introduction Quantum tunneling

More information

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet April 28 EPL, 82 (28) 175 doi: 1.129/295-575/82/175 www.epljournal.org Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet M. Bal 1, Jonathan R. Friedman 1(a),W.Chen 2,

More information

Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids

Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids Physica B 280 (2000) 264}268 Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids W. Wernsdorfer *, E. Bonet Orozco, B. Barbara, A. Benoit,

More information

The First Cobalt Single-Molecule Magnet

The First Cobalt Single-Molecule Magnet The First Cobalt Single-Molecule Magnet En-Che Yang and David N Hendrickson Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92037, USA Wolfgang Wernsdorfer

More information

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants MolNanoSpin: Spintronique moléculaire avec des molécules-aimants W. Wernsdorfer : Institut Néel T. Mallah : Institut de Chimie Moléculaire et des Matériaux d'orsay P. Mialane : Institut Lavoisier Journées

More information

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid Magnetism Electromagnetic Fields in a Solid SI units cgs (Gaussian) units Total magnetic field: B = μ 0 (H + M) = μ μ 0 H B = H + 4π M = μ H Total electric field: E = 1/ε 0 (D P) = 1/εε 0 D E = D 4π P

More information

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets Lorenzo Sorace, Roberta Sessoli, Andrea Cornia Department of Chemistry & INSTM, University of Florence, Italy Department

More information

Spin electric coupling and coherent quantum control of molecular nanomagnets

Spin electric coupling and coherent quantum control of molecular nanomagnets Spin electric coupling and coherent quantum control of molecular nanomagnets Dimitrije Stepanenko Department of Physics University of Basel Institute of Physics, Belgrade February 15. 2010 Collaborators:

More information

Experimental Evidence of the Néel-Brown Model of Magnetization Reversal

Experimental Evidence of the Néel-Brown Model of Magnetization Reversal Experimental Evidence of the Néel-Brown Model of Magnetization Reversal W. Wernsdorfer, E Bonet Orozco, K. Hasselbach, A. Benoît, B. Barbara, N. Demoncy, A. Loiseau, H. Pascard, D. Mailly To cite this

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

nano Josephson junctions Quantum dynamics in

nano Josephson junctions Quantum dynamics in Permanent: Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Cécile Naud Bernard Pannetier Quantum dynamics in nano Josephson junctions CNRS Université Joseph Fourier Institut Néel- LP2MC GRENOBLE

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supramolecular Spin Valves M. Urdampilleta, 1 J.-P. Cleuziou, 1 S. Klyatskaya, 2 M. Ruben, 2,3* W. Wernsdorfer 1,* 1 Institut Néel, associé á l Université Joseph Fourier, CNRS, BP 166, 38042 Grenoble Cedex

More information

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels Gage Redler and Stephen Hill Department of Physics, University of Florida Abstract High Frequency Electron Paramagnetic Resonance

More information

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Bellaterra: anuary 2011 Architecture & Design of Molecule Logic Gates and Atom Circuits Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Fernando LUIS Instituto de Ciencia de Materiales

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Single-molecule magnets: Jahn Teller isomerism and the origin of two magnetization relaxation processes in Mn 12 complexes

Single-molecule magnets: Jahn Teller isomerism and the origin of two magnetization relaxation processes in Mn 12 complexes Polyhedron 20 (2001) 1139 1145 www.elsevier.nl/locate/poly Single-molecule magnets: Jahn Teller isomerism and the origin of two magnetization relaxation processes in Mn 12 complexes Sheila M.J. Aubin a,

More information

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation OFFPRINT Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation G. de Loubens, D. A. Garanin, C. C. Beedle, D. N. Hendrickson and A. D. Kent EPL, 83 (2008) 37006

More information

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain.

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain. This journal is The Royal Society of Chemistry 13 Electronic Supplementary Information {Dy(α-fur) 3 } n : from double relaxation Single-Ion Magnet behavior to 3D ordering E.Bartolomé, a J. Bartolomé, b

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Quantum step heights in hysteresis loops of molecular magnets

Quantum step heights in hysteresis loops of molecular magnets PHYSICAL REVIEW B, VOLUME 65, 224401 Quantum step heights in hysteresis loops of molecular magnets Jie Liu, 1 Biao Wu, 1 Libin Fu, 2 Roberto B. Diener, 1 and Qian iu 1 1 Department of Physics, The University

More information

arxiv:cond-mat/ v2 10 Dec 1998

arxiv:cond-mat/ v2 10 Dec 1998 Quantum Coherence in Fe 8 Molecular Nanomagnets E. del Barco 1, N. Vernier 1, J.M. Hernandez 2, J.Tejada 2, E.M. Chudnovsky 3, E. Molins 4 and G. Bellessa 1 1 Laboratoire de Physique des Solides, Bâtiment

More information

Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum

Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum Hua Chen Course: Solid State II, Instructor: Elbio Dagotto, Semester: Spring 2008 Department of Physics and Astronomy, the University of

More information

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble The Nanotube SQUID J.-P. Cleuziou,, Th. Ondarçuhu uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble Outline Sample fabrication Proximity effect in CNT The CNT superconducting

More information

magnet Mn 12 -t-butylacetate thermally-activated down to 400 mk

magnet Mn 12 -t-butylacetate thermally-activated down to 400 mk Polyhedron 26 (2007) 2320 2324 www.elsevier.com/locate/poly 55 Mn nuclear spin relaxation in the truly axial single-molecule magnet Mn 12 -t-butylacetate thermally-activated down to 400 mk A.G. Harter

More information

Transition Elements. pranjoto utomo

Transition Elements. pranjoto utomo Transition Elements pranjoto utomo Definition What is transition metal? One of which forms one or more stable ions which have incompletely filled d orbitals. 30Zn? Definition Zink is not transition elements

More information

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University GEOMETRICLLY FRUSTRTED MGNETS John Chalker Physics Department, Oxford University Outline How are geometrically frustrated magnets special? What they are not Evading long range order Degeneracy and fluctuations

More information

Magnetism. Ram Seshadri MRL 2031, x6129, Some basics:

Magnetism. Ram Seshadri MRL 2031, x6129, Some basics: Magnetism Ram Seshadri MRL 2031, x6129, seshadri@mrl.ucsb.edu Some basics: A magnet is associated with magnetic lines of force, and a north pole and a south pole. he lines of force come out of the north

More information

LARGE-SCALE QUANTUM PHENOMENA COURSE. UNIVERSITY of INNSBRUCK. (June 2010)

LARGE-SCALE QUANTUM PHENOMENA COURSE. UNIVERSITY of INNSBRUCK. (June 2010) LARGE-SCALE QUANTUM PHENOMENA COURSE to be given at the UNIVERSITY of INNSBRUCK (June 2010) INTRODUCTION 1.BASIC PHENOMENA 2.EXPERIMENTAL OBSERVATIONS 3.THEORETICAL FRAMEWORK LARGE-SCALE QUANTUM PHENOMENA:

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Quantum characterization of Ni4 magnetic clusters using electron paramagnetic resonance

Quantum characterization of Ni4 magnetic clusters using electron paramagnetic resonance Quantum characterization of Ni4 magnetic clusters using electron paramagnetic resonance S. Maccagnano a, R. S. Edwards b, E. Bolin b, S. Hill b, D. Hendrickson c, E. Yang c a Department of Physics, Montana

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

[Mn 18 ] 2 and [Mn 21 ] 4 single-molecule magnets

[Mn 18 ] 2 and [Mn 21 ] 4 single-molecule magnets Polyhedron 22 (2003) 2267/2271 www.elsevier.com/locate/poly [Mn 18 ] 2 and [Mn 21 ] 4 single-molecule magnets E.C. Sañudo a, E.K. Brechin b, C. Boskovic b, W. Wernsdorfer c, J. Yoo d, A. Yamaguchi e, T.R.

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution

High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution F. El Hallak, 1 J. van Slageren, 1, * J. Gómez-Segura, 2 D. Ruiz-Molina, 2

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

MOLECULAR SPINTRONICS. Eugenio Coronado

MOLECULAR SPINTRONICS. Eugenio Coronado MOLECULAR SPITROICS Eugenio Coronado Spintronics Manipulation of the spin by electrical means (current, electric field) optical means (light) mechanical means (pressure). At the nanoscale Molecular Spintronics

More information

I. Molecular magnetism and single-molecule magnets

I. Molecular magnetism and single-molecule magnets Research: I. Molecular magnetism and single-molecule magnets The research in the area of molecular magnetism is focused on molecular assemblies containing a finite number of exchange coupled magnetic ions

More information

Ferromagnetism. In free space, the flux density and magnetizing field strength are related by the expression

Ferromagnetism. In free space, the flux density and magnetizing field strength are related by the expression 1 Ferromagnetism B In free space, the flux density and magnetizing field strength are related by the expression H B =µ 0 H µ 0 =4π x 10-7 H.m -1, the permeability of free space. 2 Ferromagnetism B H For

More information

Drickamer type. Disk containing the specimen. Pressure cell. Press

Drickamer type. Disk containing the specimen. Pressure cell. Press ε-fe Drickamer type Press Pressure cell Disk containing the specimen Low Temperature Cryostat Diamond Anvil Cell (DAC) Ruby manometry Re gasket for collimation Small size of specimen space High-density

More information

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Josephson junction team Olivier Buisson, Bernard Pannetier,

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs)

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) PHY 300 - Junior Phyics Laboratory Syed Ali Raza Roll no: 2012-10-0124 LUMS School of Science and Engineering Thursday,

More information

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment Harald Ibach Hans Lüth SOLID-STATE PHYSICS An Introduction to Theory and Experiment With 230 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

Search for new iron single-molecule magnets

Search for new iron single-molecule magnets Polyhedron 22 (2003) 1865/1870 www.elsevier.com/locate/poly Search for new iron single-molecule magnets Evan M. Rumberger a, Stephen Hill b, Rachel S. Edwards b, Wolfgang Wernsdorfer c, Lev N. Zakharov

More information

Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Möbius strip

Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Möbius strip Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Möbius strip Olivier Cador, a Dante Gatteschi, a Roberta Sessoli, a * Anne-Laure Barra, b Grigore A. Timco c and Richard

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

The end is (not) in sight: exact diagonalization, Lanczos, and DMRG

The end is (not) in sight: exact diagonalization, Lanczos, and DMRG The end is (not) in sight: exact diagonalization, Lanczos, and DMRG Jürgen Schnack, Matthias Exler, Peter Hage, Frank Hesmer Department of Physics - University of Osnabrück http://www.physik.uni-osnabrueck.de/makrosysteme/

More information

l μ M Right hand Screw rule

l μ M Right hand Screw rule Magnetic materials Magnetic property The response of the materials to external magnetic field All the materials are magnetic, only the degree of response varies, which is measured in terms of their magnetization

More information

Chapter 2 Magnetic Properties

Chapter 2 Magnetic Properties Chapter 2 Magnetic Properties Abstract The magnetic properties of a material are the basis of their applications. Specifically, the contrast agents that will be developed in Chaps. 4 and 5 use their magnetic

More information

Rapidly changing magnetic field uncovers low-lying energy spectrum of the molecular magnet {Mo 72 Fe 30 }

Rapidly changing magnetic field uncovers low-lying energy spectrum of the molecular magnet {Mo 72 Fe 30 } Rapidly changing magnetic field uncovers low-lying energy spectrum of the molecular magnet {Mo 72 Fe 30 } Jürgen Schnack Department of Physics - University of Osnabrück http://obelix.physik.uni-osnabrueck.de/

More information

Contents. Acknowledgments

Contents. Acknowledgments MAGNETIC MATERIALS Fundamentals and Applications Second edition NICOLA A. SPALDIN University of California, Santa Barbara CAMBRIDGE UNIVERSITY PRESS Contents Acknowledgments page xiii I Basics 1 Review

More information

Neutron Scattering of Magnetic excitations

Neutron Scattering of Magnetic excitations Neutron Scattering of Magnetic excitations Magnetic excitations, magnons, and spin chains by Ibrahima Diallo Technische Universität Muenchen Outline Properties of the Neutron Spin, spin waves, and magnons

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Lectures on magnetism at the Fudan University, Shanghai October 2005

Lectures on magnetism at the Fudan University, Shanghai October 2005 Lectures on magnetism at the Fudan University, Shanghai 10. 26. October 2005 Klaus Baberschke Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 D Berlin-Dahlem Germany 1 Introduction

More information

Low temperature dynamics of magnetic nanoparticles

Low temperature dynamics of magnetic nanoparticles Low temperature dynamics of magnetic nanoparticles J.-P. Bouchaud, V. Dupuis, J. Hammann, M. Ocio, R. Sappey and E. Vincent Service de Physique de l Etat Condensé CEA IRAMIS / SPEC (CNRS URA 2464) CEA

More information

Is Quantum Mechanics the Whole Truth?* A.J. Leggett. University of Illinois at Urbana-Champaign

Is Quantum Mechanics the Whole Truth?* A.J. Leggett. University of Illinois at Urbana-Champaign Is Quantum Mechanics the Whole Truth?* A6S1 A.J. Leggett University of Illinois at Urbana-Champaign 1. Why bother? 2. What are we looking for? 3. What have we seen so far? 4. Where do we go from here?

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

X-ray Imaging and Spectroscopy of Individual Nanoparticles

X-ray Imaging and Spectroscopy of Individual Nanoparticles X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland Intensity [a.u.] 1.4 1.3 1.2 1.1 D 8 nm 1 1 2 3 1.0 770

More information

Ferromagnetism and antiferromagnetism ferromagnetism (FM) antiferromagnetism (AFM) ferromagnetic domains nanomagnetic particles

Ferromagnetism and antiferromagnetism ferromagnetism (FM) antiferromagnetism (AFM) ferromagnetic domains nanomagnetic particles Dept of Phys Ferromagnetism and antiferromagnetism ferromagnetism (FM) exchange interaction, Heisenberg model spin wave, magnon antiferromagnetism (AFM) ferromagnetic domains nanomagnetic particles M.C.

More information

Magnetic Resonance in magnetic materials

Magnetic Resonance in magnetic materials Ferdinando Borsa, Dipartimento di Fisica, Universita di Pavia Magnetic Resonance in magnetic materials Information on static and dynamic magnetic properties from Nuclear Magnetic Resonance and Relaxation

More information

Dipolar magnetic order in crystals of molecular nanomagnets

Dipolar magnetic order in crystals of molecular nanomagnets 1 Dipolar magnetic order in crystals of molecular nanomagnets Fernando Luis Instituto de Ciencia de Materiales de Aragón, C.S.I.C. - Universidad de Zaragoza, and Dpto. de Física de la Materia Condensada,

More information

Theory for investigating the dynamical Casimir effect in superconducting circuits

Theory for investigating the dynamical Casimir effect in superconducting circuits Theory for investigating the dynamical Casimir effect in superconducting circuits Göran Johansson Chalmers University of Technology Gothenburg, Sweden International Workshop on Dynamical Casimir Effect

More information

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble I) - Basic concepts of XAS and XMCD - XMCD at L 2,3 edges

More information

Disordered Solids. real crystals spin glass. glasses. Grenoble

Disordered Solids. real crystals spin glass. glasses. Grenoble Disordered Solids real crystals spin glass glasses Grenoble 21.09.11-1 Tunneling of Atoms in Solids Grenoble 21.09.11-2 Tunneln Grenoble 21.09.11-3 KCl:Li Specific Heat specific heat roughly a factor of

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism Coordination Small Ferromagnets Superlattices Basic properties of a permanent magnet Magnetization "the strength of the magnet" depends

More information

Enhanced magnetic anisotropy of Mn 12 -acetate

Enhanced magnetic anisotropy of Mn 12 -acetate Journal of Magnetism and Magnetic Materials 301 (2006) 31 36 www.elsevier.com/locate/jmmm Enhanced magnetic anisotropy of Mn 12 -acetate D.M. Seo a, V. Meenakshi a, W. Teizer a,, H. Zhao b, K.R. Dunbar

More information

Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors. Khashayar Khazen Condensed Matter National Lab-IPM

Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors. Khashayar Khazen Condensed Matter National Lab-IPM Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors Khashayar Khazen Condensed Matter National Lab-IPM IPM School of Physics School of Nano Condensed Matter National Lab Technology:

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

THERMAL RELAXATION AND QUANTUM TUNNELLING OF THE MAGNETIZATION IN Mn 12 -ACETATE. ERNEST MEŠTROVIĆb. HR Zagreb, Croatia

THERMAL RELAXATION AND QUANTUM TUNNELLING OF THE MAGNETIZATION IN Mn 12 -ACETATE. ERNEST MEŠTROVIĆb. HR Zagreb, Croatia ISSN1330 0008 CODEN FIZAE4 THERMAL RELAXATION AND QUANTUM TUNNELLING OF THE MAGNETIZATION IN Mn 12 -ACETATE DAMIR PAJIĆa,1,KREŠO ZADROa, TOMISLAV FRIŠČIĆb, NENAD JUDAŠb and ERNEST MEŠTROVIĆb a Department

More information

ELECTRON PARAMAGNETIC RESONANCE

ELECTRON PARAMAGNETIC RESONANCE ELECTRON PARAMAGNETIC RESONANCE = MAGNETIC RESONANCE TECHNIQUE FOR STUDYING PARAMAGNETIC SYSTEMS i.e. SYSTEMS WITH AT LEAST ONE UNPAIRED ELECTRON Examples of paramagnetic systems Transition-metal complexes

More information

Laser Spectroscopy on Bunched Radioactive Ion Beams

Laser Spectroscopy on Bunched Radioactive Ion Beams Laser Spectroscopy on Bunched Radioactive Ion Beams Jon Billowes University of Manchester Balkan School on Nuclear Physics, Bodrum 2004 Lecture 1. 1.1 Nuclear moments 1.2 Hyperfine interaction in free

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov 26 February 2014 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

arxiv:cond-mat/ v1 9 Jan 2001

arxiv:cond-mat/ v1 9 Jan 2001 arxiv:cond-mat/0101104 v1 9 Jan 2001 Classical and quantum magnetization reversal studied in nanometer-sized particles and clusters Edited by to be published in: Advances in Chemical Physics invitation

More information

Inelastic Neutron Scattering Study of Electron Reduction in Mn 12 Derivatives

Inelastic Neutron Scattering Study of Electron Reduction in Mn 12 Derivatives Inorg. Chem. 2005, 44, 649 653 Inelastic Neutron Scattering Study of Electron Reduction in Mn 12 Derivatives Reto Basler, Andreas Sieber, Grégory Chaboussant,* and Hans U. Gu1del Department of Chemistry

More information

«Chaînes Aimants» et «Molécules Aimants» dans les Oxydes. GDR MCM2 & MEETICC Strasbourg, 5 6 octobre 2017

«Chaînes Aimants» et «Molécules Aimants» dans les Oxydes. GDR MCM2 & MEETICC Strasbourg, 5 6 octobre 2017 «Chaînes Aimants» et «Molécules Aimants» dans les Oxydes MCM2 MEETICC GDR MCM2 & MEETICC Strasbourg, 5 6 octobre 2017 «Propriétés magnétiques & électroniques : échelles de temps et d espace» Can oxides

More information