Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Size: px
Start display at page:

Download "Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006"

Transcription

1 Quantum Tunneling of Magnetization in Molecular Magnets ANDREW D. KENT Department of Physics, New York University Tutorial T2: Molecular Magnets, March 12, Outline 1. Introduction Nanomagnetism Quantum Tunneling of Magnetization Initial discoveries 2. Magnetic Interactions, Energy Scales, Spin Hamiltonian 3. Experimental Techniques Micro-magnetometry High Frequency EPR 4. Resonant Quantum Tunneling of Magnetization Thermally activated, thermally assisted and pure Crossover between regimes Berry Phase and Landau-Zener Method 5. High Spin Superposition States SMM Ni 4 : microwave spectroscopy and magnetometry Photon induced transitions between superposition states Decoherence rate Longitudinal (energy) relaxation times 6. Perspectives 2

2 Nanomagnetism multi-domain single-domain Size: 100 nm nm 1-10 nm 0.1 nm Thin-films Nano-particles Single-molecules Atoms Spin, S = ~20 ~1 r M r M P r j 3 Quantum Tunneling of Magnetization +m -m U Thermal Quantum T c = U/k B B(0) Quantum Tunneling Thermal relaxation (over the barrier) Magnetic Field Relaxation rate T c Temperature also, Enz and Schilling, van Hemmen and Suto (1986) 4

3 Magnetic Bistability in a Molecular Magnet Nature 1993, and Sessoli et al., JACS 1993 Magnetic hysteresis at 2.8 K and below (2.2 K) S=10 ground state spin 5 Quantum Tunneling in Single Molecule Magnets Single crystal studies of Mn12: L. Thomas, et al. Nature 383, 145 (1996) Susceptibility studies: J.M. Hernandez, et al. EPL 35, 301 (1996) 6

4 Single Molecule Magnets! Molecules with a large spin ground state (S~10)! Large (Ising-like) uniaxial magnetic anistropy! Single crystals: ordered 3D arrays of weakly interacting (almost identical) molecules! Well defined discrete set of magnetic quantum states! Chemical control of quantum energy levels Molecule Spin Molecule Symmetry Magnetic Anisotropy Intermolecular Interactions Basic Properties! Individual molecules can be magnetized and exhibit magnetic hysteresis! Quantum tunneling of the magnetization 7 SMMs Fundamental studies of nanomagnets Study of resonant QTM (Friedman, et al; Thomas et al. CNRS 1995) Magnetization reversal and relaxation - Crossover from classical thermal activation to quantum tunneling (Sangregorio, et al. 1997, Bokacheva and ADK, PRL 2000) - Modeling from a microscopic point of view (Pederson et al., Harmon et al.) Interference effects in magnetic quantum tunneling (W. Wernsdorfer and R. Sessoli, Science 1999) Effects of nuclear spins on quantum tunneling Study of decoherence of quantum systems Potential Applications: Magnetic Data Storage (1 bit/molecule in 2D: 100 tera-bit/in 2 ) Magnetic Cooling Millimeter and sub-millimeter wave devices Quantum information storage (Leuenberger and Loss 2001) 8

5 Quantum information storage and quantum computing 9 Magnetic Interactions Energy scales Exchange Magnetic anisotropy Dipolar Hyperfine Spin-Hamiltonian 10 10

6 First SMM: Mn 12 -acetate [Mn 12 O 12 (O 2 CCH 3 ) 16 (H 2 O) 4 ].2CH 3 COOH.4H 2 O 8 Mn 3+ S=2 4 Mn 4+" S=3/2 Magnetic Core Competing AFM Interactions Ground state S=10 Organic Environment 2 acetic acid molecules 4 water molecules Single Crystal S 4 site symmetry Tetragonal lattice a=1.7 nm, b=1.2 nm Strong uniaxial magnetic anisotropy (~60 K) Weak intermolecular interactions (~0.1 K) Micro-Hall magnetometer 11 Intra-molecular Exchange Interactions S=2 J 1 S=3/2 " J 2 J 3 J 1 J 2 J 3 J 4 J 1 ~ 215 K J 2,J 3 ~ 85 K J 4 ~ 45 K H = # <ij> J 4 r J ij S i " S r j + # i r S i " D i " S r i +... (2S 1 +1) 8 (2S 2 +1) 4 =10 8! S=10 and 2S+1=21 12

7 Magnetic Anisotropy and Spin Hamiltonian Spin Hamiltonian H = "DS z 2 " gµ B r S # r H S z m >= m m > E m = Dm 2 (Ising-like) Uniaxial anisotropy 2S+1 spin levels z up x down y U=DS 2 13 Experimental Techniques Magnetometry Micro-Hall Effect Magnetometry Micro-Squid Spectroscopy EPR Neutron Scattering NMR Specific Heat 14 14

8 Micromagnetometry µ-hall Effect! µ-squid B sample B sample 1 µm Hall bars 1 to 10 µm Josephson Junctions Based on Lorentz Force Measures magnetic field Large applied in-plane magnetic fields (>20 T) Broad temperature range Single magnetic particles! Based on flux quantization! Measures magnetic flux! Applied fields below the upper critical field (~1 T)! Low temperature (below T c )! Single magnetic particles! Ultimate sensitivity ~1 µ B Ultimate sensitivity ~10 2 µ B see, A. D. Kent et al., Journal of Applied Physics 1994 W. Wernsdorfer, JMMM $ High Frequency EPR S. Hill, UF, Gainsville Cylindrical TE01n (Q ~ ) f = 16 # 300 GHz Single crystal 1! 0.2! 0.2 mm 3 T = 0.5 to 300 K, µ o H up to 45 tesla We use a Millimeter-wave Vector Network Analyzer (MVNA, ABmm) as a spectrometer M. Mola et al., Rev. Sci. Inst. 71, 186 (2000) 16

9 Single-crystal, high-field/frequency EPR Reminder: field//z z, S 4 -axis H z m s represents spin- projection along the molecular 4-fold axis Magnetic dipole transitions (%m s = ±1) - note frequency scale! EPR measures level spacings directly, unlike magnetometry methods 17 Energy level diagram for D < 0 system, B//z B // z-axis of molecule 18

10 HFEPR for high symmetry (C3v) Mn4 cubane; S = 9 /2 Cavity transmission (arb. units - offset) [Mn 4 O 3 (OSiMe 3 )(O 2 CEt) 3 (dbm) 3 ]! 5 / 2 to! 3 / 2! 7 / 2 to! 5 / 2! 9 / 2 to! 7 / 2 f = 138 GHz! 3 / 2 to! 1 / 2! 1 / 2 to 1 / 2 24 K 18 K 14 K 8 K 6 K 4 K Magnetic field (tesla) 19 Fit to easy axis data - yields diagonal crystal field terms 20

11 Single-crystal, high-field/frequency EPR Rotate field in xy-plane and look for symmetry effects H ˆ = DS ˆ 2 z + H ˆ r T + gµ B B " S r # E(m s ) = $ " D 2 ± H T % & ' ( m 2 s + gµ B m s B s z, S 4 -axis H xy In high-field limit (gµ B B > DS), m s represents spin-projection along the applied field-axis 21 Resonant Quantum Tunneling of Magnetization H = "DS z 2 " gµ B S z H z S z m >= m m > E m = Dm 2 gµ B H z m with Zeeman term Resonance fields where antiparallel spin projections are coincident, H k =kd/g! B, levels m and m ; k=m+m z up y U=U 0 (1-H/H o ) 2 x down Magnetic field Anisotropy Field: H A = 2DS gµ B 22

12 Resonant Quantum Tunneling of Magnetization H L = kh R kh R < H L < (k+1)h R H L = (k+1)h R onresonance offresonance onresonance on-resonance off-resonance on-resonance QT on (fast relaxation) QT off (slow relaxation) Resonant Quantum Tunneling of Magnetization Relaxation processes in SMMs Magnetic relaxation at high temperature Thermal activation (over the barrier) z up y U=U 0 (1-H/H o ) 2 x down Magnetic field M/M s! o H z (T) 24

13 Resonant Quantum Tunneling of Magnetization Relaxation processes in SMMs Magnetic relaxation at intermediate temperature Thermally assisted tunneling z up U=U 0 (1-H/H o ) 2 x down y U " TAT = f (T) k=6 k=7 k=8 Magnetic field H z 25 Resonant Quantum Tunneling of Magnetization Relaxation processes in SMMs Magnetic relaxation at low temperature Pure quantum tunneling z up y U=U 0 (1-H/H o ) 2 x down Magnetic field M/M s Field sweep rate T/min 0.2 T/min 0.1 T/min T/min 0.02 T/min k= Magnetic hysteresis k=6 k= Applied Field (Tesla) 26

14 Crossover from Thermally Assisted to Pure QTM H = "DS z 2 " gµ B S z H z " gµ B S x H x Tunnel splitting on resonance $ " m,m' # D H ' x & ) % ( H A m*m' Upper levels Large splitting Low Boltzmann population Relaxation pathway = f(t) Lowest levels Small splitting High Boltzman population % m,m Theory of thermally assisted tunneling: Villian (1997), Leuenberger & Loss (2000) and Chudnovsky & Garanin (1999) Crossover: Chudnovsky & Garanin, PRL Energy/(DS 2 ) D=0.548(3) K g z =1.94(1)! H0= D/gzµB = 0.42 T B=1.17(2)! 10-3 K (EPR: Barra et al., PRB 97) Energy relative to the lowest level in the metastable well m =6 m =7 m =8 m =9 m =10 n = H z /H o K. Mertes et al. PRB

15 Experiments on the Crossover to Pure QTM in Mn12-acetate dm/dh versus Hz Schematic: dominant levels as a function of temperature Energy/(DS 2 ) m =6 m =7 m =8 Thermal ~1 K m =9 ~0.1 K m =10 n = Quantum H z /H o L. Bokacheva, ADK, M. Walters, PRL High Spin Superposition States SMM Ni4; microwave spectroscopy and magnetometry Photon induced transition between superposition states Decoherence rate Longitudinal (energy) relaxation times 30

16 Coherent QTM: Microwave Spectroscopy and Magnetometry & o Limit S" A" Second condition: insures dephasing by phonons and nuclear spins is small E o typical energy width of nuclear spin multiplet " " o >> # >> kt, E o First condition: consider just 2 lowest energy states Predictions (Stamp) for dephasing rate due to nuclear spins in an applied field Γ φ = E o (Chudnovsky) spin-phonon interaction: universal lower bound on decoherence τ1 1 = Γ 1 = S2 2 ω 3 12π h 2 coth( hω ρc 5 t 2kT ) 2 31 Experiment Study: Magnetization Dynamics Induced by Microwaves (cw and pulsed) Photon induced transition between superposition states combined with magnetization measurements Expectation S" A" % M/M s H L Monitor spin-state populations while performing microwave spectroscopy Pulsed and CW microwave fields High magnetic sensitivity: ~10 5 spins/hz 1/2 High magnetic fields Time resolved magnetic measurements (~GHz) 32

17 Description of SMM Ni 4 H = "DS 2 z + C S 4 4 ( + + S " ) " gµ B S z H z " gµ B S x H x [Ni(hmp)(t-BuEtOH)Cl] 4 S = 4 m=0 m =+1 m =+2 m =-1 m =-2 m =+3 m =-4 U = 12K T exp ~ 0.4 K m =-4 m =-3 '5.5 K 33 Description of SMM Ni 4 High frequency EPR: Stephen Hill, UF - Gainesville, FL H = "DS z 2 + C S S " 4 ( ) " gµ B S z H z " gµ B S x H x D L = K D U = K B 0 4 = K B 4 4 = K g z = 2.30 g x = g y = 2.23 Magnetic field (tesla) Cavity transmission (arb. units) Magnetic field (tesla) f = 101 GHz Angle (degrees) Multiple but narrow peaks molecular environments with slightly different D values 34

18 Experiment A( " S( T = 0.4K z up > HT down > 1 ( up"+ down" ) 2 1 A" = ( up"# down" ) 2 S" = M/Ms Expectation Calculated expectation H! L 35! Experimental Setup Vector Network Analyzer He3 cryostat continuous wave pulsed microwave switch pulses Pattern generator Superconducting magnet 36

19 Results: Photon Induced Transitions between Superposition States Magnetization with microwaves 0.0 H L (T) T = 0.45 K "T < 0.01 K in the peaks 37 Results: Photon Induced Transitions between Superposition States up( down( down( up( Level Repulsion: Observation of quantum superposition of high spin states with opposite magnetization 38

20 Results: Photon Induced Transitions between Superposition States Curvature 39 Approach to saturation and Ni 4 micro-environments As a function of mw power cw radiation H T = 3.2 T f = 39.4 GHz P loss-in-coax = 15 db µ We observe variations up to 90% for higher fields and lower frequencies 40

21 Results: Transverse relaxation rate () 2 ) decoherence () * ) Decoherence time lower bound H T = 3.2 T f = 39.4 GHz 41 Results: Longitudinal relaxation rate () 1 ) Pulsed mw experiments "M ' (T ON - T OFF ) P P B 1 P B 2 A 42

22 Results: Longitudinal relaxation rate () 1 ) Pulsed radiation experiments 43 Longitudinal relaxation effects in cw experiments Energy relaxation increases with freq. 44

23 Spin-Phonon Relaxation Pulsed radiation experiments τ 1 Relaxation rate: 1 = Γ 1 = S2 2 ω 3 12π hρc 5 t coth( hω 2kT ) Chudnovsky, PRL 2004 c t = 10 3 m/s, f = /h = 20 GHz τ 1 = 10 3 sec Upper limit on the relaxation time! coupling Phonon-laser effect: Γ L ω 3 Chudnovsky and Garanin, PRL 2004 Other levels important? 45 Summary (Ni 4 ) Observation of energy splittings between low-lying superpositions of high spin-states. Direct measurement of the magnetization combined with microwave spectroscopy Lower bound for the decoherence time ) * > 0.5 ns Similar to that observed in the Mn 4 -dimer through EPR measurements a system with strong intermolecular exchange interactions Determination of the longitudinal relaxation times ) ~ s Characterized ) as a function of longitudinal field and frequency 46

24 Perspectives Coherent oscillations of the magnetization; Rabi and Spin Echo experiments t +/2 delay + t delay +/2 High radiation power is needed for measurable Rabi periods Ex: +-pulse,h 1 ST pulse = +, H 1 =1 µt, T pulse = 5 µs H 1 =100 µt, T pulse = 50 ns Open questions also relate to collective effects: Intermolecular magnetic interactions---exchange and dipolar Radiation and phonon fields! Magnetic Relaxation Enhancement (Cavity) and Superradiance in Mn 12 -acetate Tejada et al., Phys. Rev. B, 2003 and Appl. Phys. Lett. B, 2004 Predicted by Chudnovsky and Garanin - > L Coherent radiation. = N. photon 47

Spins Dynamics in Nanomagnets. Andrew D. Kent

Spins Dynamics in Nanomagnets. Andrew D. Kent Spins Dynamics in Nanomagnets Andrew D. Kent Department of Physics, New York University Lecture 1: Magnetic Interactions and Classical Magnetization Dynamics Lecture 2: Spin Current Induced Magnetization

More information

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent Spin Dynamics in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University Collaborators: Gregoire de Loubens, Enrique del Barco Stephen Hill Dmitry Garanin Myriam Sarachik, Yosi

More information

NYU An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets. Andrew D. Kent

NYU An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets. Andrew D. Kent An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University 1 Outline I. Introduction Quantum tunneling

More information

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels Gage Redler and Stephen Hill Department of Physics, University of Florida Abstract High Frequency Electron Paramagnetic Resonance

More information

Beyond the Giant Spin Approximation: The view from EPR

Beyond the Giant Spin Approximation: The view from EPR Beyond the Giant Spin Approximation: The view from EPR Simple is Stephen Hill, NHMFL and Florida State University At UF: Saiti Datta, Jon Lawrence, Junjie Liu, Erica Bolin better In collaboration with:

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

Magnetic quantum tunnelling in subsets of

Magnetic quantum tunnelling in subsets of Magnetic quantum tunnelling in subsets of Mn -Ac molecules D. Phalen a, S. Hill b a Department of Physics, Rice University, Houston, TX 77005 b Department of Physics, University of Florida, Gainesville,

More information

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy Nuclear spin dynamics in quantum regime of a single-molecule magnet Andrea Morello UBC Physics & Astronomy Kamerlingh Onnes Laboratory Leiden University Nuclear spins in SMMs Intrinsic source of decoherence

More information

The First Cobalt Single-Molecule Magnet

The First Cobalt Single-Molecule Magnet The First Cobalt Single-Molecule Magnet En-Che Yang and David N Hendrickson Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92037, USA Wolfgang Wernsdorfer

More information

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS B. Barbara, W. Wernsdorfer, E. Bonet, L. Thomas (IBM), I. Chiorescu (FSU), R. Giraud (LPN) Laboratory Louis Néel, CNRS, Grenoble Collaborations with other groups

More information

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation OFFPRINT Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation G. de Loubens, D. A. Garanin, C. C. Beedle, D. N. Hendrickson and A. D. Kent EPL, 83 (2008) 37006

More information

Quantum characterization of Ni4 magnetic clusters using electron paramagnetic resonance

Quantum characterization of Ni4 magnetic clusters using electron paramagnetic resonance Quantum characterization of Ni4 magnetic clusters using electron paramagnetic resonance S. Maccagnano a, R. S. Edwards b, E. Bolin b, S. Hill b, D. Hendrickson c, E. Yang c a Department of Physics, Montana

More information

Intermolecular interactions (dipolar and exchange)

Intermolecular interactions (dipolar and exchange) Intermolecular interactions (dipolar and exchange) SMM ideal Mn 2 ac Mn 4 (SB) spin chains, etc. MM...? doped Fe 6 Fe 5 Ga Fe 8 [Mn 4 ] 2 J/D Mn 4 singlemolecule magnet Mn 4 O 3 (OSiMe 3 )(O 2 CMe) 3 (dbm)

More information

Quantum dynamics in Single-Molecule Magnets

Quantum dynamics in Single-Molecule Magnets Quantum dynamics in Single-Molecule Magnets Wolfgang Wernsdorfer Laboratoire de Magnétisme Louis Néel C.N.R.S. - Grenoble S = 10 2 to 10 6 S = 1/2 to 30 permanent magnets macroscopic micron particles Magnetic

More information

B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion

B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion Quantum tunnelling and coherence of mesoscopic spins B. Barbara, Institut Néel, CNRS, Grenoble Brief history From classical to quantum nanomagnetism Quantum nanomagnetism From relaxation to coherence Ensemble

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Photon-induced magnetization changes in single-molecule magnets invited

Photon-induced magnetization changes in single-molecule magnets invited JOURNAL OF APPLIED PHYSICS 99, 08D103 2006 Photon-induced magnetization changes in single-molecule magnets invited M. Bal and Jonathan R. Friedman a Department of Physics, Amherst College, Amherst, Massachusetts

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

Disordered Solids. real crystals spin glass. glasses. Grenoble

Disordered Solids. real crystals spin glass. glasses. Grenoble Disordered Solids real crystals spin glass glasses Grenoble 21.09.11-1 Tunneling of Atoms in Solids Grenoble 21.09.11-2 Tunneln Grenoble 21.09.11-3 KCl:Li Specific Heat specific heat roughly a factor of

More information

Recent Developments in Quantum Dynamics of Spins

Recent Developments in Quantum Dynamics of Spins Recent Developments in Quantum Dynamics of Spins B. Barbara, R. Giraud*, I. Chiorescu*, W. Wernsdorfer, Lab. Louis Néel, CNRS, Grenoble. Collaborations with other groups: D. Mailly (Marcoussis) D. Gatteschi

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

nano Josephson junctions Quantum dynamics in

nano Josephson junctions Quantum dynamics in Permanent: Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Cécile Naud Bernard Pannetier Quantum dynamics in nano Josephson junctions CNRS Université Joseph Fourier Institut Néel- LP2MC GRENOBLE

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet April 28 EPL, 82 (28) 175 doi: 1.129/295-575/82/175 www.epljournal.org Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet M. Bal 1, Jonathan R. Friedman 1(a),W.Chen 2,

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation EUROPHYSICS LETTERS 1 July 2005 Europhys. Lett., 71 (1), pp. 110 116 (2005) DOI: 10.1209/epl/i2005-10069-3 Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

ELECTRON PARAMAGNETIC RESONANCE

ELECTRON PARAMAGNETIC RESONANCE ELECTRON PARAMAGNETIC RESONANCE = MAGNETIC RESONANCE TECHNIQUE FOR STUDYING PARAMAGNETIC SYSTEMS i.e. SYSTEMS WITH AT LEAST ONE UNPAIRED ELECTRON Examples of paramagnetic systems Transition-metal complexes

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

T 1, T 2, NOE (reminder)

T 1, T 2, NOE (reminder) T 1, T 2, NOE (reminder) T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations of the system following perturbation

More information

MIT Department of Nuclear Science & Engineering

MIT Department of Nuclear Science & Engineering 1 MIT Department of Nuclear Science & Engineering Thesis Prospectus for the Bachelor of Science Degree in Nuclear Science and Engineering Nicolas Lopez Development of a Nanoscale Magnetometer Through Utilization

More information

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt Spin Dynamics Basics of Nuclear Magnetic Resonance Second edition Malcolm H. Levitt The University of Southampton, UK John Wiley &. Sons, Ltd Preface xxi Preface to the First Edition xxiii Introduction

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Developing Quantum Logic Gates: Spin-Resonance-Transistors Developing Quantum Logic Gates: Spin-Resonance-Transistors H. W. Jiang (UCLA) SRT: a Field Effect Transistor in which the channel resistance monitors electron spin resonance, and the resonance frequency

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain.

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain. This journal is The Royal Society of Chemistry 13 Electronic Supplementary Information {Dy(α-fur) 3 } n : from double relaxation Single-Ion Magnet behavior to 3D ordering E.Bartolomé, a J. Bartolomé, b

More information

Relaxation. Ravinder Reddy

Relaxation. Ravinder Reddy Relaxation Ravinder Reddy Relaxation What is nuclear spin relaxation? What causes it? Effect on spectral line width Field dependence Mechanisms Thermal equilibrium ~10-6 spins leads to NMR signal! T1 Spin-lattice

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

ELECTRON MAGNETIC RESONANCE OF MANGANESE COMPOUNDS

ELECTRON MAGNETIC RESONANCE OF MANGANESE COMPOUNDS ELECTRON MAGNETIC RESONANCE OF MANGANESE COMPOUNDS Peter C Riedi School of Physics and Astronomy, University of St. Andrews, Fife, Scotland KY16 9SS, UK (pcr@st-and.ac.uk) INTRODUCTION This talk will introduce

More information

LARGE-SCALE QUANTUM PHENOMENA COURSE. UNIVERSITY of INNSBRUCK. (June 2010)

LARGE-SCALE QUANTUM PHENOMENA COURSE. UNIVERSITY of INNSBRUCK. (June 2010) LARGE-SCALE QUANTUM PHENOMENA COURSE to be given at the UNIVERSITY of INNSBRUCK (June 2010) INTRODUCTION 1.BASIC PHENOMENA 2.EXPERIMENTAL OBSERVATIONS 3.THEORETICAL FRAMEWORK LARGE-SCALE QUANTUM PHENOMENA:

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

Spin electric coupling and coherent quantum control of molecular nanomagnets

Spin electric coupling and coherent quantum control of molecular nanomagnets Spin electric coupling and coherent quantum control of molecular nanomagnets Dimitrije Stepanenko Department of Physics University of Basel Institute of Physics, Belgrade February 15. 2010 Collaborators:

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations CONTENTS Preface Acknowledgements Symbols Abbreviations 1 INTRODUCTION 1.1 Scope of pulse EPR 1.2 A short history of pulse EPR 1.3 Examples of Applications 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits

Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits Matteo Atzori, Lorenzo Tesi, Elena Morra, Mario Chiesa, Lorenzo Sorace,

More information

arxiv:cond-mat/ v2 10 Dec 1998

arxiv:cond-mat/ v2 10 Dec 1998 Quantum Coherence in Fe 8 Molecular Nanomagnets E. del Barco 1, N. Vernier 1, J.M. Hernandez 2, J.Tejada 2, E.M. Chudnovsky 3, E. Molins 4 and G. Bellessa 1 1 Laboratoire de Physique des Solides, Bâtiment

More information

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Bellaterra: anuary 2011 Architecture & Design of Molecule Logic Gates and Atom Circuits Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Fernando LUIS Instituto de Ciencia de Materiales

More information

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine in the de Haas van Alphen effect Magnetic domains of non-spin origine related to orbital quantization Jörg Hinderer, Roman Kramer, Walter Joss Grenoble High Magnetic Field laboratory Ferromagnetic domains

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Multiphoton antiresonance in large-spin systems

Multiphoton antiresonance in large-spin systems PHYSICAL REVIEW B 76, 054436 2007 Multiphoton antiresonance in large-spin systems C. Hicke and M. I. Dykman Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824,

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology 3 E 532 nm 1 2δω 1 Δ ESR 0 1 A 1 3 A 2 Microwaves 532 nm polarization Pulse sequence detection

More information

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)-

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- Quantum tunneling of magnetization in lanthanide single-molecule magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- dysprosium anions** Naoto Ishikawa, * Miki Sugita and Wolfgang Wernsdorfer

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supramolecular Spin Valves M. Urdampilleta, 1 J.-P. Cleuziou, 1 S. Klyatskaya, 2 M. Ruben, 2,3* W. Wernsdorfer 1,* 1 Institut Néel, associé á l Université Joseph Fourier, CNRS, BP 166, 38042 Grenoble Cedex

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov 26 February 2014 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Linear and nonlinear spectroscopy

Linear and nonlinear spectroscopy Linear and nonlinear spectroscopy We ve seen that we can determine molecular frequencies and dephasing rates (for electronic, vibrational, or spin degrees of freedom) from frequency-domain or timedomain

More information

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Advisor: M. Özgür Oktel Co-Advisor: Özgür E. Müstecaplıoğlu Outline Superradiance and BEC Superradiance

More information

Cavity QED with quantum dots in microcavities

Cavity QED with quantum dots in microcavities Cavity QED with quantum dots in microcavities Martin van Exter, Morten Bakker, Thomas Ruytenberg, Wolfgang Löffler, Dirk Bouwmeester (Leiden) Ajit Barve, Larry Coldren (UCSB) Motivation and Applications

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Spin Relaxation and NOEs BCMB/CHEM 8190

Spin Relaxation and NOEs BCMB/CHEM 8190 Spin Relaxation and NOEs BCMB/CHEM 8190 T 1, T 2 (reminder), NOE T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations

More information

10.4 Continuous Wave NMR Instrumentation

10.4 Continuous Wave NMR Instrumentation 10.4 Continuous Wave NMR Instrumentation coherent detection bulk magnetization the rotating frame, and effective magnetic field generating a rotating frame, and precession in the laboratory frame spin-lattice

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy INTRODUCTION TO Magnetic Resonance Spectroscopy ESR, NMR, NQR D. N. SATHYANARAYANA Formerly, Chairman Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore % I.K. International

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Quantum Transport and Dissipation

Quantum Transport and Dissipation Thomas Dittrich, Peter Hänggi, Gert-Ludwig Ingold, Bernhard Kramer, Gerd Schön and Wilhelm Zwerger Quantum Transport and Dissipation WILEY-VCH Weinheim Berlin New York Chichester Brisbane Singapore Toronto

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

.O. Demokritov niversität Münster, Germany

.O. Demokritov niversität Münster, Germany Quantum Thermodynamics of Magnons.O. Demokritov niversität Münster, Germany Magnon Frequency Population BEC-condensates http://www.uni-muenster.de/physik/ap/demokritov/ k z k y Group of NonLinea Magnetic

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov October 2018 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY 20 CHAPTER MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY 20.1 Introduction to Molecular Spectroscopy 20.2 Experimental Methods in Molecular Spectroscopy 20.3 Rotational and Vibrational Spectroscopy 20.4 Nuclear

More information

Neutron spin filter based on dynamically polarized protons using photo-excited triplet states

Neutron spin filter based on dynamically polarized protons using photo-excited triplet states The 2013 International Workshop on Polarized Sources, Targets & Polarimetry Neutron spin filter based on dynamically polarized protons using photo-excited triplet states Tim Eichhorn a,b, Ben van den Brandt

More information

Magnetism of materials

Magnetism of materials Magnetism of materials 1. Introduction Magnetism and quantum mechanics In the previous experiment, you witnessed a very special case of a diamagnetic material with magnetic susceptibility χχ = 1 (usually

More information

NMR Dynamics and Relaxation

NMR Dynamics and Relaxation NMR Dynamics and Relaxation Günter Hempel MLU Halle, Institut für Physik, FG Festkörper-NMR 1 Introduction: Relaxation Two basic magnetic relaxation processes: Longitudinal relaxation: T 1 Relaxation Return

More information

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid Magnetism Electromagnetic Fields in a Solid SI units cgs (Gaussian) units Total magnetic field: B = μ 0 (H + M) = μ μ 0 H B = H + 4π M = μ H Total electric field: E = 1/ε 0 (D P) = 1/εε 0 D E = D 4π P

More information

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Polyhedron 22 (2003) 1783/1788 www.elsevier.com/locate/poly New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Mònica Soler a, Wolfgang Wernsdorfer b, *, Ziming Sun c,

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego Michigan Quantum Summer School Ann Arbor, June 16-27, 2008. Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego 1. Motivation: Quantum superiority in superposition

More information

magnet Mn 12 -t-butylacetate thermally-activated down to 400 mk

magnet Mn 12 -t-butylacetate thermally-activated down to 400 mk Polyhedron 26 (2007) 2320 2324 www.elsevier.com/locate/poly 55 Mn nuclear spin relaxation in the truly axial single-molecule magnet Mn 12 -t-butylacetate thermally-activated down to 400 mk A.G. Harter

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Quantum step heights in hysteresis loops of molecular magnets

Quantum step heights in hysteresis loops of molecular magnets PHYSICAL REVIEW B, VOLUME 65, 224401 Quantum step heights in hysteresis loops of molecular magnets Jie Liu, 1 Biao Wu, 1 Libin Fu, 2 Roberto B. Diener, 1 and Qian iu 1 1 Department of Physics, The University

More information

Nuclear spin control in diamond. Lily Childress Bates College

Nuclear spin control in diamond. Lily Childress Bates College Nuclear spin control in diamond Lily Childress Bates College nanomri 2010 Hyperfine structure of the NV center: Excited state? Ground state m s = ±1 m s = 0 H = S + gµ S 2 z B z r s r r + S A N I N + S

More information