Drickamer type. Disk containing the specimen. Pressure cell. Press

Size: px
Start display at page:

Download "Drickamer type. Disk containing the specimen. Pressure cell. Press"

Transcription

1

2 ε-fe

3 Drickamer type Press Pressure cell Disk containing the specimen

4 Low Temperature Cryostat

5 Diamond Anvil Cell (DAC) Ruby manometry Re gasket for collimation Small size of specimen space High-density source Fe 57 enriched specimens

6 High-Pressure Mössbauer Experiments γ K

7 Direction of the γ-ray source Ferro. 2 nd & 5 th line intensities become zero DAC Antiferro. 2 nd & 5 th line intensities increase

8 cryostat External magnetic fields: 1-7 T

9 Mössbauer spectra of Pd-2%Fe alloy vs. 57 Co in Rh source under various applied fields T Relative Transmission T 3 T T 7 T Velocity, v / mm s

10 SrFeO 3 La 1/3 Sr 2/3 FeO 3 CaFeO 3

11 SrFeO 3 Cubic perovskite structure High valence state: Fe +4 T N = 134 K screw spin str. No charge disproportionation Metallic conductivity to 4 K FeO 6 Octa. :Sr :O :Fe

12 ö

13

14 74 GPa 300 K Antiferro. Ferro.

15 Results from SrFeO3

16 Summary (SrFeO 3 ) Relative Transmision Velocity, v / mm s GPa 4.5 K 10 Transition from screw spin structure to collinear ferro. at about 7.2 GPa. Phase diagram of SrFeO 3

17 LaSr2Fe3O9

18

19

20

21 Summary (Perovskite) High-pressure 57 Fe Mössbauer measurements at 4.5 K under external magnetic fields up to 7 T have been performed perovskite iron oxides using a DAC and superconducting magnet. Pressure induced ferromagnetism. Most probably due to the double exchange interaction. Ground states of these oxides switch to uniformcharge and ferromagnetic states under external high pressure.

22

23 Nuclear Excitation & Nuclear Resonant Scattering with Synchrotron Radiation Elastic scattering Hyperfine interaction spectroscopy Ultra-monochromatic X-ray Inelastic scattering Phonon density of state Γ - t - / 1 2 -i t ie0t h h ψ () t = ψ(0) e e = dωg( ω) e ω 2π Frequency Domain Time Domain 1 ih g( ω) = 2 ψ(0) π ( ) iγ ωh E0 + 2

24 How to get Nuclear Scattered Photons Forbidden reflections for the electronic Thomson Scattering by using an antiferromagnetic singlecrystal Time-delay of Nuclear Scattering GIAR(Grazing Incidence Anti-reflection) Film

25 Coherent scattering : Coherent excitation & Coherent deexcitation Quantum Beat

26 Quantum Beat in Time Spectrum

27 Linear Polarization of SR

28 SR Diamond Anvil Cell

29 Collective excitation of nuclei (nuclear exciton) Collective de-exciation A = P N n A ij j =1 i =1 N i=1 n A ij j =1 2 I(t) N 1 e iω 1 t +N 2 e iω 2 t 2 e t/τ =(N 12 +N 22 ) e t/τ +2N 1 N 2 e t/τ cos(ω 1 ω 2 )t

30 Time integral forward scattered intensity I fs 0 * (t)dt = E fs (t)e fs (t)dt 0 = 1 E 2π fs (ω)e * fs (ω)dω E fs (ω) is the Fourier transform of E fs (t). Transmission amplitude E tr = E i e iλf 0 ρ z f 0 (ω) = k 8π σ Γ / h 0 χf LM ω ω 0 iγ /2h f σ, σ (ω) = k 8π σ 0χf LM n Γ / h j =1 ω ω 0 iγ /2h C 2 (1) (1)* ( j e,1, j g ;m e, m j,m g )D m j,σ (0,θ,φ)D m j, σ (0,θ,φ)

31 Nuclear Resonant Scattering (NRS) Scatterer = Nucleus of one specific isotope ( 40 K, 57 Fe, 83 Kr, 119 Sn, 121 Sb, 149 Sm, 151 Eu, 161 Dy, 169 Tm, 181 Ta) Elastic scattering: Local magnetic and electric information 57 Fe

32 Nuclear Resonant Scattering (NRS) Scatterer = Nucleus of one specific isotope ( 40 K, 57 Fe, 83 Kr, 119 Sn, 121 Sb, 149 Sm, 151 Eu, 161 Dy, 169 Tm, 181 Ta) Elastic scattering: Local magnetic and electric information intensity 57 Fe time

33 Nuclear Resonant Scattering (NRS) Scatterer = Nucleus of one specific isotope ( 40 K, 57 Fe, 83 Kr, 119 Sn, 121 Sb, 149 Sm, 151 Eu, 161 Dy, 169 Tm, 181 Ta) Elastic scattering: Local magnetic and electric information 57 Fe

34 Nuclear Resonant Scattering (NRS) Scatterer = Nucleus of one specific isotope ( 40 K, 57 Fe, 83 Kr, 119 Sn, 121 Sb, 149 Sm, 151 Eu, 161 Dy, 169 Tm, 181 Ta) Elastic scattering: Local magnetic and electric information 57 Fe

35 Beating beating appears if two signals with a slightly different frequency are added beating frequency = difference in frequency of both signals + = + =

36 Nuclear Resonant Scattering (NRS) Scatterer = Nucleus of one specific isotope ( 40 K, 57 Fe, 83 Kr, 119 Sn, 121 Sb, 149 Sm, 151 Eu, 161 Dy, 169 Tm, 181 Ta) Elastic scattering: Local magnetic and electric information Intensity (log-scale) 57 Fe Time (ns)

37

38

39 ε-fe

40 High-pressure phase of iron, ε-fe Structure transition from α-fe to ε-fe at 13 GPa ε-fe does not show any magnetic order even at K Rf. Cort et al. J. Appl. Phys. 53, 2064 (1982). Band structure calculation suggests that ε-fe is Pauli paramagnet. Rf. Fletcher and Addis, J. Phys. Metal Phys. 4, 1951 (1974). Discovery of superconductivity in ε-fe Rf. K. Shimizu et al., Nature 412, 316 (2001).

41 Superconductivity in ε-fe K. Shimizu et al., Nature 412, 316 (2001).

42 57 Fe Mössbauer M spectra of iron at 298 K under various pressures Relative Transmission MPa 4 GPa 10 GPa 13 GPa Velocity, v / mm s GPa

43

44 57 Fe Mössbauer M spectra of ε-fe at 20 GPa and 4.5 K under applied fields Relative Transmisson T 1T 3T 5T 7T C. S., δ / mm s -1 Hyperfine Field, H int. / T External Field, H ext. / T Velocity, v / mm s -1

45 Summary (ε-fe) High pressure 57 Fe Mössbauer measurements have been performed for ε- Fe at 4.5 K and 20 GPa using DAC with radioactive source 57 Co in Rh under longitudinally applied external magnetic fields up to 7 T. No induced hyperfine magnetic fields at 57 Fe in ε-fe suggesting that ε-fe has no local moment.

46 E N D

47 10-9 ev 10-7 ev (Hyperfine interaction spectroscopy) Magnetic dipole moment vs Magnetic fields Local magnetic moments

48 (Hyperfine interaction spectroscopy)

49 Mössbauer spectroscopy High Pressure Apparatus Drickamer Type Diamond Anvil Cell

50 Gamma-Decay of the Nucleus hω i = α ; j, m, L, M, π π e e e f = β ; j, m, π g g g Energy : E i = E f + Angular momentum: Parity : π e = π g π π e π g =(-1) L Electric 2 L pole (EL) radiation π e π g =(-1) L-1 Magnetic 2 L pole (ML) radiation hω j j L j + j, L 0 e g e g M = m m L π e π g =1: no parity change π e π g =-1: parity change γ-ray (photon): wave vector k, polarization ξ ξ=+1 right-handed circular polarization ξ= 1 left-handed circular polarization e g ξ=+1 ξ= 1 k

51 ,, jg mg π g je, me, π e γ k, ξ C W( k, ξ; m, m ) = j mπ C H j m π C e g e e e int g g g 1 = [ ()] = ( ) ( ) ' Hint H R l j Ri A Ri c i 1/2 2π c A( R) (, ) ˆ(, )exp{ [ ( ) ]} i = h a k ξ e k ξ ik R l ri CC k, ξ kv ( ξ ) a k, : ek ˆ(, ξ ) W j mπ H j m π C e C e ' ik u( l) ik R 0 () l e e e g g g T T absorption emission transition matrix for a free nucleus 2 probability amplitude for recoilless 3 phase factor for interatomic interference effects Recoilless fraction ik u () l f( k, T) C e C T 2

52 2 ( Γ /2) σ = fσωf ( θ) ( ) ( /2) σ 0 0 i i 2 2 hωk + Eg Ee + Γ ik u () l f C e C 2 1 2je = 2π k 2j α ( θ) = ( + ) ξ =± 1 2 T L jg L je ωi = M= L mg M m e L f 2L 1 D ξ ( φθ0) i = g M T 2 2

53 Mössbauer spectrometer

54 Mössbauer spectrometer 2

55 SPring-8

56 Beamline Map at SPring-8

57 Nuclear Resonant Scattering: two identical single line samples, one with variable velocity ω ω excited r v Counts Detector ω ground Time

58 Stroboscopic Detection v r Normalized intensity Prompt pulses ω ω sample Time-windows Time

59 Stroboscopic Detection Eu 2 O 3 -Eu 2 O 3 V=4.82mm/s V=14.46mm/s time (ns)

60 Stroboscopic Detection 151 Eu in Eu 2 O 3 V=2.41mm/s V=4.82mm/s V=7.23mm/s V=9.64mm/s V=12.05mm/s V=14.46mm/s time (ns)

61 Isomer shift determination: Pressure dependence of the isomer shift of 151 Eu in EuPd 2 Si 2 Eu 2+ : (Xe) 4f 7 5d 0 6s 0 Eu 3+ : (Xe) 4f 6 5d 0 6s 0 DI Valence fluctuations: 7th elektron of Eu 2+ jumps back and forth between localized 4flevel and valence band. TRI Fermi-level 0.5 Ry Energy

62 Motivation Magnetic property of ε-fe. 57 Fe Mössbauer spectroscopy of ε-fe at 4.5 K and 20 GPa using DAC under external magnetic fields up to 7 T. Non-magnetic or paramagnetic with small magnetic moment.

63 Mössbauer spectra of Pd-2%Fe alloy vs. 57 Co in Rh source under various applied fields T Relative Transmission T 3 T T 7 T Velocity, v / mm s

Disordered Materials: Glass physics

Disordered Materials: Glass physics Disordered Materials: Glass physics > 2.7. Introduction, liquids, glasses > 4.7. Scattering off disordered matter: static, elastic and dynamics structure factors > 9.7. Static structures: X-ray scattering,

More information

Conclusion. 109m Ag isomer showed that there is no such broadening. Because one can hardly

Conclusion. 109m Ag isomer showed that there is no such broadening. Because one can hardly Conclusion This small book presents a description of the results of studies performed over many years by our research group, which, in the best period, included 15 physicists and laboratory assistants

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

RFSS: Lecture 6 Gamma Decay

RFSS: Lecture 6 Gamma Decay RFSS: Lecture 6 Gamma Decay Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition Probabilities Internal Conversion Angular Correlations Moessbauer

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Gamma-ray decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 March 7, 2011

Gamma-ray decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 March 7, 2011 Gamma-ray decay Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 March 7, 2011 NUCS 342 (Lecture 18) March 7, 2011 1 / 31 Outline 1 Mössbauer spectroscopy NUCS 342 (Lecture

More information

Determination of the hyperfine parameters of iron in aluminous (Mg,Fe)SiO 3 perovskite

Determination of the hyperfine parameters of iron in aluminous (Mg,Fe)SiO 3 perovskite Determination of the hyperfine parameters of iron in aluminous (Mg,Fe)SiO 3 perovskite Jennifer M. Jackson Seismological Laboratory, Geological & Planetary Sciences California Institute of Technology VLab

More information

Laser Spectroscopy on Bunched Radioactive Ion Beams

Laser Spectroscopy on Bunched Radioactive Ion Beams Laser Spectroscopy on Bunched Radioactive Ion Beams Jon Billowes University of Manchester Balkan School on Nuclear Physics, Bodrum 2004 Lecture 1. 1.1 Nuclear moments 1.2 Hyperfine interaction in free

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

Mossbauer Effect and Spectroscopy. Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln

Mossbauer Effect and Spectroscopy. Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln Mossbauer Effect and Spectroscopy Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln Emission E R γ-photon E transition hν = E transition - E R Photon does not carry

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

Nuclear resonant scattering of synchrotron radiation: a novel approach to the Mössbauer effect

Nuclear resonant scattering of synchrotron radiation: a novel approach to the Mössbauer effect Nuclear resonant scattering of synchrotron radiation: a novel approach to the Mössbauer effect Johan Meersschaut Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, Belgium Johan.Meersschaut@fys.kuleuven.be

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

Angular Correlation Experiments

Angular Correlation Experiments Angular Correlation Experiments John M. LoSecco April 2, 2007 Angular Correlation Experiments J. LoSecco Notre Dame du Lac Nuclear Spin In atoms one can use the Zeeman Effect to determine the spin state.

More information

3. Perturbed Angular Correlation Spectroscopy

3. Perturbed Angular Correlation Spectroscopy 3. Perturbed Angular Correlation Spectroscopy Dileep Mampallil Augustine K.U.Leuven, Belgium Perturbed Angular Correlation Spectroscopy (PAC) is a gamma ray spectroscopy and can be used to investigate

More information

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy. Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy Hiroshi Watanabe Outline Prospects for decay spectroscopy of neutron-rich

More information

(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly.

(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly. Sample questions for Quiz 3, 22.101 (Fall 2006) Following questions were taken from quizzes given in previous years by S. Yip. They are meant to give you an idea of the kind of questions (what was expected

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

The Electronic Structure of Atoms

The Electronic Structure of Atoms The Electronic Structure of Atoms Classical Hydrogen-like atoms: Atomic Scale: 10-10 m or 1 Å + - Proton mass : Electron mass 1836 : 1 Problems with classical interpretation: - Should not be stable (electron

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Magnetism in low dimensions from first principles. Atomic magnetism. Gustav Bihlmayer. Gustav Bihlmayer

Magnetism in low dimensions from first principles. Atomic magnetism. Gustav Bihlmayer. Gustav Bihlmayer IFF 10 p. 1 Magnetism in low dimensions from first principles Atomic magnetism Gustav Bihlmayer Institut für Festkörperforschung, Quantum Theory of Materials Gustav Bihlmayer Institut für Festkörperforschung

More information

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13 Atomic Physics Chapter 6 X ray 11/20/13 24/12/2018 Jinniu Hu 1!1 6.1 The discovery of X ray X-rays were discovered in 1895 by the German physicist Wilhelm Roentgen. He found that a beam of high-speed electrons

More information

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture Nuclear Physics (PHY-31) Dr C. M. Cormack 11 Nuclear Physics This Lecture This Lecture We will discuss an important effect in nuclear spectroscopy The Mössbauer Effect and its applications in technology

More information

Simo Huotari University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012

Simo Huotari University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012 Overview of spectroscopies III Simo Huotari University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012 Motivation: why we need theory Spectroscopy (electron dynamics) Theory of electronic

More information

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PHYSICAL SCIENCE TEST SERIES # 4. Atomic, Solid State & Nuclear + Particle

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PHYSICAL SCIENCE TEST SERIES # 4. Atomic, Solid State & Nuclear + Particle UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM BOOKLET CODE PH PHYSICAL SCIENCE TEST SERIES # 4 Atomic, Solid State & Nuclear + Particle SUBJECT CODE 05 Timing: 3: H M.M: 200 Instructions 1.

More information

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 709 718 c International Academic Publishers Vol. 43, No. 4, April 15, 005 Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

More information

.O. Demokritov niversität Münster, Germany

.O. Demokritov niversität Münster, Germany Quantum Thermodynamics of Magnons.O. Demokritov niversität Münster, Germany Magnon Frequency Population BEC-condensates http://www.uni-muenster.de/physik/ap/demokritov/ k z k y Group of NonLinea Magnetic

More information

Advanced Spectroscopies of Modern Quantum Materials

Advanced Spectroscopies of Modern Quantum Materials Advanced Spectroscopies of Modern Quantum Materials The part about Advanced spectroscopies Some course goals: Better understand the link between experiment and the microscopic world of quantum materials.

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

Inelastic soft x-ray scattering, fluorescence and elastic radiation

Inelastic soft x-ray scattering, fluorescence and elastic radiation Inelastic soft x-ray scattering, fluorescence and elastic radiation What happens to the emission (or fluorescence) when the energy of the exciting photons changes? The emission spectra (can) change. One

More information

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie Quantum Mechanics II Lecture (www.sp.phy.cam.ac.u/~dar/pdf) David Ritchie Michaelmas. So far we have found solutions to Section 4:Transitions Ĥ ψ Eψ Solutions stationary states time dependence with time

More information

THE MÖSSBAUER EFFECT

THE MÖSSBAUER EFFECT THE MÖSSBAUER EFFECT Resonant gamma ray fluorescence is a useful tool in determining a variety of nuclear and solid state properties. The discovery of the Mössbauer effect greatly increased the accuracy

More information

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS Page 1 1. Within the nucleus, the charge distribution A) Is constant, but falls to zero sharply at the nuclear radius B) Increases linearly from the centre, but falls off exponentially at the surface C)

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

Solutions to exam : 1FA352 Quantum Mechanics 10 hp 1

Solutions to exam : 1FA352 Quantum Mechanics 10 hp 1 Solutions to exam 6--6: FA35 Quantum Mechanics hp Problem (4 p): (a) Define the concept of unitary operator and show that the operator e ipa/ is unitary (p is the momentum operator in one dimension) (b)

More information

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis X-ray Spectroscopy Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis Element specific Sensitive to low concentrations (0.01-0.1 %) Why XAS? Applicable under

More information

( ) /, so that we can ignore all

( ) /, so that we can ignore all Physics 531: Atomic Physics Problem Set #5 Due Wednesday, November 2, 2011 Problem 1: The ac-stark effect Suppose an atom is perturbed by a monochromatic electric field oscillating at frequency ω L E(t)

More information

Mossbauer Spectroscopy

Mossbauer Spectroscopy Mossbauer Spectroscopy Emily P. Wang MIT Department of Physics The ultra-high resolution ( E = E 10 12 ) method of Mossbauer spectroscopy was used to probe various nuclear effects. The Zeeman splittings

More information

The Mössbauer Effect

The Mössbauer Effect Experimental Physics V85.0112/G85.2075 The Mössbauer Effect Spring, 2005 Tycho Sleator, David Windt, and Burton Budick Goals The main goal of this experiment is to exploit the Mössbauer effect to measure

More information

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR X-Ray Magnetic Dichroism S. Turchini SM-CNR stefano.turchini@ism.cnr.it stefano.turchini@elettra.trieste.it Magnetism spin magnetic moment direct exchange: ferro antiferro superexchange 3d Ligand 2p 3d

More information

Introduction to Modern Physics

Introduction to Modern Physics SECOND EDITION Introduction to Modern Physics John D. McGervey Case Western Reserve University Academic Press A Subsidiary of Harcourt Brace Jovanovich Orlando San Diego San Francisco New York London Toronto

More information

X-Ray Scattering and Absorption by Magnetic Materials

X-Ray Scattering and Absorption by Magnetic Materials X-Ray Scattering and Absorption by Magnetic Materials S. W. Lovesey ISIS Facility, Rutherford Appleton Laboratory S. P. Collins Synchrotron Radiation Department, Daresbury Laboratory CLARENDON PRESS OXFORD

More information

Neutron scattering from Skyrmions in helimagnets. Jonas Kindervater

Neutron scattering from Skyrmions in helimagnets. Jonas Kindervater Neutron scattering from Skyrmions in helimagnets Jonas Kindervater Collaborations TU München - E21 A. Bauer F. Rucker S. Säubert F. Haslbeck G. Benka P. Schmakat G. Brandl A. Chacon P. Böni C. Pfleiderer

More information

X-ray absorption spectroscopy.

X-ray absorption spectroscopy. X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ Frank de Groot PhD: solid state chemistry U Nijmegen

More information

Highenergy Nuclear Optics of Polarized Particles

Highenergy Nuclear Optics of Polarized Particles Highenergy Nuclear Optics of Polarized Particles Vladimir G. Baryshevsky Research Institute for Nuclear Problems Belarusian State University 1> World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI

More information

Energy Spectroscopy. Excitation by means of a probe

Energy Spectroscopy. Excitation by means of a probe Energy Spectroscopy Excitation by means of a probe Energy spectral analysis of the in coming particles -> XAS or Energy spectral analysis of the out coming particles Different probes are possible: Auger

More information

Resonant Inelastic X-ray Scattering on elementary excitations

Resonant Inelastic X-ray Scattering on elementary excitations Resonant Inelastic X-ray Scattering on elementary excitations Jeroen van den Brink Ament, van Veenendaal, Devereaux, Hill & JvdB Rev. Mod. Phys. 83, 705 (2011) Autumn School in Correlated Electrons Jülich

More information

Neutron Scattering of Magnetic excitations

Neutron Scattering of Magnetic excitations Neutron Scattering of Magnetic excitations Magnetic excitations, magnons, and spin chains by Ibrahima Diallo Technische Universität Muenchen Outline Properties of the Neutron Spin, spin waves, and magnons

More information

Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei

Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei 5th Workshop on Nuclear Level Density and Gamma Strength Oslo, May 18-22, 2015 LLNL-PRES-670315 LLNL-PRES-XXXXXX This work was performed

More information

Neutron Instruments I & II. Ken Andersen ESS Instruments Division

Neutron Instruments I & II. Ken Andersen ESS Instruments Division Neutron Instruments I & II ESS Instruments Division Neutron Instruments I & II Overview of source characteristics Bragg s Law Elastic scattering: diffractometers Continuous sources Pulsed sources Inelastic

More information

Opportunities with collinear laser spectroscopy at DESIR:

Opportunities with collinear laser spectroscopy at DESIR: Opportunities with collinear laser spectroscopy at DESIR: the LUMIERE facility GOALS of LUMIERE experiments: Gerda Neyens, K.U. Leuven, Belgium (1) measure ground state properties of exotic isotopes: (see

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

The Potential Use of X-ray FELs in Nuclear Studies

The Potential Use of X-ray FELs in Nuclear Studies 1 The Potential Use of X-ray FELs in Nuclear Studies + + + + + + + + + Wen-Te Liao Max Planck Institute for Nuclear Physics Heidelberg, Germany 29 August 2013 @ FEL2013 R. L. M össbauer, Zeitschrift Physik

More information

October Entrance Examination: Condensed Matter Multiple choice quizzes

October Entrance Examination: Condensed Matter Multiple choice quizzes October 2013 - Entrance Examination: Condensed Matter Multiple choice quizzes 1 A cubic meter of H 2 and a cubic meter of O 2 are at the same pressure (p) and at the same temperature (T 1 ) in their gas

More information

Two-body weak decay of highly charged ions, a tool to study neutrino properties?

Two-body weak decay of highly charged ions, a tool to study neutrino properties? Two-body weak decay of highly charged ions, a tool to study neutrino properties? The detector: ESR Experimental Storage Ring cooling: electron-, stochastic ion detection: Schottky-noise, particle detector

More information

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble I) - Basic concepts of XAS and XMCD - XMCD at L 2,3 edges

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information

BETA-RAY SPECTROMETER

BETA-RAY SPECTROMETER 14 Sep 07 β-ray.1 BETA-RAY SPECTROMETER In this experiment, a 180, constant-radius magnetic spectrometer consisting of an electromagnet with a Geiger-Muller detector, will be used to detect and analyze

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Nuclear Photonics: Basic facts, opportunities, and limitations

Nuclear Photonics: Basic facts, opportunities, and limitations Nuclear Photonics: Basic facts, opportunities, and limitations Norbert Pietralla, TU Darmstadt SFB 634 GRK 2128 Oct.17th, 2016 Nuclear Photonics 2016, Monterey Nuclear Photonics: Basic Facts Prof.Dr.Dr.h.c.

More information

Doppler Correction after Inelastic Heavy Ion Scattering 238 U Ta system at the Coulomb barrier

Doppler Correction after Inelastic Heavy Ion Scattering 238 U Ta system at the Coulomb barrier Doppler-Corrected e - and γ-ray Spectroscopy Physical Motivation In-beam conversion electron spectroscopy complements the results obtained from γ-spectroscopy A method for determining the multipolarity

More information

Neutrino Helicity Measurement

Neutrino Helicity Measurement PHYS 851 Introductory Nuclear Physics Instructor: Chary Rangacharyulu University of Saskatchewan Neutrino Helicity Measurement Stefan A. Gärtner stefan.gaertner@gmx.de December 9 th, 2005 2 1 Introduction

More information

Nuclear Magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) The Nuclear Magnetic Resonance Spectroscopy (NMR) is one of the most important spectroscopic methods to explore the structure and dynamic

More information

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Lecture 6: Physical Methods II UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Physical Methods used in bioinorganic chemistry X ray crystallography X ray absorption (XAS)

More information

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center Film Characterization Tutorial G.J. Mankey, 01/23/04 Theory vs. Experiment A theory is something nobody believes, except the person who made it. An experiment is something everybody believes, except the

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics W. S. С Williams Department of Physics, University of Oxford and St Edmund Hall, Oxford CLARENDON PRESS OXFORD 1991 Contents 1 Introduction 1.1 Historical perspective 1 1.2

More information

Atomic Physics 3 rd year B1

Atomic Physics 3 rd year B1 Atomic Physics 3 rd year B1 P. Ewart Lecture notes Lecture slides Problem sets All available on Physics web site: http:www.physics.ox.ac.uk/users/ewart/index.htm Atomic Physics: Astrophysics Plasma Physics

More information

A brief history of neutrino. From neutrinos to cosmic sources, DK&ER

A brief history of neutrino. From neutrinos to cosmic sources, DK&ER A brief history of neutrino Two body decay m 1 M m 2 Energy-momentum conservation => Energy of the decay products always the same 1913-1930: Puzzle of decay Continuous spectrum of particles Energy is not

More information

The wavefunction ψ for an electron confined to move within a box of linear size L = m, is a standing wave as shown.

The wavefunction ψ for an electron confined to move within a box of linear size L = m, is a standing wave as shown. 1. This question is about quantum aspects of the electron. The wavefunction ψ for an electron confined to move within a box of linear size L = 1.0 10 10 m, is a standing wave as shown. State what is meant

More information

Lecture 22 Ion Beam Techniques

Lecture 22 Ion Beam Techniques Lecture 22 Ion Beam Techniques Schroder: Chapter 11.3 1/44 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

Nuclear Physics for Applications

Nuclear Physics for Applications Stanley C. Pruss'm Nuclear Physics for Applications A Model Approach BICENTENNIAL WILEY-VCH Verlag GmbH & Co. KGaA VII Table of Contents Preface XIII 1 Introduction 1 1.1 Low-Energy Nuclear Physics for

More information

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions).

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). 170 LIGHT wavelength Diffraction frequency = wavelengths / time = - Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). - Einstein noted that viewing light as a particle

More information

The electronic structure of materials 1

The electronic structure of materials 1 Quantum mechanics 2 - Lecture 9 December 18, 2013 1 An overview 2 Literature Contents 1 An overview 2 Literature Electronic ground state Ground state cohesive energy equilibrium crystal structure phase

More information

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons Fundamental MRI Principles Module 2 N S 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons positively charged neutrons no significant charge electrons negatively charged Protons

More information

THE MÖSSBAUER EFFECT

THE MÖSSBAUER EFFECT THE MÖSSBAUER EFFECT Resonant gamma ray fluorescence is a useful tool in determining a variety of nuclear and solid state properties. The discovery of the Mössbauer effect greatly increased the accuracy

More information

Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers

Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers Zsolt Révay Institute of Isotopes, Budapest, Hungary Dept. of Nuclear

More information

Photons in the universe. Indian Institute of Technology Ropar

Photons in the universe. Indian Institute of Technology Ropar Photons in the universe Photons in the universe Element production on the sun Spectral lines of hydrogen absorption spectrum absorption hydrogen gas Hydrogen emission spectrum Element production on the

More information

Electromagnetic modulation of monochromatic neutrino beams

Electromagnetic modulation of monochromatic neutrino beams Journal of Physics: Conference Series PAPER OPEN ACCESS Electromagnetic modulation of monochromatic neutrino beams To cite this article: A L Barabanov and O A Titov 2016 J. Phys.: Conf. Ser. 675 012009

More information

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge Ref. p. 59] 1.5. 3d elements and C, Si, Ge, Sn or Pb 7 1.75 1.50 Co Si 0.8 0. 3.50 3.5 Co Si 0.8 0. H cr Magnetic field H [koe] 1.5 1.00 0.75 0.50 0.5 C C IF "A" P Frequency ωγ / e [koe] 3.00.75.50.5.00

More information

Atomic Quantum number summary. From last time. Na Optical spectrum. Another possibility: Stimulated emission. How do atomic transitions occur?

Atomic Quantum number summary. From last time. Na Optical spectrum. Another possibility: Stimulated emission. How do atomic transitions occur? From last time Hydrogen atom Multi-electron atoms This week s honors lecture: Prof. Brad Christian, Positron Emission Tomography Course evaluations next week Tues. Prof Montaruli Thurs. Prof. Rzchowski

More information

Laser Induced Control of Condensed Phase Electron Transfer

Laser Induced Control of Condensed Phase Electron Transfer Laser Induced Control of Condensed Phase Electron Transfer Rob D. Coalson, Dept. of Chemistry, Univ. of Pittsburgh Yuri Dakhnovskii, Dept. of Physics, Univ. of Wyoming Deborah G. Evans, Dept. of Chemistry,

More information

Neutron Diffraction: a general overview

Neutron Diffraction: a general overview RUG1 Neutron Diffraction: a general overview Graeme Blake Zernike Institute for Advanced Materials University of Groningen Outline Elastic scattering of neutrons from matter Comparison of neutron and X-ray

More information

2008 Brooks/Cole 2. Frequency (Hz)

2008 Brooks/Cole 2. Frequency (Hz) Electromagnetic Radiation and Matter Oscillating electric and magnetic fields. Magnetic field Electric field Chapter 7: Electron Configurations and the Periodic Table Traveling wave moves through space

More information

Electronic Spectra of Complexes

Electronic Spectra of Complexes Electronic Spectra of Complexes Interpret electronic spectra of coordination compounds Correlate with bonding Orbital filling and electronic transitions Electron-electron repulsion Application of MO theory

More information

X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals. Stefania PIZZINI Laboratoire Louis Néel - Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals. Stefania PIZZINI Laboratoire Louis Néel - Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals Stefania PIZZINI Laboratoire Louis Néel - Grenoble I) - History and basic concepts of XAS - XMCD at M 4,5

More information

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1? Physics 243A--Surface Physics of Materials: Spectroscopy Final Examination December 16, 2014 (3 problems, 100 points total, open book, open notes and handouts) Name: [1] (50 points), including Figures

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

Fast detectors for Mössbauer spectroscopy )

Fast detectors for Mössbauer spectroscopy ) Fast detectors for Mössbauer spectroscopy ) A.L. Kholmetskii Department of Physics, Belarus State University, Minsk, Belarus M. Mashlan Palacký University, Olomouc, Czech Republic K. Nomura School of Engineering,

More information

arxiv: v2 [nucl-th] 11 Jun 2018

arxiv: v2 [nucl-th] 11 Jun 2018 Nuclear spin dependence of time reversal invariance violating effects in neutron scattering Vladimir Gudkov Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 908,

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

Exploring new aspects of

Exploring new aspects of Exploring new aspects of orthogonality catastrophe Eugene Demler Harvard University Harvard-MIT $$ NSF, AFOSR MURI, DARPA OLE, MURI ATOMTRONICS, MURI POLAR MOLECULES Outline Introduction: Orthogonality

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

Optical Lattices. Chapter Polarization

Optical Lattices. Chapter Polarization Chapter Optical Lattices Abstract In this chapter we give details of the atomic physics that underlies the Bose- Hubbard model used to describe ultracold atoms in optical lattices. We show how the AC-Stark

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. p. 10-0 10..

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 23 Weak Interactions I Standard Model of Particle Physics SS 23 ors and Helicity States momentum vector in z direction u R = p, = / 2 u L = p,

More information

A proof-of-principle experiment of EIT with gamma radiation in FePSe 3 single crystal

A proof-of-principle experiment of EIT with gamma radiation in FePSe 3 single crystal Hyperfine Interact DOI 1.17/s1751-11-8-8 A proof-of-principle experiment of EIT with gamma radiation in FePSe 3 single crystal Hisakazu Muramatsu S. Nakajo K. Nakagami K. Nagata S. Mochizuki H. Suzuki

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information