The electronic structure of materials 1

Size: px
Start display at page:

Download "The electronic structure of materials 1"

Transcription

1 Quantum mechanics 2 - Lecture 9 December 18, 2013

2 1 An overview 2 Literature

3 Contents 1 An overview 2 Literature

4 Electronic ground state Ground state cohesive energy equilibrium crystal structure phase transitions between structures elastic constants charge density magnetic order static dielectric susceptibility static magnetic susceptibility nuclear vibrations (in the adiabatic approximation). Excited state low-energy excitations Pauli spin susceptibility transport electrical conductivity optical properties thermal excitation of electrons spectra for adding electrons spectra for removing electrons.

5 Electronic ground state Interplay: electronic ground state spatial structure of the nuclei bonding

6 Electronic ground state 1 closed-shell systems rare gases molecular solids van der Waals interaction 2 ionic bonding 3 covalent bonding 4 metallic bonding 5 hydrogen bonding

7 Electronic ground state 1 closed-shell systems 2 ionic bonding electronegativity difference charge transfer hcp, fcc or bcc insulators 3 covalent bonding 4 metallic bonding 5 hydrogen bonding

8 Electronic ground state 1 closed-shell systems 2 ionic bonding 3 covalent bonding complete change of the electronic states open structures 4 metallic bonding 5 hydrogen bonding

9 Electronic ground state 1 closed-shell systems 2 ionic bonding 3 covalent bonding 4 metallic bonding partially filled bands close-packed structures 5 hydrogen bonding

10 Electronic ground state 1 closed-shell systems 2 ionic bonding 3 covalent bonding 4 metallic bonding 5 hydrogen bonding p-e attraction no core repulsion intra- and inter- molecular

11 Electron density in the ground state n(r) can be: measured experimentally - x-ray scettering - high-energy electron scattering calculated theoretically

12 Electron density in the ground state n(r) can be: measured experimentally - x-ray scettering - high-energy electron scattering calculated theoretically n(r) reveals: core density atomic-like Debye-Waller factor smearing of the average density due to thermal and zero-point motion outer density changes in density due to bonding and charge transfer

13 Electron density in the ground state core density atomic-like Debye-Waller factor smearing of the average density due to thermal and zero-point motion outer density changes in density due to bonding and charge transfer A question How would you reveal (calculate) the covalent bond density?

14 Electron density in the ground state

15 Volume or pressure as the fundamental variables Equation of state: E = E(p, T ) E = E(V, T = 0) very easy to calculate one of the most important tests of the theory (e-e interaction)

16 Volume or pressure as the fundamental variables Fundamental quantities E = E(V ) = E total (V ), p = de dv, B = V dp dv = V d2 p dv 2

17 Volume or pressure as the fundamental variables Fundamental quantities E = E(V ) = E total (V ), p = de dv, B = V dp dv = V d2 p dv 2 How to test the theory using these variables: 1 equilibrium volume V 0 = E 0, p = 0 2 equilibrium bulk modulus B 0 = E 0, p = 0

18 Volume or pressure as the fundamental variables For example, 1 calc. E for several V 2 fit with analytic eq. of states de 3 gives V0 and E0 dv d 2 p 4 dv gives B 2 Accuracy within few percent of exp.

19 Contents An overview Literature Phase transitions under pressure Experiments can now easily measure materials properties under pressure Bridgman era: th century 40 s Igor Lukaˇ cevi c DAC (diamond anvil cell) - C. E. Weir (1959)

20 Phase transitions under pressure Pressure can change many materials properties Band structure of K under pressure [2].

21 Phase transitions under pressure Pressure can change many materials properties The shift of optical absorption spectra under pressure [3].

22 Phase transitions under pressure Pressure can change many materials properties Existance of superconducting phases under pressure [4].

23 Phase transitions under pressure Pressure can change many materials properties E(V ) of various Si phases [5].

24 Phase transitions under pressure How to calculate the pressure at which phase transition occurs? 1 G(T = 0) = H stable structure enthalpy minimum 2 Gibbs construction of tangent lines between E(V ) curves Enthalpies of various InP phases [6].

25 Phase transitions under pressure How to calculate the pressure at which phase transition occurs? 1 G(T = 0) = H stable structure enthalpy minimum 2 Gibbs construction of tangent lines between E(V ) curves E(V ) of various Si phases [5].

26 Phase transitions under pressure How to calculate the pressure at which phase transition occurs? 1 G(T = 0) = H stable structure enthalpy minimum 2 Gibbs construction of tangent lines between E(V ) curves So, how accurate are these methods? Lowest transition pressures of several semisonductors [6].

27 Elasticity: stress-strain relation A question What happens with the electronic ground state when strain is applied?

28 Elasticity: stress-strain relation A question What happens with the electronic ground state when strain is applied? Streckung des Grundgebietes.

29 Elasticity: stress-strain relation Stress-strain relation σ αβ = 1 V σ αβ stress tensor u αβ strain tensor E tot u αβ Stress-strain relation in Si [7].

30 Magnetism and electron-electron interaction What are magnetic systems? Ones in which the ground state has a broken symmetry with spin and/or orbital moments of the electrons. Examples: 1 ferromagnets 2 antiferromagnets.

31 Magnetism and electron-electron interaction What are magnetic systems? Ones in which the ground state has a broken symmetry with spin and/or orbital moments of the electrons. Explanation: spin + orbital moment + Hund s rules

32 Magnetism and electron-electron interaction Explanation: spin + orbital moment + Hund s rules

33 Magnetism and electron-electron interaction Basic equations E(V m) = E tot(v m), m(r) = de dv m(r), χ(r, r ) = dm(r) dv m(r ) = d 2 E dv m(r)dv m(r ) m = n n V m = µh Zeeman - magnetization - effective Zeeman field which replaces e-e interaction A question What is m if we ignore the e-e interaction? What is m in a ferromagnet or a antiferromagnet?

34 Magnetism and electron-electron interaction Stoner parameter: I N(0) 1 χ

35 Phonons and displacive phase transitions Theory Experiments Vibrational spectra: infrared absorption spectroscopy light scattering inelastic neutron scattering A question E({R I }) = E tot({r I }), F I = de, dr I C IJ = df I dr J = d2 E dr I dr J These equations hold only in adiabatic or Born-Oppenheimer approximation. Can you remember what they say?

36 Phonons and displacive phase transitions Theory Experiments Vibrational spectra: infrared absorption spectroscopy light scattering inelastic neutron scattering Great synergy between experiments and theory! E({R I }) = E tot({r I }), F I = de, dr I From these we get: C IJ = df I dr J = d2 E dr I dr J interatomic force constants static dielectric constants piezoelectric constants effective charges electron-phonon interaction.

37 Phonons and displacive phase transitions Two approaches: 1 frozen phonon method 2 response function method Left: Two optic mode displacements in MgB 2. Right: Two optic mode displacements of Ti atoms in BaTiO 3. A question What does the left figure reminds you of?

38 Phonons and displacive phase transitions Two approaches: 1 frozen phonon method 2 response function method Phonon dispersion curves for GaAs.

39 Thermal properties QMD = Quantum Molecular Dynamics (Car-Parrinello MD) liquids as a function of T solids as a function of T melting chemical reactions of molecules in solution adsorption processes. Phase diagram of carbon.

40 Thermal properties Water tough test for the theory (hydrogen bonding) Radial density distributions in water molecule.

41 Thermal properties Water tough test for the theory (hydrogen bonding) Proton transfer in water under high-temeprature/high-pressure conditions.

42 Surfaces, interfaces and defects Experiments Powerfull techniques: STM x-ray diffraction electron diffraction. Theory Supercell method - repeat supercells, not unit cells STM image of GaN (000-1) surface.

43 Surfaces, interfaces and defects Surfaces Defects Molecules

44 Surfaces, interfaces and defects Electrolyses of water on metal surfaces - Pt(111)

45 Contents 1 An overview 2 Literature

46 Literature 1 R. M. Martin, Electronic Structure - Basic Theory and Practical Methods, Cambridge University Press, Cambridge, M. Alouani et al., Phys. Rev. B 39, 8096 (1989). 3 M. Moakafi et al., Eur. Phys. J. B 64, 35 (2008). 4 V. V. Struyhkin et al., Nature 390, 382 (1997). 5 M. T. Yin et al., Phys. Rev. B 26, 5668 (1982). R. Biswas et al., Phys. Rev. B 30, 3210 (1984). 6 A. Mujica et al., Rev. Mod. Phys. 75, 863 (2003). 7 O. H. Nielsen et al., Phys. Rev. Lett. 50, 697 (1983). 8

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information

Structure and Dynamics : An Atomic View of Materials

Structure and Dynamics : An Atomic View of Materials Structure and Dynamics : An Atomic View of Materials MARTIN T. DOVE Department ofearth Sciences University of Cambridge OXFORD UNIVERSITY PRESS Contents 1 Introduction 1 1.1 Observations 1 1.1.1 Microscopic

More information

EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012

EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012 EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012 Office: 8 St. Mary s Street, Room no: 835 Phone: 353-5431 e-mail: tdm@bu.edu

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Crystalline Solids - Introduction M.P. Vaughan Overview Overview of course Crystal solids Crystal structure Crystal symmetry The reciprocal lattice Band theory

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

Atoms, Molecules and Solids (selected topics)

Atoms, Molecules and Solids (selected topics) Atoms, Molecules and Solids (selected topics) Part I: Electronic configurations and transitions Transitions between atomic states (Hydrogen atom) Transition probabilities are different depending on the

More information

Atomic structure & interatomic bonding. Chapter two

Atomic structure & interatomic bonding. Chapter two Atomic structure & interatomic bonding Chapter two 1 Atomic Structure Mass Charge Proton 1.67 х 10-27 kg + 1.60 х 10-19 C Neutron 1.67 х 10-27 kg Neutral Electron 9.11 х 10-31 kg - 1.60 х 10-19 C Electron

More information

DO PHYSICS ONLINE STRUCTURE OF THE ATOM FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS STRUCTURE OF ATOMS AND SOLIDS

DO PHYSICS ONLINE STRUCTURE OF THE ATOM FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS STRUCTURE OF ATOMS AND SOLIDS DO PHYSIS ONLINE FROM IDEAS TO IMPLEMENTATION 9.4.3 ATOMS TO TRANSISTORS STRUTURE OF ATOMS AND SOLIDS STRUTURE OF THE ATOM In was not until the early 1930 s that scientists had fully developed a model

More information

Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules

Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules Chapter 2. Atomic structure and interatomic bonding 2.1. Atomic structure 2.1.1.Fundamental concepts 2.1.2. Electrons in atoms 2.1.3. The periodic table 2.2. Atomic bonding in solids 2.2.1. Bonding forces

More information

Chemistry 111 Syllabus

Chemistry 111 Syllabus Chemistry 111 Syllabus Chapter 1: Chemistry: The Science of Change The Study of Chemistry Chemistry You May Already Know The Scientific Method Classification of Matter Pure Substances States of Matter

More information

October Entrance Examination: Condensed Matter Multiple choice quizzes

October Entrance Examination: Condensed Matter Multiple choice quizzes October 2013 - Entrance Examination: Condensed Matter Multiple choice quizzes 1 A cubic meter of H 2 and a cubic meter of O 2 are at the same pressure (p) and at the same temperature (T 1 ) in their gas

More information

X-Ray transitions to low lying empty states

X-Ray transitions to low lying empty states X-Ray Spectra: - continuous part of the spectrum is due to decelerated electrons - the maximum frequency (minimum wavelength) of the photons generated is determined by the maximum kinetic energy of the

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information

Potentials, periodicity

Potentials, periodicity Potentials, periodicity Lecture 2 1/23/18 1 Survey responses 2 Topic requests DFT (10), Molecular dynamics (7), Monte Carlo (5) Machine Learning (4), High-throughput, Databases (4) NEB, phonons, Non-equilibrium

More information

Ab initio phonon calculations in mixed systems

Ab initio phonon calculations in mixed systems Ab initio phonon calculations in mixed systems Andrei Postnikov apostnik@uos.de Outline: Experiment vs. ab initio theory Ways of theory: linear response and frozen phonon approaches Applications: Be x

More information

Atoms & Their Interactions

Atoms & Their Interactions Lecture 2 Atoms & Their Interactions Si: the heart of electronic materials Intel, 300mm Si wafer, 200 μm thick and 48-core CPU ( cloud computing on a chip ) Twin Creeks Technologies, San Jose, Si wafer,

More information

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Atsufumi Hirohata Department of Electronics Go into Nano-Scale Lateral Size [m] 10-3 10-6 Micron-scale Sub-Micron-scale Nano-scale Human hair

More information

Atoms, Molecules and Solids (selected topics)

Atoms, Molecules and Solids (selected topics) Atoms, Molecules and Solids (selected topics) Part I: Electronic configurations and transitions Transitions between atomic states (Hydrogen atom) Transition probabilities are different depending on the

More information

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm)

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm) Ionic Bonding Ion: an atom or molecule that gains or loses electrons (acquires an electrical charge). Atoms form cations (+charge), when they lose electrons, or anions (- charge), when they gain electrons.

More information

Earth Solid Earth Rocks Minerals Atoms. How to make a mineral from the start of atoms?

Earth Solid Earth Rocks Minerals Atoms. How to make a mineral from the start of atoms? Earth Solid Earth Rocks Minerals Atoms How to make a mineral from the start of atoms? Formation of ions Ions excess or deficit of electrons relative to protons Anions net negative charge Cations net

More information

Mid 1800s. 1930s. Prediction of new materials using computers (Late 1990s) Quantum Mechanics. Newtonian Mechanics

Mid 1800s. 1930s. Prediction of new materials using computers (Late 1990s) Quantum Mechanics. Newtonian Mechanics Structure of an atom: Agreed upon by experimentalists and theoreticians. Today s knowledge of an atom comes from meetings like 1 Mid 1800s 1930s From F = m x a Newtonian Mechanics to E=ħxω Quantum Mechanics

More information

Lecture 6 - Bonding in Crystals

Lecture 6 - Bonding in Crystals Lecture 6 onding in Crystals inding in Crystals (Kittel Ch. 3) inding of atoms to form crystals A crystal is a repeated array of atoms Why do they form? What are characteristic bonding mechanisms? How

More information

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Marc R. Roussel January 5, 2018 Marc R. Roussel Introduction to molecular orbitals January 5, 2018 1 / 24 Review: quantum mechanics

More information

Organic Chemistry. Review Information for Unit 1. Atomic Structure MO Theory Chemical Bonds

Organic Chemistry. Review Information for Unit 1. Atomic Structure MO Theory Chemical Bonds Organic Chemistry Review Information for Unit 1 Atomic Structure MO Theory Chemical Bonds Atomic Structure Atoms are the smallest representative particle of an element. Three subatomic particles: protons

More information

Everything starts with atomic structure and bonding

Everything starts with atomic structure and bonding Everything starts with atomic structure and bonding not all energy values can be possessed by electrons; e- have discrete energy values we call energy levels or states. The energy values are quantized

More information

Understanding. Solid State Physics. Sharon Ann Holgate. CRC Press Taylor & Francis Group Boca Raton London NewYork

Understanding. Solid State Physics. Sharon Ann Holgate. CRC Press Taylor & Francis Group Boca Raton London NewYork Understanding Solid State Physics Sharon Ann Holgate (И CRC Press Taylor & Francis Group Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis Group, an informa business A TAYLORS FRANCIS

More information

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms Paramagnetic Susceptibility A) Bound Electrons in Atoms m s probability B +½ p ½e x Curie Law: 1/T s=½ + B ½ p + ½e +x With increasing temperature T the alignment of the magnetic moments in a B field is

More information

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics Physics Paper - V : ELECTROMAGNETIC THEORY AND MODERN OPTICS (DPHY 21) Answer any Five questions 1) Discuss the phenomenon of reflection and refraction of electromagnetic waves at a plane interface between

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Structural Calculations phase stability, surfaces, interfaces etc

Structural Calculations phase stability, surfaces, interfaces etc Structural Calculations phase stability, surfaces, interfaces etc Keith Refson STFC Rutherford Appleton Laboratory September 19, 2007 Phase Equilibrium 2 Energy-Volume curves..................................................................

More information

Polar Bonds and Molecules

Polar Bonds and Molecules Chemistry 1 of 33 Snow covers approximately 23 percent of Earth s surface. Each individual snowflake is formed from as many as 100 snow crystals. The polar bonds in water molecules influence the distinctive

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals.

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Physical Metallurgy The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Crystal Binding In our discussions

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

b) Discuss the amplitude of electromagnetic waves on reflection and refraction at the boundary of a dielectric interface.

b) Discuss the amplitude of electromagnetic waves on reflection and refraction at the boundary of a dielectric interface. (DPHY 21) ASSIGNMENT - 1, DEC - 2018. PAPER- V : ELECTROMAGNETIC THEORY AND MODERN OPTICS 1) a)derive Fresnel equation. b) Discuss the amplitude of electromagnetic waves on reflection and refraction at

More information

CHAPTER 2: BONDING AND PROPERTIES

CHAPTER 2: BONDING AND PROPERTIES CHAPTER 2: BONDING AND PROPERTIES ISSUES TO ADDRESS... What promotes bonding? What types of bonds are there? What properties are inferred from bonding? Chapter 2 1 Fundamental concepts Proton and electron,

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

Atoms, electrons and Solids

Atoms, electrons and Solids Atoms, electrons and Solids Shell model of an atom negative electron orbiting a positive nucleus QM tells that to minimize total energy the electrons fill up shells. Each orbit in a shell has a specific

More information

Quantum Condensed Matter Physics Lecture 4

Quantum Condensed Matter Physics Lecture 4 Quantum Condensed Matter Physics Lecture 4 David Ritchie QCMP Lent/Easter 2019 http://www.sp.phy.cam.ac.uk/drp2/home 4.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercise 5.3

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercise 5.3 CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercise 5.3 Periodic Trends and Effective Nuclear Charge Imagine four atoms/ions: One has a nucleus with

More information

Section 2.5 Atomic Bonding

Section 2.5 Atomic Bonding Section 2.5 Atomic Bonding Metallic bond, Covalent bond, Ionic bond, van der Waals bond are the different types of bonds. Van der Waals interactions: London forces, Debye interaction, Keesom interaction

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

Different states of a substance are different physical ways of packing its component particles:

Different states of a substance are different physical ways of packing its component particles: CHEM1011 Lecture 1 6 th March 2018 States of matter Different states of a substance are different physical ways of packing its component particles: solid (closely packed together and organized), liquid

More information

Lecture 1. Introduction to Electronic Materials. Reading: Pierret 1.1, 1.2, 1.4,

Lecture 1. Introduction to Electronic Materials. Reading: Pierret 1.1, 1.2, 1.4, Lecture 1 Introduction to Electronic Materials Reading: Pierret 1.1, 1.2, 1.4, 2.1-2.6 Atoms to Operational Amplifiers The goal of this course is to teach the fundamentals of non-linear circuit elements

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY SECOND EDITION C. JULIAN CHEN Department of Applied Physics and Applied Mathematics, Columbia University, New York OXFORD UNIVERSITY PRESS Contents Preface

More information

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm Metals Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals 5 nm Course Info Next Week (Sept. 5 and 7) no classes First H/W is due Sept. 1 The Previous Lecture Origin frequency dependence

More information

EGN 3365 Review on Bonding & Crystal Structures by Zhe Cheng

EGN 3365 Review on Bonding & Crystal Structures by Zhe Cheng EGN 3365 Review on Bonding & Crystal Structures 2017 by Zhe Cheng Expectations on Chapter 1 Chapter 1 Understand materials can be classified in different ways by composition, property, application, or

More information

Molecules, Compounds and Mixtures. Crystallized Alexa Fluor organic fluorescent dye compound. Image was taken with 10x objective with a TRITC filter.

Molecules, Compounds and Mixtures. Crystallized Alexa Fluor organic fluorescent dye compound. Image was taken with 10x objective with a TRITC filter. Molecules, Compounds and Mixtures Crystallized Alexa Fluor organic fluorescent dye compound. Image was taken with 10x objective with a TRITC filter. Objectives Name the two atomic models cited in the chapter

More information

1.1 Atoms. 1.1 Atoms

1.1 Atoms. 1.1 Atoms 1. Chemical bonding and crystal structure 19 21 Hydrogen atom Scanning electron microscopy Ni surface Cleaved surface ZnO, TiO 2, NiO, NaCl, Si, Ge, GaAs, InP Crystals are build by small repeating units

More information

362 Lecture 6 and 7. Spring 2017 Monday, Jan 30

362 Lecture 6 and 7. Spring 2017 Monday, Jan 30 362 Lecture 6 and 7 Spring 2017 Monday, Jan 30 Quantum Numbers n is the principal quantum number, indicates the size of the orbital, has all positive integer values of 1 to (infinity) l is the angular

More information

Solid State Physics. The biggest part of physics in terms of the number of active researchers

Solid State Physics. The biggest part of physics in terms of the number of active researchers Solid State Physics The biggest part of physics in terms of the number of active researchers Fundamental science behind materials we use in technology A lot of cool effects that we understand: e.g. topological

More information

Physics of Condensed Matter I

Physics of Condensed Matter I Physics of Condensed Matter I 1100-4INZ`PC Solid State 1 Faculty of Physics UW Jacek.Szczytko@fuw.edu.pl Chemical bonding and molecules Born Oppenheimer approximation Max Born (1882-1970) Jacob R. Oppenheimer

More information

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations, USA, July 9-14, 2017 Alessandro Erba Dipartimento di Chimica, Università di Torino (Italy) alessandro.erba@unito.it 2017 Outline -

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS CHAPTER ELEVEN AND LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Differences between condensed states and gases? KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Phase Homogeneous part

More information

CHAPTER 2 INTERATOMIC FORCES. atoms together in a solid?

CHAPTER 2 INTERATOMIC FORCES. atoms together in a solid? CHAPTER 2 INTERATOMIC FORCES What kind of force holds the atoms together in a solid? Interatomic Binding All of the mechanisms which cause bonding between the atoms derive from electrostatic interaction

More information

Electrons and Molecular Forces

Electrons and Molecular Forces Electrons and Molecular Forces Chemistry 30 Ms. Hayduk Electron Configuration Atomic Structure Atomic Number Number of protons in the nucleus Defines the element Used to organize the periodic table 1 Bohr

More information

Topic 3 Periodicity 3.2 Physical Properties. IB Chemistry T03D02

Topic 3 Periodicity 3.2 Physical Properties. IB Chemistry T03D02 Topic 3 Periodicity 3.2 Physical Properties IB Chemistry T03D02 3.1 Physical Properties hrs 3.2.1 Define the terms first ionization energy and electronegativity. (1) 3.2.2 Describe and explain the trends

More information

Interatomic Potentials. The electronic-structure problem

Interatomic Potentials. The electronic-structure problem Interatomic Potentials Before we can start a simulation, we need the model! Interaction between atoms and molecules is determined by quantum mechanics: Schrödinger Equation + Born-Oppenheimer approximation

More information

Chapter 2: Atomic Structure

Chapter 2: Atomic Structure Chapter 2: Atomic Structure Atom: Nucleus: protons and neutrons (neutral in charge) Electrons Electrons and protons are charged: e=1.6x10-19 Mass of protons and neutrons = 1.67x10-27 kg Mass of electron

More information

PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum

PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum Alignment is based on the topics and subtopics addressed by each sim. Sims that directly address the topic area

More information

Chemical bonding in solids from ab-initio Calculations

Chemical bonding in solids from ab-initio Calculations Chemical bonding in solids from ab-initio Calculations 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University

More information

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Elastic and Inelastic Scattering in Electron Diffraction and Imaging Elastic and Inelastic Scattering in Electron Diffraction and Imaging Contents Introduction Symbols and definitions Part A Diffraction and imaging of elastically scattered electrons Chapter 1. Basic kinematical

More information

ATOM atomov - indivisible

ATOM atomov - indivisible Structure of matter ATOM atomov - indivisible Greek atomists - Democrite and Leukip 300 b.c. R. Bošković - accepts the concept of atom and defines the force J. Dalton - accepts the concept of atom and

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Lecture 2: Background dconcepts

Lecture 2: Background dconcepts Optoelectronics I Lecture : Background dconcepts M. Soroosh Assistant Professor of Electronics Shahid Chamran University 1 Face Centered Crystal (FCC) Body Centered Crystal (BCC) Bragg s Law William Lawrence

More information

What factors affect whether something is a solid, liquid or gas? What actually happens (breaks) when you melt various types of solids?

What factors affect whether something is a solid, liquid or gas? What actually happens (breaks) when you melt various types of solids? States of Mattter What factors affect whether something is a solid, liquid or gas? What actually happens (breaks) when you melt various types of solids? What external factors affect whether something is

More information

From Atoms to Materials: Predictive Theory and Simulations

From Atoms to Materials: Predictive Theory and Simulations From Atoms to Materials: Predictive Theory and Simulations Week 3 Lecture 4 Potentials for metals and semiconductors Ale Strachan strachan@purdue.edu School of Materials Engineering & Birck anotechnology

More information

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together.

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together. Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions Let's get together. Most gases are NOT ideal except at very low pressures: Z=1 for ideal gases Intermolecular interactions come

More information

Materials and Devices in Electrical Engineering

Materials and Devices in Electrical Engineering Examination WS 02/03 Materials and Devices in Electrical Engineering Monday 17 th of March, 9:00 11:00, International Department, SR. 203 Notice 1. It is allowed to use any kind of aids (books, scripts,

More information

Molecular Aggregation

Molecular Aggregation Molecular Aggregation Structure Analysis and Molecular Simulation of Crystals and Liquids ANGELO GAVEZZOTTI University of Milano OXFORD UNIVERSITY PRESS Contents PART I FUNDAMENTALS 1 The molecule: structure,

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Prof. Germar Hoffmann 1. Crystal Structures 2. Reciprocal Lattice 3. Crystal Binding and Elastic Constants

More information

Magnetism in correlated-electron materials

Magnetism in correlated-electron materials Magnetism in correlated-electron materials B. Keimer Max-Planck-Institute for Solid State Research focus on delocalized electrons in metals and superconductors localized electrons: Hinkov talk outline

More information

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials Materials for Civil and Construction Engineers CHAPTER 2 Nature of Materials Bonds 1. Primary Bond: forms when atoms interchange or share electrons in order to fill the outer (valence) shells like noble

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL BASIS

More information

CHEMISTRY Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait

CHEMISTRY Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait CHEMISTRY 2000 Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system

More information

Liquids, Solids, and Phase Changes

Liquids, Solids, and Phase Changes C h a p t e r 10 Liquids, Solids, and Phase Changes KMT of Liquids and Solids 01 Gases have little or no interactions. Liquids and solids have significant interactions. Liquids and solids have well-defined

More information

Interatomic bonding 1

Interatomic bonding 1 Interatomic bonding 1 Bonding forces of atoms All forces playing role in bonding are electrostatic Coulomb forces. Nuclei attract electrons, but nuclei repulse each other as well as electrons do. So, bonding

More information

The Chemical Basis of Life

The Chemical Basis of Life The Chemical Basis of Life Chapter 2 Objectives Identify the four elements that make up 96% of living matter. Distinguish between the following pairs of terms: neutron and proton, atomic number and mass

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Lecture 16, February 25, 2015 Metallic bonding

Lecture 16, February 25, 2015 Metallic bonding Lecture 16, February 25, 2015 Metallic bonding Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 115 BI Hours: 11-11:50am

More information

3/30/2015. Third energy level. Second energy level. Energy absorbed. First energy level. Atomic nucleus. Energy released (as light)

3/30/2015. Third energy level. Second energy level. Energy absorbed. First energy level. Atomic nucleus. Energy released (as light) Chapter 2 An Introduction Chemistry Lecture 2: Energy Levels and Chemical Bonding Electrons are always moving Outside the nucleus in atomic orbitals Maybe usually Average distance from nucleus (size of

More information

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch Electronic Structure Theory for Periodic Systems: The Concepts Christian Ratsch Institute for Pure and Applied Mathematics and Department of Mathematics, UCLA Motivation There are 10 20 atoms in 1 mm 3

More information

Chapter 2 Experimental sources of intermolecular potentials

Chapter 2 Experimental sources of intermolecular potentials Chapter 2 Experimental sources of intermolecular potentials 2.1 Overview thermodynamical properties: heat of vaporization (Trouton s rule) crystal structures ionic crystals rare gas solids physico-chemical

More information

Phys 412 Solid State Physics. Lecturer: Réka Albert

Phys 412 Solid State Physics. Lecturer: Réka Albert Phys 412 Solid State Physics Lecturer: Réka Albert What is a solid? A material that keeps its shape Can be deformed by stress Returns to original shape if it is not strained too much Solid structure

More information

Chapter 6. Phase transitions. 6.1 Concept of phase

Chapter 6. Phase transitions. 6.1 Concept of phase Chapter 6 hase transitions 6.1 Concept of phase hases are states of matter characterized by distinct macroscopic properties. ypical phases we will discuss in this chapter are liquid, solid and gas. Other

More information

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q.

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q. 1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q. (a) Compute the electric part of the Maxwell stress tensor T ij (r) = 1 {E i E j 12 } 4π E2 δ ij both inside

More information

Chapter 10: Multi- Electron Atoms Optical Excitations

Chapter 10: Multi- Electron Atoms Optical Excitations Chapter 10: Multi- Electron Atoms Optical Excitations To describe the energy levels in multi-electron atoms, we need to include all forces. The strongest forces are the forces we already discussed in Chapter

More information

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W Lattice Vibrations Chris J. Pickard 500 400 300 ω (cm -1 ) 200 100 L K W X 0 W L Γ X W K The Breakdown of the Static Lattice Model The free electron model was refined by introducing a crystalline external

More information

Atomic Structure & Interatomic Bonding

Atomic Structure & Interatomic Bonding Atomic Structure & Interatomic Bonding Chapter Outline Review of Atomic Structure Atomic Bonding Atomic Structure Atoms are the smallest structural units of all solids, liquids & gases. Atom: The smallest

More information

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont McGRAW-HILL, INC. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal New Delhi

More information

1. Introduction to Clusters

1. Introduction to Clusters 1. Introduction to Clusters 1.1 The Field of Clusters Atomic clusters are aggregates of atoms containing from few to a few thousand atoms. Due to their small size, the properties of the clusters are, in

More information

Magnetism in Condensed Matter

Magnetism in Condensed Matter Magnetism in Condensed Matter STEPHEN BLUNDELL Department of Physics University of Oxford OXFORD 'UNIVERSITY PRESS Contents 1 Introduction 1.1 Magnetic moments 1 1 1.1.1 Magnetic moments and angular momentum

More information

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then 1 The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then filled with the available electrons according to

More information

Concepts in Surface Physics

Concepts in Surface Physics M.-C. Desjonqueres D. Spanjaard Concepts in Surface Physics Second Edition With 257 Figures Springer 1. Introduction................................. 1 2. Thermodynamical and Statistical Properties of

More information

Introductory Physical Chemistry Final Exam Points of Focus

Introductory Physical Chemistry Final Exam Points of Focus Introductory Physical Chemistry Final Exam Points of Focus Gas Laws: Understand the foundations of the basic SI units of Pressure and Temperature. Know and be able to use the ideal gas law. Know and be

More information

ENGR 151: Materials of Engineering LECTURE #2: ATOMIC STRUCTURE AND ATOMIC BONDING

ENGR 151: Materials of Engineering LECTURE #2: ATOMIC STRUCTURE AND ATOMIC BONDING ENGR 151: Materials of Engineering LECTURE #2: ATOMIC STRUCTURE AND ATOMIC BONDING CHAPTER 1: INTRO Four components of MS field Processing, Structure, Properties, Performance Example: Aluminum Oxide different

More information