DO PHYSICS ONLINE STRUCTURE OF THE ATOM FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS STRUCTURE OF ATOMS AND SOLIDS

Size: px
Start display at page:

Download "DO PHYSICS ONLINE STRUCTURE OF THE ATOM FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS STRUCTURE OF ATOMS AND SOLIDS"

Transcription

1 DO PHYSIS ONLINE FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS STRUTURE OF ATOMS AND SOLIDS STRUTURE OF THE ATOM In was not until the early 1930 s that scientists had fully developed a model of the atom based upon quantum physics and that was supported by experimental evidence based upon the existence of the electron, proton and neutron. Atoms consist of a positive nucleus containing protons (positive) and neutrons (neutral). The radius of a nucleus is about m. Most of the mass of the atom is due to the nucleus. Electrons being negatively charged are bound to the positively charged nucleus. Typical radii for atoms are about m. The number of protons within a nucleus determines the element. For example, carbon: 12 protons and uranium: 92 protons. The electrons are not like planets orbiting the Sun. In quantum physics terms, the bound electrons behave as waves and it is only possible to determine the probability of finding the electron within a small volume. The notion of a trajectory for these electrons is meaningless. The best way to visualize an atom is to think of a small nuclear core embedded in a an electron cloud where at certain locations there is zero probability of finding the electron while at other locations there is a high probability. Probability cloud for a hydrogen atom (2s electron) 10x10-10 m high probability of finding electron zero probability of finding an electron Probability cloud for a hydrogen atom (4d electron) high probability of finding electron zero probability of finding an electron 50x10-10 m Fig. 1. Electron probability clouds for a hydrogen atom. 1

2 All the information about electrons in an atom is given by a set of four quantum numbers. This set of four numbers determines the state of the atom and this tells us all we can know about the electrons. Principle quantum number (shell) n = 1, 2, 3, Orbital quantum number (subshell) l = 0 (s), 1 (p), 2 (d),, n-1 Magnetic quantum number m l = 0, 1,, l Spin quantum number m s = 1/2 Each electron in an atom has a unique set of these four quantum numbers (Pauli Exclusion Principle). Electrons in an atom have their total energy (kinetic + potential) quantized. For a given atom, there is a set of discrete energy values that the electrons bound to the nucleus can possess. These discrete energy levels are classified by shells (labelled n = 1, 2, 3, ) and subshells (labelled s, p, d, ). These energy levels determine the electronic configuration for an atom. The lowest energy levels are filled first by the electrons. The lowest energy state of an atom is called its ground state. When an atom absorbs energy, electrons can jump only to vacant and available energy levels (excited atoms). The sodium atom (atomic number Z = 11) has 11 electrons. Its electronic configuration can be written as Na Z = 11 1s 2 2s 2 2p 6 3s 1 total energy 3d 4s 3p 3s 2p ground state total energy 3d 4s 3p 3s 2p excited state atom can only absorb an amount of energy equal to the difference between two energy levels number of electrons 2s 1s not to scale 2s 1s not to scale 1s 2 2s 2 2p 6 3s 1 Fig. 2. Energy levels for a sodium atom. The shells shown are n = 1, 2, 3, 4. The subshells are s, p and d. The up arrow is for m s = +1/2 and the down arrow for m s = - ½. Two electrons fill an s-subshell; six electrons fill a p-subshell and 10 electrons fill a d-subshell. shell subshell 2

3 STRUTURE OF SOLIDS Molecules and solids both exist by virtue of the strong interactions that occur between their atoms. We shall see how quantum theory of the atom can be extended to account for the electrical properties of solids and how this has led to the computer, mobile phones and the internet revolution now happening. The basic building blocks (computer chips, microchips, microprocessors, etc) perform the necessary operations and calculations for devices such as computers and mobile phones. These basic building blocks are constructed from semiconductor materials in which resistors, capacitors, pn junctions and transistors are the fundamental components. Most solids are crystalline in nature, with their constituent atoms arranged in regular, repeated units. The ionic and covalent bonds between atoms that are responsible for the formation of molecules also act to hold many crystalline solids together. In ionic bonding, each ion (charged atom) attracts itself to as many ions of opposite sign that can fit around it. The attraction between opposite charged ions balances the repulsion between similar charged ions to given an equilibrium configuration. Figure 3 shows the ionic structure for a Na + l - crystal. _ large chloride negative ion (l - ) _ + + small positive sodium ion (Na + ) Fig. 3. Ionic structure for Na + l - crystal. 3

4 In covalent bonding crystals, the attractive interatomic forces holding the crystal together arise from the sharing of electrons between atoms. For example, in diamond, the carbon atoms share electron pairs with the four other carbon atoms adjacent to it. All the electrons in the outer shells of the carbon atoms participate in the binding (electron configuration of carbon 1s 2 2s 2 2p 2 ). This structure is the reason why diamond is extremely hard and it must be heated to a temperature greater than ~3000 o before its crystal structure is disrupted. All the electrons are tightly bound to carbon atoms, so very few electrons are mobile, hence, diamond is a very good electrical insulator. carbon diamond structure: each carbon atoms shares a pair of electrons with four neighbouring carbon atoms Fig. 4. ovalent structure of diamond. Each carbon atom shares electron pairs with four adjacent carbon atoms. 4

5 Metallic bonding is another very important way in which solids can be held together by strong cohesive forces. A characteristic property of all metal atoms is the presence of only a few electrons in their outer shells, and these electrons can be detached relatively easily to leave behind a positive ion. A useful model of a metal in a solid state is to consider the solid to be an assembly of atoms that have given up their outer most electrons to form an electron gas of freely moving electrons that pervades the entire metal. The electrostatic interaction between the positive cores (nuclei + bound electrons) and the free negative electrons holds the metal together. positive core (nucleus + bound electrons) The repulsion between the positive cores is balanced by the attractive forces with the negative electron cloud negative electron cloud consisting of free electrons that can easily move through crystal structure Fig. 5. The metallic bond The high electrical and thermal conductivities of metals follows from the ability of these free electrons to freely move throughout their crystal structure. This is not the case in covalent or ionic bonding where electrons are tightly bound to single or groups of atoms. Unlike other crystals, metals may be deformed without breaking, because the electron gas allows atoms to slide pass each other whilst maintaining their strength. It is easy to make alloys (mixture of different metals) because of the non-specific nature of the metallic bond. When electromagnetic radiation is incident upon a metal surface, the free electrons start to vibrate because they absorb energy from the oscillating electric and magnetic fields of the incident electromagnetic wave. These oscillating electrons themselves act as sources of electromagnetic radiation, emitting the radiation in all direction at the same frequency as the incident wave. Some of these waves produced from the oscillating electrons will be emitted from the surface of the metal giving rise to the metal surface having a lustrous appearance and also makes the metal a good reflector. (N.B. in reflection from the metal surface, the incident radiation is absorbed, and the emitted radiation is due to the oscillations of the free electrons. 5

Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules

Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules Chapter 2. Atomic structure and interatomic bonding 2.1. Atomic structure 2.1.1.Fundamental concepts 2.1.2. Electrons in atoms 2.1.3. The periodic table 2.2. Atomic bonding in solids 2.2.1. Bonding forces

More information

4/4/2013. Covalent Bonds a bond that results in the sharing of electron pairs between two atoms.

4/4/2013. Covalent Bonds a bond that results in the sharing of electron pairs between two atoms. A chemical bond is a mutual electrical attraction between the nucleus and valence electrons of different atoms that binds the atoms together. Why bond? As independent particles, atoms have a high potential

More information

Molecules, Compounds and Mixtures. Crystallized Alexa Fluor organic fluorescent dye compound. Image was taken with 10x objective with a TRITC filter.

Molecules, Compounds and Mixtures. Crystallized Alexa Fluor organic fluorescent dye compound. Image was taken with 10x objective with a TRITC filter. Molecules, Compounds and Mixtures Crystallized Alexa Fluor organic fluorescent dye compound. Image was taken with 10x objective with a TRITC filter. Objectives Name the two atomic models cited in the chapter

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Chapter 2: Atomic Structure

Chapter 2: Atomic Structure Chapter 2: Atomic Structure Atom: Nucleus: protons and neutrons (neutral in charge) Electrons Electrons and protons are charged: e=1.6x10-19 Mass of protons and neutrons = 1.67x10-27 kg Mass of electron

More information

Ch(3)Matter & Change. John Dalton

Ch(3)Matter & Change. John Dalton Ch(3)Matter & Change John Dalton What is Matter? Matter is anything that contains mass & volume (takes up space) Energy, such as light, heat, and sound, is NOT matter. The Particle Theory of Matter 1.

More information

Atomic structure & interatomic bonding. Chapter two

Atomic structure & interatomic bonding. Chapter two Atomic structure & interatomic bonding Chapter two 1 Atomic Structure Mass Charge Proton 1.67 х 10-27 kg + 1.60 х 10-19 C Neutron 1.67 х 10-27 kg Neutral Electron 9.11 х 10-31 kg - 1.60 х 10-19 C Electron

More information

Different states of a substance are different physical ways of packing its component particles:

Different states of a substance are different physical ways of packing its component particles: CHEM1011 Lecture 1 6 th March 2018 States of matter Different states of a substance are different physical ways of packing its component particles: solid (closely packed together and organized), liquid

More information

X-Ray transitions to low lying empty states

X-Ray transitions to low lying empty states X-Ray Spectra: - continuous part of the spectrum is due to decelerated electrons - the maximum frequency (minimum wavelength) of the photons generated is determined by the maximum kinetic energy of the

More information

CHAPTER 2 INTERATOMIC FORCES. atoms together in a solid?

CHAPTER 2 INTERATOMIC FORCES. atoms together in a solid? CHAPTER 2 INTERATOMIC FORCES What kind of force holds the atoms together in a solid? Interatomic Binding All of the mechanisms which cause bonding between the atoms derive from electrostatic interaction

More information

Lecture 2: Atom and Bonding Semester /2013

Lecture 2: Atom and Bonding Semester /2013 EMT 110 Engineering Materials Lecture 2: Atom and Bonding Semester 1 2012/2013 Atomic Structure Fundamental Concept Atoms are the structural unit of all engineering materials! Each atoms consist of nucleus

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r ψ even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE What Makes Red Light Red? (4.1) Electromagnetic Radiation: energy that travels in waves (light) Waves Amplitude: height

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Chapter 7. Characteristics of Atoms. 7.1 Electromagnetic Radiation. Chapter 7 1. The Quantum Mechanical Atom. Atoms: How do we study atoms?

Chapter 7. Characteristics of Atoms. 7.1 Electromagnetic Radiation. Chapter 7 1. The Quantum Mechanical Atom. Atoms: How do we study atoms? Chapter 7 The Quantum Mechanical Atom 1 Characteristics of Atoms Atoms: possess mass contain positive nuclei contain electrons occupy volume have various properties attract one another combine to form

More information

Resistance (R) Temperature (T)

Resistance (R) Temperature (T) CHAPTER 1 Physical Properties of Elements and Semiconductors 1.1 Introduction Semiconductors constitute a large class of substances which have resistivities lying between those of insulators and conductors.

More information

CHAPTER 2. Atomic Structure And Bonding 2-1

CHAPTER 2. Atomic Structure And Bonding 2-1 CHAPTER 2 Atomic Structure And Bonding 2-1 Structure of Atoms ATOM Basic Unit of an Element Diameter : 10 10 m. Neutrally Charged Nucleus Diameter : 10 14 m Accounts for almost all mass Positive Charge

More information

Chemical bonding in solids from ab-initio Calculations

Chemical bonding in solids from ab-initio Calculations Chemical bonding in solids from ab-initio Calculations 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University

More information

Atoms, Molecules and Solids (selected topics)

Atoms, Molecules and Solids (selected topics) Atoms, Molecules and Solids (selected topics) Part I: Electronic configurations and transitions Transitions between atomic states (Hydrogen atom) Transition probabilities are different depending on the

More information

1 of 43 Boardworks Ltd Chemistry 11. Chemical Bonding

1 of 43 Boardworks Ltd Chemistry 11. Chemical Bonding 1 of 43 Boardworks Ltd 2009 Chemistry 11 Chemical Bonding 2 of 43 Boardworks Ltd 2009 Electrostatic Forces An electrostatic force is a forces existing as a result of the attraction or repulsion between

More information

Edexcel Chemistry A-level

Edexcel Chemistry A-level Edexcel Chemistry A-level Topic 1 - Atomic Structure and Periodic Table Flashcards What was stated in Dalton s atomic theory? (4) What was stated in Dalton s atomic theory? Atoms are tiny particles made

More information

Primary bonding: e- are transferred or shared Strong ( KJ/mol or 1-10 ev/atom) Secondary Bonding: no e -

Primary bonding: e- are transferred or shared Strong ( KJ/mol or 1-10 ev/atom) Secondary Bonding: no e - Types of Bondings Primary bonding: e- are transferred or shared Strong (100-1000 KJ/mol or 1-10 ev/atom) Ionic: Strong Coulomb interaction among negative atoms (have an extra electron each) and positive

More information

EE 346: Semiconductor Devices

EE 346: Semiconductor Devices EE 346: Semiconductor Devices Lecture - 5 02/01/2017 Tewodros A. Zewde 1 The One-Electron Atom The potential function is due to the coulomb attraction between the proton and electron and is given by where

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Which of the following conclusions could not be derived from Rutherford s α -particle scattering experiement? (i) Most of the space in the atom is empty. (ii) The

More information

Chapter 7 The Structure of Atoms and Periodic Trends

Chapter 7 The Structure of Atoms and Periodic Trends Chapter 7 The Structure of Atoms and Periodic Trends Jeffrey Mack California State University, Sacramento Arrangement of Electrons in Atoms Electrons in atoms are arranged as SHELLS (n) SUBSHELLS (l) ORBITALS

More information

3/30/2015. Third energy level. Second energy level. Energy absorbed. First energy level. Atomic nucleus. Energy released (as light)

3/30/2015. Third energy level. Second energy level. Energy absorbed. First energy level. Atomic nucleus. Energy released (as light) Chapter 2 An Introduction Chemistry Lecture 2: Energy Levels and Chemical Bonding Electrons are always moving Outside the nucleus in atomic orbitals Maybe usually Average distance from nucleus (size of

More information

Unit 2 - Electrons and Periodic Behavior

Unit 2 - Electrons and Periodic Behavior Unit 2 - Electrons and Periodic Behavior Models of the Atom I. The Bohr Model of the Atom A. Electron Orbits, or Energy Levels 1. Electrons can circle the nucleus only in allowed paths or orbits 2. The

More information

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability Atomic and Nuclear Structure George Starkschall, Ph.D. Lecture Objectives Describe the atom using the Bohr model Identify the various electronic shells and their quantum numbers Recall the relationship

More information

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Chapter 10: Modern Atomic Theory and the Periodic Table How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy that exhibits

More information

1.1 The Fundamental Chemistry of life

1.1 The Fundamental Chemistry of life 1.1 The Fundamental Chemistry of life Matter makes up everything in the universe, including all living organisms. Matter is composed of elements, a pure substance that cannot be broken down into simpler

More information

Materials Science. Atomic Structures and Bonding

Materials Science. Atomic Structures and Bonding Materials Science Atomic Structures and Bonding 1 Atomic Structure Fundamental concepts Each atom consists of a nucleus composed of protons and neutrons which are encircled by electrons. Protons and electrons

More information

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together.

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. For example Nacl In the Nacl lattice, each Na atom is

More information

Ø Draw the Bohr Diagrams for the following atoms: Sodium Potassium Rubidium

Ø Draw the Bohr Diagrams for the following atoms: Sodium Potassium Rubidium Chemistry 11 Atomic Theory V Name: Date: Block: 1. Atomic Radius 2. Ionization Energy 3. Electronegativity 4. Chemical Bonding Atomic Radius Periodic Trends Ø As we move across a period or down a chemical

More information

Inorganic Pharmaceutical Chemistry

Inorganic Pharmaceutical Chemistry Inorganic Pharmaceutical Chemistry Lecture No. 4 Date :25/10 /2012 Dr. Mohammed Hamed --------------------------------------------------------------------------------------------------------------------------------------

More information

i. This is the best evidence for the fact that electrons in an atom surround the nucleus in certain allowed energy levels or orbitals ii.

i. This is the best evidence for the fact that electrons in an atom surround the nucleus in certain allowed energy levels or orbitals ii. Atomic Structure I. The Atom A. Atomic theory: Devised in 1807 by John Dalton, states that all matter is made up of a small number of different kinds of atoms that are indivisible and indestructible but

More information

8 Wavefunctions - Schrödinger s Equation

8 Wavefunctions - Schrödinger s Equation 8 Wavefunctions - Schrödinger s Equation So far we have considered only free particles - i.e. particles whose energy consists entirely of its kinetic energy. In general, however, a particle moves under

More information

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercise 5.3

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercise 5.3 CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercise 5.3 Periodic Trends and Effective Nuclear Charge Imagine four atoms/ions: One has a nucleus with

More information

THE NUCLEUS OF AN ATOM

THE NUCLEUS OF AN ATOM VISUAL PHYSICS ONLINE THE NUCLEUS OF AN ATOM Models of the atom positive charge uniformly distributed over a sphere J. J. Thomson model of the atom (1907) ~2x10-10 m plum-pudding model: positive charge

More information

CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS. Reference: Electronic Devices by Floyd

CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS. Reference: Electronic Devices by Floyd CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS Reference: Electronic Devices by Floyd 1 ELECTRONIC DEVICES Diodes, transistors and integrated circuits (IC) are typical devices in electronic circuits. All

More information

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of.

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of. Notes: ATOMS AND THE PERIODIC TABLE Atomic Structure: : the smallest particle that has the properties of an element. From the early concept of the atom to the modern atomic theory, scientists have built

More information

CHAPTER 3. Crystallography

CHAPTER 3. Crystallography CHAPTER 3 Crystallography Atomic Structure Atoms are made of Protons: mass 1.00728 amu, +1 positive charge Neutrons: mass of 1.00867 amu, neutral Electrons: mass of 0.00055 amu, -1 negative charge (1 amu

More information

Electrons and Molecular Forces

Electrons and Molecular Forces Electrons and Molecular Forces Chemistry 30 Ms. Hayduk Electron Configuration Atomic Structure Atomic Number Number of protons in the nucleus Defines the element Used to organize the periodic table 1 Bohr

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Molecules and Condensed Matter

Molecules and Condensed Matter Chapter 42 Molecules and Condensed Matter PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 42 To understand

More information

Organic Chemistry. Review Information for Unit 1. Atomic Structure MO Theory Chemical Bonds

Organic Chemistry. Review Information for Unit 1. Atomic Structure MO Theory Chemical Bonds Organic Chemistry Review Information for Unit 1 Atomic Structure MO Theory Chemical Bonds Atomic Structure Atoms are the smallest representative particle of an element. Three subatomic particles: protons

More information

Li or Na Li or Be Ar or Kr Al or Si

Li or Na Li or Be Ar or Kr Al or Si Pre- AP Chemistry 11 Atomic Theory V Name: Date: Block: 1. Atomic Radius/Size 2. Ionization Energy 3. Electronegativity 4. Chemical Bonding Atomic Radius Effective Nuclear Charge (Z eff) Ø Net positive

More information

ENGR 151: Materials of Engineering LECTURE #2: ATOMIC STRUCTURE AND ATOMIC BONDING

ENGR 151: Materials of Engineering LECTURE #2: ATOMIC STRUCTURE AND ATOMIC BONDING ENGR 151: Materials of Engineering LECTURE #2: ATOMIC STRUCTURE AND ATOMIC BONDING CHAPTER 1: INTRO Four components of MS field Processing, Structure, Properties, Performance Example: Aluminum Oxide different

More information

Ionic, covalent chemical bonds and metallic bonds

Ionic, covalent chemical bonds and metallic bonds Ionic, covalent chemical bonds and metallic bonds The type of bond formed depends on the electronegativity of the element, that is, the attraction the element has for an electron, and the fact that the

More information

CHAPTER 28 Quantum Mechanics of Atoms Units

CHAPTER 28 Quantum Mechanics of Atoms Units CHAPTER 28 Quantum Mechanics of Atoms Units Quantum Mechanics A New Theory The Wave Function and Its Interpretation; the Double-Slit Experiment The Heisenberg Uncertainty Principle Philosophic Implications;

More information

Atoms. Smallest particles that retain properties of an element. Made up of subatomic particles: Protons (+) Electrons (-) Neutrons (no charge)

Atoms. Smallest particles that retain properties of an element. Made up of subatomic particles: Protons (+) Electrons (-) Neutrons (no charge) Basic Chemistry Atoms Smallest particles that retain properties of an element Made up of subatomic particles: Protons (+) Electrons (-) Neutrons (no charge) Examples of Atoms electron proton neutron Hydrogen

More information

Contents. Atomic Structure. 2(a) The Periodic Table. 2(b) Amount of Substance. 2(c) 2(d) Bonding and Structure. Enthalpy Changes.

Contents. Atomic Structure. 2(a) The Periodic Table. 2(b) Amount of Substance. 2(c) 2(d) Bonding and Structure. Enthalpy Changes. 1 C h e m i s t r y Contents 2(a) 2(b) 2(c) 2(d) 2(e) Atomic Structure The Periodic Table Amount of Substance Bonding and Structure Enthalpy Changes 3 14 18 28 39 2 C h e m i s t r y 2(a) Atomic Structure

More information

Chancellor Phyllis Wise invites you to a birthday party!

Chancellor Phyllis Wise invites you to a birthday party! Chancellor Phyllis Wise invites you to a birthday party! 50 years ago, Illinois alumnus Nick Holonyak Jr. demonstrated the first visible light-emitting diode (LED) while working at GE. Holonyak returned

More information

Dalton s Postulates about atoms are inconsistent with later observations :

Dalton s Postulates about atoms are inconsistent with later observations : Name : Netya Shoma Siwi Pertiwi NIM : 21030110141022 1. Which of Dalton s postulates about atoms are inconsistent with later observations? Do these inconsistencies mean that Dalton was wrong? Is Dalton

More information

CHAPTER STRUCTURE OF ATOM

CHAPTER STRUCTURE OF ATOM 12 CHAPTER STRUCTURE OF ATOM 1. The spectrum of He is expected to be similar to that [1988] H Li + Na He + 2. The number of spherical nodes in 3p orbitals are [1988] one three none two 3. If r is the radius

More information

Covalent Bonding H 2. Using Lewis-dot models, show how H2O molecules are covalently bonded in the box below.

Covalent Bonding H 2. Using Lewis-dot models, show how H2O molecules are covalently bonded in the box below. Covalent Bonding COVALENT BONDS occur when atoms electrons. When atoms combine through the sharing of electrons, are formed. What is a common example of a covalently bonded molecule? When hydrogen atoms

More information

Do atoms always have an equal number of protons, neutrons and electrons? 1. Yes. 2. No.

Do atoms always have an equal number of protons, neutrons and electrons? 1. Yes. 2. No. Self Quiz Do atoms always have an equal number of protons, neutrons and electrons? 1. Yes. 2. No. Do atoms always have an equal number of protons, neutrons and electrons? 1. Yes. 2. No. A chemical bond

More information

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed.

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed. Ch. 7 The Quantum Mechanical Atom Brady & Senese, 5th Ed. Index 7.1. Electromagnetic radiation provides the clue to the electronic structures of atoms 7.2. Atomic line spectra are evidence that electrons

More information

8 th Grade Science. Directed Reading Packet. Chemistry. Name: Teacher: Period:

8 th Grade Science. Directed Reading Packet. Chemistry. Name: Teacher: Period: 8 th Grade Science Directed Reading Packet Chemistry Name: Teacher: Period: Chapter 1, Section 1: Inside the Atom Introduction 1. Atoms are the particles of an element that still have the element s. 2.

More information

The Structure of the Atom

The Structure of the Atom The Structure of the Atom 1 The Atom as Matter Dalton s atomic theory had problems It considered atoms to be hard, indivisible particles Did not explain why atoms reacted Also did not explain why atoms

More information

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta?

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta? Properties of Electromagnetic Radiation 1. What is spectroscopy, a continuous spectrum, a line spectrum, differences and similarities 2. Relationship of wavelength to frequency, relationship of E to λ

More information

Unit 3 - Chemical Bonding and Molecular Structure

Unit 3 - Chemical Bonding and Molecular Structure Unit 3 - Chemical Bonding and Molecular Structure Chemical bond - A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together 6-1 Introduction

More information

Essential Organic Chemistry. Chapter 1

Essential Organic Chemistry. Chapter 1 Essential Organic Chemistry Paula Yurkanis Bruice Chapter 1 Electronic Structure and Covalent Bonding Periodic Table of the Elements 1.1 The Structure of an Atom Atoms have an internal structure consisting

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Bohr s Correspondence Principle Bohr s Correspondence Principle states that quantum mechanics is in agreement with classical physics when the energy differences between quantized

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

Atoms to Minerals CH 5.1

Atoms to Minerals CH 5.1 Atoms to Minerals CH 5.1 Objectives Identify the characteristics of matter Compare the particles that make up atoms of elements Describe the three types of chemical bonds Identify the characteristics of

More information

ELECTRONS IN ATOMS AND THE PERIODIC TABLE. Light and Energy. Chapter Nine

ELECTRONS IN ATOMS AND THE PERIODIC TABLE. Light and Energy. Chapter Nine ELECTRONS IN ATOMS AND THE PERIODIC TABLE Chapter Nine Light and Energy! Electromagnetic radiation (EM) is an especially important form of energy for scientific study.! Many types of radiant energy are

More information

Unit 1 Atomic Theory

Unit 1 Atomic Theory Unit 1 Atomic Theory 1.0 You are expected to be already familiar with. Ionic nomenclature (binary, polyatomic, multivalency) Covalent nomenclature Writing chemical formulas for ionic and covalent compounds

More information

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms Chapter 9 Electrons in Atoms and the Periodic Table Blimps, Balloons, and Models for the Atom Hindenburg Blimps, Balloons, and Models for the Atom Properties of Elements Hydrogen Atoms Helium Atoms 1 Blimps,

More information

Periodic Trends. Elemental Properties and Patterns

Periodic Trends. Elemental Properties and Patterns Periodic Trends Elemental Properties and Patterns The Periodic Law Dimitri Mendeleev was the first scientist to publish an organized periodic table of the known elements. He was perpetually in trouble

More information

ATOMIC STRUCTURE AND BONDING. IE-114 Materials Science and General Chemistry Lecture-2

ATOMIC STRUCTURE AND BONDING. IE-114 Materials Science and General Chemistry Lecture-2 ATOMIC STRUCTURE AND BONDING IE-114 Materials Science and General Chemistry Lecture-2 Outline Atomic Structure (Fundamental concepts, Atomic models (Bohr and Wave-Mechanical Atomic Model), Electron configurations)

More information

Chapter 8 Problem Solutions

Chapter 8 Problem Solutions Chapter 8 Problem Solutions 1. The energy needed to detach the electron from a hydrogen atom is 13.6 ev, but the energy needed to detach an electron from a hydrogen molecule is 15.7 ev. Why do you think

More information

Mid 1800s. 1930s. Prediction of new materials using computers (Late 1990s) Quantum Mechanics. Newtonian Mechanics

Mid 1800s. 1930s. Prediction of new materials using computers (Late 1990s) Quantum Mechanics. Newtonian Mechanics Structure of an atom: Agreed upon by experimentalists and theoreticians. Today s knowledge of an atom comes from meetings like 1 Mid 1800s 1930s From F = m x a Newtonian Mechanics to E=ħxω Quantum Mechanics

More information

SCH4C Practice WS Unit 1

SCH4C Practice WS Unit 1 Name: Class: Date: SCH4C Practice WS Unit 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The special band of light waves that the human eye can detect

More information

Chemistry 2 nd 6 Weeks

Chemistry 2 nd 6 Weeks NAME OF UNIT UNIT II ESTIMATED # OF DAYS 2 nd 6 Weeks_ Weeks 1 Weeks 2-3 Weeks 4-5 Components Unit Name IIA: Nuclear Chemistry IIB: Light, Energy, and Periodic Trends IIC: Bonding Short Descriptive Overview

More information

Complete nomenclature for electron orbitals

Complete nomenclature for electron orbitals Complete nomenclature for electron orbitals Bohr s model worked but it lacked a satisfactory reason why. De Broglie suggested that all particles have a wave nature. u l=h/p Enter de Broglie again It was

More information

Chemistry 101 Chapter 11 Modern Atomic Theory

Chemistry 101 Chapter 11 Modern Atomic Theory Chemistry 101 Chapter 11 Modern Atomic Theory Electromagnetic radiation: energy can be transmitted from one place to another by lightmore properly called electromagnetic radiation. Many kinds of electromagnetic

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE The Ionic Bond Formation of Ions The

More information

Electron Configurations: Assigning each electron in an atom to the energy level and sublevel it occupies in the atom. Number of Electrons

Electron Configurations: Assigning each electron in an atom to the energy level and sublevel it occupies in the atom. Number of Electrons First some terms and more information about the structure of the atom: 1) Energy level is no longer an orbit but more like a boundary or maximum distance from the nucleus that electrons occupy. 1, 2, 3

More information

Unit 2 - Electrons and Periodic Behavior

Unit 2 - Electrons and Periodic Behavior Unit 2 - Electrons and Periodic Behavior I. The Bohr Model of the Atom A. Electron Orbits, or Energy Levels 1. Electrons can circle the nucleus only in allowed paths or orbits 2. The energy of the electron

More information

THE CHEMISTRY OF LIFE

THE CHEMISTRY OF LIFE THE CHEMISTRY OF LIFE ATOMS All living things are made up of matter Atoms are the smallest unit of matter Made up of 3 subatomic particles: 1. Protons- positively charged, found in the nucleus, has mass

More information

INTRODUCTION TO CHEMISTRY

INTRODUCTION TO CHEMISTRY 1 INTRODUCTION TO CHEMISTRY 1. the pursuit of chemical knowledge for its own sake 2. the means by which a society provides its members with those things needed and desired 3. the science concerned with

More information

Atomic Bonding and Molecules. Chapter 15

Atomic Bonding and Molecules. Chapter 15 Atomic Bonding and Molecules Chapter 15 Bonding of atoms makes molecules The Formation of Ions and Ionic Bonds Types of bonds Metallic Bonds Covalent Bonds Polar Covalent Bonds Molecular Polarity and Molecular

More information

AQA Chemistry A-Level : Atomic Structure

AQA Chemistry A-Level : Atomic Structure AQA Chemistry A-Level 3.1.1: Atomic Structure Detailed Notes 3.1.1.1 - Fundamental Particles The model for atomic structure has evolved over time as knowledge and scientific understanding changes. Plum

More information

1. a Draw a labelled diagram of an atom that has 9 protons and electrons and 9 neutrons.

1. a Draw a labelled diagram of an atom that has 9 protons and electrons and 9 neutrons. Topic review Using scientific language Design and construct a crossword using the following words: atom; proton; molecule; ion; lattice; shell; element; compound; bond; conductor; insulator; electrolysis;

More information

Outline. The Nature of Molecules. Atomic Structure. Atomic Structure. All matter is composed of atoms.

Outline. The Nature of Molecules. Atomic Structure. Atomic Structure. All matter is composed of atoms. Outline The Nature of Molecules Describe the basic structure of an atom Recognize the importance of electrons Understand isotopes and radioactivity Describe chemical bonds and why they form Be aware of

More information

There are two main requirements for atoms to form a covalent bond and make a molecule:

There are two main requirements for atoms to form a covalent bond and make a molecule: HOW ATOMS BOND TO EACH OTHER Covalent bonding Remember that a hydrogen atom has 1 proton and 1 electron and that the electron and the proton are attracted to each other. But if the atoms get close enough

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

Chapter 6. Chemical Bonding

Chapter 6. Chemical Bonding Chapter 6 Chemical Bonding Section 6.1 Intro to Chemical Bonding 6.1 Objectives Define chemical bond. Explain why most atoms form chemical bonds. Describe ionic and covalent bonding. Explain why most chemical

More information

Gilbert Kirss Foster. Chapter3. Atomic Structure. Explaining the Properties of Elements

Gilbert Kirss Foster. Chapter3. Atomic Structure. Explaining the Properties of Elements Gilbert Kirss Foster Chapter3 Atomic Structure Explaining the Properties of Elements Chapter Outline 3.1 Waves of Light 3.2 Atomic Spectra 3.3 Particles of Light: Quantum Theory 3.4 The Hydrogen Spectrum

More information

Atomic Structure. The center of the Atom is called the Nucleus

Atomic Structure. The center of the Atom is called the Nucleus Basic Chemistry Review Atomic Structure The center of the Atom is called the Nucleus It is about 100,000 times smaller than the entire atom It makes up 99.9% of the mass of the atom In the Nucleus There

More information

What is this? Electrons: charge, mass? Atom. Negative charge(-), mass = 0. The basic unit of matter. Made of subatomic particles:

What is this? Electrons: charge, mass? Atom. Negative charge(-), mass = 0. The basic unit of matter. Made of subatomic particles: Chemical Bonds What is this? Atom The basic unit of matter. Electrons: charge, mass? Negative charge(-), mass = 0 Made of subatomic particles: Protons: charge, mass? Positive charge (+), mass = 1 Neutrons:

More information

Chapter 2 Basic Chemistry Outline

Chapter 2 Basic Chemistry Outline Chapter 2 Basic Chemistry Outline 1.0 COMPOSITION OF MATTER 1.1 Atom 1.2 Elements 1.21 Isotopes 1.22 Radioisotopes 1.3 Compounds 1.31 Compounds Formed by Ionic Bonding 1.32 Compounds Formed by Covalent

More information

Unit 3 Lesson 4 Ionic, Covalent, and Metallic Bonding. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 4 Ionic, Covalent, and Metallic Bonding. Copyright Houghton Mifflin Harcourt Publishing Company Opposites Attract What is an ion? An atom has a neutral charge because it has an equal number of electrons and protons. An ion is a particle with a positive or negative charge. An ion forms when an atom

More information

Quantum Theory & Electronic Structure of Atoms. It s Unreal!! Check your intuition at the door.

Quantum Theory & Electronic Structure of Atoms. It s Unreal!! Check your intuition at the door. Quantum Theory & Electronic Structure of Atoms It s Unreal!! Check your intuition at the door. 1 Quantum Theory of the Atom Description of the atom and subatomic particles. We will focus on the electronic

More information

DO PHYSICS ONLINE ELECTRIC CURRENT FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS ELECTRICAL PROPERTIES OF SOLIDS

DO PHYSICS ONLINE ELECTRIC CURRENT FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS ELECTRICAL PROPERTIES OF SOLIDS DO PHYSICS ONLINE FROM IDEAS TO IMPLEMENTATION 9.4.3 ATOMS TO TRANSISTORS ELECTRICAL PROPERTIES OF SOLIDS ELECTRIC CURRENT Different substances vary considerably in their electrical properties. It is a

More information

Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T. Modern Physics

Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T. Modern Physics Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T Modern Physics 11/16 and 11/19/2018 1 Introduction In Chapter 7, we studied the hydrogen atom. What about other elements, e.g.,

More information

National 5 Chemistry

National 5 Chemistry St Ninian s High School Chemistry Department National 5 Chemistry Unit 1: Chemical Changes & Structure Section 3: Bonding & Properties of Substances Summary Notes Name Learning Outcomes After completing

More information

CHAPTER 3 ATOMS ATOMS MATTER 10/17/2016. Matter- Anything that takes up space (volume) and has mass. Atom- basic unit of matter.

CHAPTER 3 ATOMS ATOMS MATTER 10/17/2016. Matter- Anything that takes up space (volume) and has mass. Atom- basic unit of matter. CHAPTER 3 MATTER Matter- Anything that takes up space (volume) and has mass. Matter Combining Matter States of Matter Atom- basic unit of matter. Subatomic particles- protons, neutrons, and electrons.

More information

Electron Configurations

Electron Configurations Ch08 Electron Configurations We now understand the orbital structure of atoms. Next we explore how electrons filling that structure change it. version 1.5 Nick DeMello, PhD. 2007-2016 2 Ch08 Putting Electrons

More information

Bohr Model of Hydrogen Atom

Bohr Model of Hydrogen Atom Bohr Model of Hydrogen Atom electrons move in circular orbits around nucleus orbits can only be of certain radii each radius corresponds to different energy ( only certain energies are allowed) n - defines

More information