Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture

Size: px
Start display at page:

Download "Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture"

Transcription

1 Nuclear Physics (PHY-31) Dr C. M. Cormack 11 Nuclear Physics This Lecture This Lecture We will discuss an important effect in nuclear spectroscopy The Mössbauer Effect and its applications in technology α-β-γ-decay and nuclear spectroscopy This will be the last in the series of lectures investigating properties of nuclear energy levels before we move on to nuclear technologies and applications to other branches of investigation Lecture 11 Nuclear Physics Dr C M Cormack 1

2 Nuclear Absorption The inverse process of -ray emission is -ray absorption a nucleus in its ground state absorbs a photon of energy E and jumps to an excited state an energy E above the ground state, these are related by the following equation: Eγ Partial Width E = Eγ Γ = Mc As the energy of the excited state is not sharp (as the state is short lived) the absorption will take place when the gamma energy differs somewhat from the resonant value, the measurement of the resonant cross section gives the following σ ( E γ ) σ ( E ) = σ ( Γ ) [ E ( E + )] + ( Γ ) Lecture 11 Nuclear Physics Dr C M Cormack 3 γ E 0 γ Γ E + E R E R Eγ τ Resonant Absorption A schematic of a resonant absorption experiment is shown below: Intensity Nuclei E γ Doppler Width = ln E γ kt Mc Detector At energies far from the resonance, the nuclei are transparent to the radiation and no absorption occurs. At resonance the transmitted intensity reaches a minimum value. In practice it would not be possible to observe the natural line width. This is because the nuclei are not at rest, they are in constant motion due to thermal excitation. If the motion of the nuclei is represented by the usual Maxwell velocity distribution there will be a distribution of energies of the form ( mc / kt )( 1 E γ / E γ ) e Lecture 11 Nuclear Physics Dr C M Cormack 4

3 Resonant Absorption At room temperature, kt 0.05 ev and for a 100 kev transition in a medium weight nucleus 0.1 ev, which dominates the natural linewidth for most nuclear transitions. Even cooling to low temperatures (eg 4K) reduces the linewidth by only an order of magnitude. To perform absorption experiments it is necessary to have a tunable source of photons. This can only be achieved from a continuous electromagnetic spectrum as obtained from bremsstrahlung or synchrotron radiation. In most cases in a laboratory absorption experiments a source with a downward nuclear transition is used to excite an upward transition. This transition must be within 0.1eV of the desired resonant energy. An example of such a transition is shown in the diagram: Lecture 11 Nuclear Physics Dr C M Cormack 5 Mössbauer Effect The main problem with the previous example is that it is very difficult to overcome the recoil energy. One method to overcome this is to Doppler shift the source by moving it close to the absorber. A more successful technique for over coming the recoil problem is a method know as the Mössbauer effect. Developed by Rudolf Mössbauer. In his original experiment he used a source of 191 Ir(E =19 kev; E R =0.047 ev). The important point about his experiment was that the emitting and absorbing nuclei were bound in a crystal lattice. It was known that typical binding energies of an atom in a lattice are 1-10eV. Consequently the recoil energy of typical nuclear transitions are not sufficient to remove an atom from the lattice. The effect can be thought of in terms of hitting a brick with a cricket bat (the brick will move!) and then hitting the brick whilst it is in a wall (the brick will almost certainly not move!). Lecture 11 Nuclear Physics Dr C M Cormack 6 3

4 Mössbauer Effect Therefore the mass that appears in the expression for the recoil energy becomes the mass of the entire solid, rather than the mass of one atom. In addition, a certain fraction of the atoms in a lattice are in the vibrational ground state of thermal motion and consequently shows very little thermal Doppler broadening. The result is very narrow, overlapping emission and absorption lines, each characterised by the natural line-width. This has been nicely demonstrated by Doppler shift experiments where one source was moved relative to the other at low speed. If the speed is such that the Doppler shift is greater than the natural line-width the resonance is destroyed. For a resonance of line-width 6x10-6 ev, it is found that the necessary speed is about 15 mm/s! Lecture 11 Nuclear Physics Dr C M Cormack 7 Mössbauer Effect - Uses The most remarkable thing about the Mössbauer effect is its extreme precision for the measurement of relative energies. In some circumstances it is possible to measure shifts in energy of one part in Further details of the statistical mechanics of the Mössbauer effect can be obtained from Krane. The reason why I have spent so much time on the Mössbauer effect is that it has applications in an enormous variety of areas. Its main use is in determining the properties of nuclei to high precision. One of its most significant uses however was as a test of Einsteins general theory of relativity, specifically the gravitational red shift. One of the corner stones of Einsteins theory is the principle of equivalence according to which the effects of a local uniform gravitational field cannot be distinguished from those of a uniformly accelerated reference frame. Lecture 11 Nuclear Physics Dr C M Cormack 8 4

5 Mössbauer Effect Gravitational Redshift If we were to observe the emission and absorption of radiation in an accelerated reference frame, in which H is the distance between the source and absorber, then the time H/c necessary for radiation to travel from the source to the absorber, the absorber would require a velocity gh/c, where g is the acceleration. The radiation photons are therefore Doppler shifted according to E E v = = c gh c This amounts to about 1x10-16 per meter in the Earth s gravitational field Lecture 11 Nuclear Physics Dr C M Cormack 9 Mössbauer Effect Gravitational Redshift In the original experiment of Pound and Rebka (Phys. Rev. Lett (1960)), 57 Fe was used and the 14.4 kev photons were allowed to travel.5 m of the Jefferson Physical Laboratory at Harvard. The effect was expected to be of order x This required a considerable amount of scientific expertise as the sensitivity of 57 Fe of roughly 3x To observe the small shift (about 10 - of the resonance width) they concentrated on portions of the side of the resonance curve with the greatest slope. To reduce systematic effects the source and absorber were held at a constant temperature. Krane p368 fig 10.8 Lecture 11 Nuclear Physics Dr C M Cormack 10 5

6 Mössbauer Effect Gravitational Redshift After 4 months of experiments, the result was E/E = (4.90±0.041) x10-15 compared with the expected value x This experiment represents one of the most precise tests of the General Theory of Relativity Lecture 11 Nuclear Physics Dr C M Cormack 11 Other uses of the Mössbauer Effect The primary application of the Mössbauer effect has been in the study of the interaction of nuclei with their physical and chemical environments. One example is the study of the effect of the penetration of the atomic wave function into the nuclear volume this is known as the study of hyperfine interactions. As the nucleus is not a point object, but a distribution of charge this shifts the energy of the atomic electrons by an amount E. However from conservation of energy arguments the energy levels of the nucleus are shifted by an equal but opposite amount. This gives rise to a transition energy change of: E = ( E + E ) ( E + E ) e g g Lecture 11 Nuclear Physics Dr C M Cormack 1 6

7 Mössbauer Effect Isomer Shift If the source and absorber in a Mössbauer experiment had the same chemical environment, the resonance would not be affected, but if the source and absorber are different, then the transition energies are slightly different. The effect is shown in the figure below: Excited State δe E S E S E 0 E 0 Ground State Source Absorber The isomer shift. In different materials, the ground state and the excited states show different shifts. The effect on this experiment is to shift the resonance away. In this experiment the energy shift is achieved by Doppler shifting the source the velocity of the shift is shown in the figure Lecture 11 Nuclear Physics Dr C M Cormack 13 Mössbauer Zeeman Effect Another kind of hyperfine coupling is the study of the splitting of the nuclear levels in a magnetic field known as the Zeeman effect. The equivalent process in atomic physics results in the removal of the spin degeneracy levels (m-degeneracy) of a level of angular momentum I, the field splits into I+1 equally spaced sublevels. The atomic effect shifts the energies by 1 part in The nuclear effect however is 1 part in This effect is shown in the figure below: E M = µ Hm I I m I Isomer Shift + 1 Magnetic Dipole Splitting Lecture 11 Nuclear Physics Dr C M Cormack 14 7

8 Nuclear Magnetic Resonance µb >> A When the external magnetic field is increased the quantum numbers F are no longer good quantum numbers. The large field breaks the coupling of I and J, instead the good quantum numbers are I, m i and J, m J. The perturbed energies are: E = Am m g µ B m g µ B I J J B ext J I N ext m I The high field splitting of our example becomes: F = High field splitting P3 F = 1 F =1 F = Lecture 11 Nuclear Physics Dr C M Cormack 15 Mössbauer Electric Quadrupole The nuclear quadrupole moment can interact with an electric field gradient to give an electric quadrupole splitting. This splitting is proportional to m, thus m and m are shifted equally in the same direction. The figure below shows the shift with 57 Fe m I I 3 ± 3 E Q ± 1 3 Isomer Shift 3mI I( I + 1) EQ ( mi ) = eqq 4I(I 1) Quadrupole Splitting ± 1 Lecture 11 Nuclear Physics Dr C M Cormack 16 8

9 Mössbauer - Summary 1. Mössbauer spectroscopy has been shown to be a very powerful technique in determining with high precision the energy levels within a nucleus.. It has played an important role in determining the effects on these energy levels due to magnetic and electric fields. 3. Its ability to make high precision measurements has allowed the most accurate tests of Einstein s general theory of relativity. 4. Mössbauer spectroscopy has also found uses in medical diagnosis, in tests for certain blood diseases (by exploiting the presence of Iron in blood cells) This section wraps up much of the introduction to nuclear physics theories and techniques, the rest of the lecture course will be devoted to applications of these techniques to technology, astro-physics and cosmology. We will return towards the end of the course to look at nuclear interactions and summarise what we know about fundamental forces in terms of particle physics Lecture 11 Nuclear Physics Dr C M Cormack 17 Neutron Physics The uncharged member of the nucleon pair, the neutron plays an important role in the study of nuclear forces. Unaffected by the Coulomb barrier neutrons of even very low energy (~1 ev or less) can penetrate the nucleus and initiate nuclear reactions. The lack of charge also posses a problem for detection of neutrons, it also posses a problem for energy selection and focussing. The first experimental observation of the neutron was in 1930 when Bothe and Becker bombarded beryllium with -particles, however the form of the radiation emitted was not understood until 193 when Chadwick provided the correct hypothesis for the radiation he is generally credited with being the discoverer of the neutron. Neutron physics today provides many tests of fundamental theories, including tests of Grand Unified Theories and recently tests of the quantisation of gravity. Lecture 11 Nuclear Physics Dr C M Cormack 18 9

10 Neutron Sources For the remainder of this lecture we will consider some of the applications of neutrons in nuclear reactions and other areas of physics such as crystallography. Sources Beams of neutrons can be produced from a variety of nuclear reactions. We cannot accelerate neutrons as we can charged particles, but we can start with high energy neutrons and reduce their energy through collisions with atoms. This process of slowing is called moderating. The energy range of neutrons is given below. o Thermal E 0.05 ev o Epithermal E 1.0 ev o Slow E 1.0 kev o Fast E 100keV 10MeV Lecture 11 Nuclear Physics Dr C M Cormack 19 Neutron Sources One of the main sources of neutrons for use in the laboratory comes from -Beryllium sources, 9 Be has a relatively loosely bound neutron. If a typical -particle from a radioactive decay (5-6MeV) strikes a 9 Be nucleus a neutron can be released: He + Be C + n Photoneutron Sources In a process similar to the one above it is possible to use photons to produce neutrons. The advantage of this method is that it is possible to produce nearly monoenergetic sources such a reaction is shown below: 9 8 γ + Be Be + n Another very common source of neutrons are from Reactors. We will discuss this in later lectures. Lecture 11 Nuclear Physics Dr C M Cormack 0 10

11 Absorption and Moderation of Neutrons The importance of this topic will be revealed when we come to discuss reactor physics As a beam of neutrons travels through bulk matter, the intensity will decrease as neutrons are removed from the beam by nuclear interactions. For fast neutrons many interactions are possible (n,p) (n, ) or (n,n), but for slow or thermal neutrons the primary cause for their disappearance is capture. Often the cross sections for these capture reactions are dominated by one or more resonances where the cross section becomes very large. Off resonance, the cross section decreases with increasing velocity like v -1. The loss in intensity of neutrons traversing a given material of thickness dx, the neutrons will encounter ndx atoms per unit surface area, where n is the number of atoms per unit volume of the material. If t is the total cross section, the loss in intensity is: σ tnx di = Iσ ndx I = I e Lecture 11 Nuclear Physics Dr C M Cormack 1 t 0 Neutron Collisions For an elastic collision between a neutron of initial energy E and velocity v with a target atom of mass A (at rest) gives the following ratio between the final neutron energy E. E A = E + 1+ Acosθ ( A + 1) Where is the scattering angle in the centre-of-mass frame. For no scattering =0 0 the ratio is 1! The maximum energy loss occurs for a head on collision E E = A 1 A + min 1 Lecture 11 Nuclear Physics Dr C M Cormack 11

12 Neutron Collisions For scattering of neutron energies below 10 MeV and below, the scattering is mostly s-wave and is thus independent of. The results of multiple scattering of neutrons in a medium is shown in the figure below. After many scatterings the neutron distribution will approach the Maxwellian energy distribution shown below: Lecture 11 Nuclear Physics Dr C M Cormack 3 Neutron Detectors As neutrons produce no direct ionisation, neutron detectors must be based on detecting the secondary events produced by nuclear reactions such as (n,p), (n,α), (n,γ) or (n, fission). For slow and thermal neutrons, detectors based on the (n,p) and (n,α) reactions provide a direct means for observing neutrons, from the ionisation signal from the energetic p or α. 10 B is commonly used by producing an ionisation chamber, the reaction is: 10 7 B + n Li +α For thermal neutrons the cross section has a very high value of 3840b and the cross section follows the 1/v law up to about 100 kev (the cross-section is featureless as there are no resonances present). Neutron detection and absorption has some Important applications in crystallography. Lecture 11 Nuclear Physics Dr C M Cormack 4 * 1

13 Neutron Velocity Selection Early devices used for determining neutron energies were mechanical devices called selectors (shown below). This were basically rotating shutters made of highly absorbing materials such as Cadmium (Cd). Lecture 11 Nuclear Physics Dr C M Cormack 5 Neutron Diffraction Another way of measuring the energy of neutrons in the thermal region is by using crystal diffraction. Thermal neutrons have a de Broglie wavelength of about 0.1 nm, about the same as the spacing between atoms in a crystal lattice. If a beam of thermal neutrons is incident on a crystal it is possible to select wavelengths from interference maxima from the Bragg condition. n λ = d sinθ Lecture 11 Nuclear Physics Dr C M Cormack 6 13

14 Nuclear Physics Next Lecture Summary This concludes much of the technical introduction to nuclear physics. We have seen that the Mössbauer effect can provide extremely high resolution measurements of nuclear states. It is also important uses in testing other physical theories such as General Relativity Use of Neutrons has been discussed, they have many applications in crystallography, but their most significant use is in Nuclear Fission. Next Lecture Nuclear Fission 1. Theory. Applications Reactors Lecture 11 Nuclear Physics Dr C M Cormack 7 14

English CPH E-Book Theory of CPH Section 2 Experimental Foundation of CPH Theory Hossein Javadi

English CPH E-Book Theory of CPH Section 2 Experimental Foundation of CPH Theory Hossein Javadi English CPH E-Book Theory of CPH Section 2 Experimental Foundation of CPH Theory Hossein Javadi Javadi_hossein@hotmail.com Contains: Introduction Gravitational Red Shift Gravity and the Photon Mossbauer

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-302 Dr. E. Rizvi Lecture 13 - Gamma Radiation Material For This Lecture Gamma decay: Definition Quantum interpretation Uses of gamma spectroscopy 2 Turn to γ decay

More information

Mossbauer Effect and Spectroscopy. Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln

Mossbauer Effect and Spectroscopy. Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln Mossbauer Effect and Spectroscopy Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln Emission E R γ-photon E transition hν = E transition - E R Photon does not carry

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

Neutron Interactions with Matter

Neutron Interactions with Matter Radioactivity - Radionuclides - Radiation 8 th Multi-Media Training Course with Nuclides.net (Institute Josžef Stefan, Ljubljana, 13th - 15th September 2006) Thursday, 14 th September 2006 Neutron Interactions

More information

Interaction of Particles and Matter

Interaction of Particles and Matter MORE CHAPTER 11, #7 Interaction of Particles and Matter In this More section we will discuss briefly the main interactions of charged particles, neutrons, and photons with matter. Understanding these interactions

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 1 (2/3/04) Overview -- Interactions, Distributions, Cross Sections, Applications

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 1 (2/3/04) Overview -- Interactions, Distributions, Cross Sections, Applications .54 Neutron Interactions and Applications (Spring 004) Chapter 1 (/3/04) Overview -- Interactions, Distributions, Cross Sections, Applications There are many references in the vast literature on nuclear

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

Today, I will present the first of two lectures on neutron interactions.

Today, I will present the first of two lectures on neutron interactions. Today, I will present the first of two lectures on neutron interactions. I first need to acknowledge that these two lectures were based on lectures presented previously in Med Phys I by Dr Howell. 1 Before

More information

Conclusion. 109m Ag isomer showed that there is no such broadening. Because one can hardly

Conclusion. 109m Ag isomer showed that there is no such broadening. Because one can hardly Conclusion This small book presents a description of the results of studies performed over many years by our research group, which, in the best period, included 15 physicists and laboratory assistants

More information

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS Page 1 1. Within the nucleus, the charge distribution A) Is constant, but falls to zero sharply at the nuclear radius B) Increases linearly from the centre, but falls off exponentially at the surface C)

More information

Introduction to Nuclear Engineering

Introduction to Nuclear Engineering 2016/9/27 Introduction to Nuclear Engineering Kenichi Ishikawa ( ) http://ishiken.free.fr/english/lecture.html ishiken@n.t.u-tokyo.ac.jp 1 References Nuclear Physics basic properties of nuclei nuclear

More information

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321 Neutron Interactions Part I Rebecca M. Howell, Ph.D. Radiation Physics rhowell@mdanderson.org Y2.5321 Why do we as Medical Physicists care about neutrons? Neutrons in Radiation Therapy Neutron Therapy

More information

The interaction of radiation with matter

The interaction of radiation with matter Basic Detection Techniques 2009-2010 http://www.astro.rug.nl/~peletier/detectiontechniques.html Detection of energetic particles and gamma rays The interaction of radiation with matter Peter Dendooven

More information

Gamma-ray decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 March 7, 2011

Gamma-ray decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 March 7, 2011 Gamma-ray decay Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 March 7, 2011 NUCS 342 (Lecture 18) March 7, 2011 1 / 31 Outline 1 Mössbauer spectroscopy NUCS 342 (Lecture

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

RFSS: Lecture 6 Gamma Decay

RFSS: Lecture 6 Gamma Decay RFSS: Lecture 6 Gamma Decay Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition Probabilities Internal Conversion Angular Correlations Moessbauer

More information

The Mössbauer Effect

The Mössbauer Effect Experimental Physics V85.0112/G85.2075 The Mössbauer Effect Spring, 2005 Tycho Sleator, David Windt, and Burton Budick Goals The main goal of this experiment is to exploit the Mössbauer effect to measure

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Type of radiation charged particles photonen neutronen Uncharged particles Charged particles electrons (β - ) He 2+ (α), H + (p) D + (d) Recoil nuclides Fission fragments Interaction of ionizing radiation

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

PHYSICS 359E: EXPERIMENT 2.2 THE MOSSBAUER EFFECT: RESONANT ABSORPTION OF (-RAYS

PHYSICS 359E: EXPERIMENT 2.2 THE MOSSBAUER EFFECT: RESONANT ABSORPTION OF (-RAYS PHYSICS 359E: EXPERIMENT 2.2 THE MOSSBAUER EFFECT: RESONANT ABSORPTION OF (-RAYS INTRODUCTION: In classical physics resonant phenomena are expected whenever a system can undergo free oscillations. These

More information

Particles and Waves Particles Waves

Particles and Waves Particles Waves Particles and Waves Particles Discrete and occupy space Exist in only one location at a time Position and velocity can be determined with infinite accuracy Interact by collisions, scattering. Waves Extended,

More information

Chapter 10. Answers to examination-style questions. Answers Marks Examiner s tips. 1 (a) (i) 238. (ii) β particle(s) 1 Electron antineutrinos 1

Chapter 10. Answers to examination-style questions. Answers Marks Examiner s tips. 1 (a) (i) 238. (ii) β particle(s) 1 Electron antineutrinos 1 (a) (i) 238 92 U + 0 n 239 92 U (ii) β particle(s) Electron antineutrinos (b) For: Natural uranium is 98% uranium-238 which would be otherwise unused. Plutonium-239 would not need to be stored long-term

More information

NERS 311 Current Old notes notes Chapter Chapter 1: Introduction to the course 1 - Chapter 1.1: About the course 2 - Chapter 1.

NERS 311 Current Old notes notes Chapter Chapter 1: Introduction to the course 1 - Chapter 1.1: About the course 2 - Chapter 1. NERS311/Fall 2014 Revision: August 27, 2014 Index to the Lecture notes Alex Bielajew, 2927 Cooley, bielajew@umich.edu NERS 311 Current Old notes notes Chapter 1 1 1 Chapter 1: Introduction to the course

More information

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter Physics of Radiotherapy Lecture II: Interaction of Ionizing Radiation With Matter Charge Particle Interaction Energetic charged particles interact with matter by electrical forces and lose kinetic energy

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

MCRT L8: Neutron Transport

MCRT L8: Neutron Transport MCRT L8: Neutron Transport Recap fission, absorption, scattering, cross sections Fission products and secondary neutrons Slow and fast neutrons Energy spectrum of fission neutrons Nuclear reactor safety

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Mossbauer Spectroscopy

Mossbauer Spectroscopy Mossbauer Spectroscopy Emily P. Wang MIT Department of Physics The ultra-high resolution ( E = E 10 12 ) method of Mossbauer spectroscopy was used to probe various nuclear effects. The Zeeman splittings

More information

Unit title: Atomic and Nuclear Physics for Spectroscopic Applications

Unit title: Atomic and Nuclear Physics for Spectroscopic Applications Unit title: Atomic and Nuclear Physics for Spectroscopic Applications Unit code: Y/601/0417 QCF level: 4 Credit value: 15 Aim This unit provides an understanding of the underlying atomic and nuclear physics

More information

Chapter Four (Interaction of Radiation with Matter)

Chapter Four (Interaction of Radiation with Matter) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Four (Interaction of Radiation with Matter) Different types of radiation interact

More information

neutrons in the few kev to several MeV Neutrons are generated over a wide range of energies by a variety of different processes.

neutrons in the few kev to several MeV Neutrons are generated over a wide range of energies by a variety of different processes. Neutrons 1932: Chadwick discovers the neutron 1935: Goldhaber discovers 10 B(n,α) 7 Li reaction 1936: Locher proposes boron neutron capture as a cancer therapy 1939: Nuclear fission in 235 U induced by

More information

Activation Analysis. Characteristic decay mechanisms, α, β, γ Activity A reveals the abundance N:

Activation Analysis. Characteristic decay mechanisms, α, β, γ Activity A reveals the abundance N: 2.5. Isotope analysis and neutron activation techniques The previously discussed techniques of material analysis are mainly based on the characteristic atomic structure of the elements and the associated

More information

Lewis 2.1, 2.2 and 2.3

Lewis 2.1, 2.2 and 2.3 Chapter 2(and 3) Cross-Sections TA Lewis 2.1, 2.2 and 2.3 Learning Objectives Understand different types of nuclear reactions Understand cross section behavior for different reactions Understand d resonance

More information

Thursday, April 23, 15. Nuclear Physics

Thursday, April 23, 15. Nuclear Physics Nuclear Physics Some Properties of Nuclei! All nuclei are composed of protons and neutrons! Exception is ordinary hydrogen with just a proton! The atomic number, Z, equals the number of protons in the

More information

THE NUCLEUS OF AN ATOM

THE NUCLEUS OF AN ATOM VISUAL PHYSICS ONLINE THE NUCLEUS OF AN ATOM Models of the atom positive charge uniformly distributed over a sphere J. J. Thomson model of the atom (1907) ~2x10-10 m plum-pudding model: positive charge

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Friday, January 18, 2013 3:10PM to 5:10PM General Physics (Part II) Section 6. Two hours are permitted for the completion of this section

More information

Hour Exam 3 Review. Quantum Mechanics. Photoelectric effect summary. Photoelectric effect question. Compton scattering. Compton scattering question

Hour Exam 3 Review. Quantum Mechanics. Photoelectric effect summary. Photoelectric effect question. Compton scattering. Compton scattering question Hour Exam 3 Review Hour Exam 3: Wednesday, Apr. 19 In-class (2241 Chamberlin Hall) Twenty multiple-choice questions Will cover: Basic Quantum Mechanics Uses of Quantum Mechanics Addl. Lecture Material

More information

Phys102 Lecture 29, 30, 31 Nuclear Physics and Radioactivity

Phys102 Lecture 29, 30, 31 Nuclear Physics and Radioactivity Phys10 Lecture 9, 30, 31 Nuclear Physics and Radioactivity Key Points Structure and Properties of the Nucleus Alpha, Beta and Gamma Decays References 30-1,,3,4,5,6,7. Atomic Structure Nitrogen (N) Atom

More information

1. Nuclear Size. A typical atom radius is a few!10 "10 m (Angstroms). The nuclear radius is a few!10 "15 m (Fermi).

1. Nuclear Size. A typical atom radius is a few!10 10 m (Angstroms). The nuclear radius is a few!10 15 m (Fermi). 1. Nuclear Size We have known since Rutherford s! " scattering work at Manchester in 1907, that almost all the mass of the atom is contained in a very small volume with high electric charge. Nucleus with

More information

energy loss Ionization + excitation of atomic energy levels Mean energy loss rate de /dx proportional to (electric charge) 2 of incident particle

energy loss Ionization + excitation of atomic energy levels Mean energy loss rate de /dx proportional to (electric charge) 2 of incident particle Lecture 4 Particle physics processes - particles are small, light, energetic à processes described by quantum mechanics and relativity à processes are probabilistic, i.e., we cannot know the outcome of

More information

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton 1 The Cathode Rays experiment is associated with: A B C D E Millikan Thomson Townsend Plank Compton 1 2 The electron charge was measured the first time in: A B C D E Cathode ray experiment Photoelectric

More information

Chapter NP-4. Nuclear Physics. Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION

Chapter NP-4. Nuclear Physics. Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION Chapter NP-4 Nuclear Physics Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION 2.0 ALPHA PARTICLE INTERACTIONS 3.0 BETA INTERACTIONS 4.0 GAMMA INTERACTIONS

More information

RFSS: Lecture 2 Nuclear Properties

RFSS: Lecture 2 Nuclear Properties RFSS: Lecture 2 Nuclear Properties Readings: Modern Nuclear Chemistry: Chapter 2 Nuclear Properties Nuclear and Radiochemistry: Chapter 1 Introduction, Chapter 2 Atomic Nuclei Nuclear properties Masses

More information

1, 2, 3, 4, 6, 14, 17 PS1.B

1, 2, 3, 4, 6, 14, 17 PS1.B Correlations to Next Generation Science Standards Physical Science Disciplinary Core Ideas PS-1 Matter and Its Interactions PS1.A Structure and Properties of Matter Each atom has a charged substructure

More information

Mossbauer Effect. Ahmad Ali Ohyda. 1 Ahmad Faraj Abuaisha. 2 Abu-Bakr Mohammad Alrotob. 3 Basher M. Ismail. 4. Abstract

Mossbauer Effect. Ahmad Ali Ohyda. 1 Ahmad Faraj Abuaisha. 2 Abu-Bakr Mohammad Alrotob. 3 Basher M. Ismail. 4. Abstract Majalat Al-Ulum Al-Insaniya wat - Tatbiqiya Mossbauer Effect ( Determination of isomer shift, line width and quadruple splitting in a potassium ferricyanide ( K3Fe(CN)6) sample using Mossbauer spectroscopy)

More information

Properties of the nucleus. 8.2 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus

Properties of the nucleus. 8.2 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus Properties of the nucleus 8. Nuclear Physics Properties of nuclei Binding Energy Radioactive decay Natural radioactivity Consists of protons and neutrons Z = no. of protons (Atomic number) N = no. of neutrons

More information

LECTURE 6: INTERACTION OF RADIATION WITH MATTER

LECTURE 6: INTERACTION OF RADIATION WITH MATTER LCTUR 6: INTRACTION OF RADIATION WITH MATTR All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Interlude The concept of cross-section

More information

Nuclear and Radiation Physics

Nuclear and Radiation Physics 501503742 Nuclear and Radiation Physics Why nuclear physics? Why radiation physics? Why in Jordan? Interdisciplinary. Applied? 1 Subjects to be covered Nuclear properties. Nuclear forces. Nuclear matter.

More information

Neutron interactions and dosimetry. Eirik Malinen Einar Waldeland

Neutron interactions and dosimetry. Eirik Malinen Einar Waldeland Neutron interactions and dosimetry Eirik Malinen Einar Waldeland Topics 1. Neutron interactions 1. Scattering 2. Absorption 2. Neutron dosimetry 3. Applications The neutron Uncharged particle, mass close

More information

SECTION A Quantum Physics and Atom Models

SECTION A Quantum Physics and Atom Models AP Physics Multiple Choice Practice Modern Physics SECTION A Quantum Physics and Atom Models 1. Light of a single frequency falls on a photoelectric material but no electrons are emitted. Electrons may

More information

Atomic Quantum number summary. From last time. Na Optical spectrum. Another possibility: Stimulated emission. How do atomic transitions occur?

Atomic Quantum number summary. From last time. Na Optical spectrum. Another possibility: Stimulated emission. How do atomic transitions occur? From last time Hydrogen atom Multi-electron atoms This week s honors lecture: Prof. Brad Christian, Positron Emission Tomography Course evaluations next week Tues. Prof Montaruli Thurs. Prof. Rzchowski

More information

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY THE ATOMIC NUCLEUS / NUCLEAR RADIUS & DENSITY / PROPERTIES OF NUCLEAR RADIATION / INTENSITY & BACKGROUND RADIATION / EXPONENTIAL LAW OF DECAY

More information

EEE4101F / EEE4103F Radiation Interactions & Detection

EEE4101F / EEE4103F Radiation Interactions & Detection EEE4101F / EEE4103F Radiation Interactions & Detection 1. Interaction of Radiation with Matter Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za March

More information

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

Chapter 2 Problem Solutions

Chapter 2 Problem Solutions Chapter Problem Solutions 1. If Planck's constant were smaller than it is, would quantum phenomena be more or less conspicuous than they are now? Planck s constant gives a measure of the energy at which

More information

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose Introduction to Radiological Sciences Neutron Detectors Neutron counting Theory of operation Slow neutrons Fast neutrons Types of detectors Source calibration Survey for Dose 2 Neutrons, what are they?

More information

FACTS WHY? C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei

FACTS WHY? C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei 2. Range of Measured Half-Lives (~10 44 ) 10 16 y > t 1/2 > 10 21 s 3. Why α? a. Proton & Neutron Emission: Q p, Q n are negative

More information

Elastic scattering. Elastic scattering

Elastic scattering. Elastic scattering Elastic scattering Now we have worked out how much energy is lost when a neutron is scattered through an angle, θ We would like to know how much energy, on average, is lost per collision In order to do

More information

Nuclear Spin and Stability. PHY 3101 D. Acosta

Nuclear Spin and Stability. PHY 3101 D. Acosta Nuclear Spin and Stability PHY 3101 D. Acosta Nuclear Spin neutrons and protons have s = ½ (m s = ± ½) so they are fermions and obey the Pauli- Exclusion Principle The nuclear magneton is eh m µ e eh 1

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics W. S. С Williams Department of Physics, University of Oxford and St Edmund Hall, Oxford CLARENDON PRESS OXFORD 1991 Contents 1 Introduction 1.1 Historical perspective 1 1.2

More information

VICTORIA JUNIOR COLLEGE 2014 JC2 PRELIMINARY EXAMINATION. 23/9/ h 1600h

VICTORIA JUNIOR COLLEGE 2014 JC2 PRELIMINARY EXAMINATION. 23/9/ h 1600h Name: Class: 13S VICTORIA JUNIOR COLLEGE 2014 JC2 PRELIMINARY EXAMINATION PHYSICS 9646/3 Higher 2 Paper 3 23/9/2014 1400h 1600h TUESDAY (2 Hours) This paper consists of two sections: Section A (40 marks)

More information

Nuclear Decays. Alpha Decay

Nuclear Decays. Alpha Decay Nuclear Decays The first evidence of radioactivity was a photographic plate, wrapped in black paper and placed under a piece of uranium salt by Henri Becquerel on February 26, 1896. Like many events in

More information

6 Neutrons and Neutron Interactions

6 Neutrons and Neutron Interactions 6 Neutrons and Neutron Interactions A nuclear reactor will not operate without neutrons. Neutrons induce the fission reaction, which produces the heat in CANDU reactors, and fission creates more neutrons.

More information

H2 Physics Set A Paper 3 H2 PHYSICS. Exam papers with worked solutions. (Selected from Top JC) SET A PAPER 3.

H2 Physics Set A Paper 3  H2 PHYSICS. Exam papers with worked solutions. (Selected from Top JC) SET A PAPER 3. H2 PHYSICS Exam papers with worked solutions (Selected from Top JC) SET A PAPER 3 Compiled by THE PHYSICS CAFE 1 P a g e Candidates answer on the Question Paper. No Additional Materials are required. READ

More information

Physics 2D Lecture Slides Lecture 11: Jan. 27 th Sunil Sinha UCSD Physics

Physics 2D Lecture Slides Lecture 11: Jan. 27 th Sunil Sinha UCSD Physics Physics 2D Lecture Slides Lecture 11: Jan. 27 th 2010 Sunil Sinha UCSD Physics Einstein s Explanation of PhotoElectric Effect What Maxwell Saw of EM Waves What Einstein Saw of EM Waves Light as bullets

More information

Properties of the nucleus. 9.1 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus

Properties of the nucleus. 9.1 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus Properties of the nucleus 9. Nuclear Physics Properties of nuclei Binding Energy Radioactive decay Natural radioactivity Consists of protons and neutrons Z = no. of protons (tomic number) N = no. of neutrons

More information

Nuclear Physics Part 1: Nuclear Structure & Reactions

Nuclear Physics Part 1: Nuclear Structure & Reactions Nuclear Physics Part 1: Nuclear Structure & Reactions Last modified: 25/01/2018 Links The Atomic Nucleus Nucleons Strong Nuclear Force Nuclei Are Quantum Systems Atomic Number & Atomic Mass Number Nuclides

More information

Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization

Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization 22.101 Applied Nuclear Physics (Fall 2006) Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization References: R. D. Evans, The Atomic Nucleus (McGraw-Hill, New York,

More information

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont McGRAW-HILL, INC. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal New Delhi

More information

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c)

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c) Chapter Nuclei Q1. A radioactive sample with a half life of 1 month has the label: Activity = 2 micro curies on 1 8 1991. What would be its activity two months earlier? [1988] 1.0 micro curie 0.5 micro

More information

Radioactivity pp Topic 9: Nuclear Physics Ch. 10. Radioactivity. Radioactivity

Radioactivity pp Topic 9: Nuclear Physics Ch. 10. Radioactivity. Radioactivity Topic 9: Nuclear Physics Ch. 10 pp.244-249 results from radioactive decay, which is the process in which unstable atomic nuclei transform and emit radiation. has existed longer than the human race. Unstable

More information

Units and Definition

Units and Definition RADIATION SOURCES Units and Definition Activity (Radioactivity) Definition Activity: Rate of decay (transformation or disintegration) is described by its activity Activity = number of atoms that decay

More information

Slide 1 / 57. Nuclear Physics & Nuclear Reactions Practice Problems

Slide 1 / 57. Nuclear Physics & Nuclear Reactions Practice Problems Slide 1 / 57 Nuclear Physics & Nuclear Reactions Practice Problems Slide 2 / 57 Multiple Choice Slide 3 / 57 1 The atomic nucleus consists of: A B C D E Electrons Protons Protons and electrons Protons

More information

Basic physics Questions

Basic physics Questions Chapter1 Basic physics Questions S. Ilyas 1. Which of the following statements regarding protons are correct? a. They have a negative charge b. They are equal to the number of electrons in a non-ionized

More information

9 Nuclear decay Answers to exam practice questions

9 Nuclear decay Answers to exam practice questions Pages 173 178 Exam practice questions 1 X-rays are quanta of energy emitted when electrons fall to a lower energy level, and so do not emanate from the nucleus Answer D. 2 Alpha particles, being the most

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects Exam 3 Hour Exam 3: Wednesday, November 29th In-class, Quantum Physics and Nuclear Physics Twenty multiple-choice questions Will cover:chapters 13, 14, 15 and 16 Lecture material You should bring 1 page

More information

Chapter 22 - Nuclear Chemistry

Chapter 22 - Nuclear Chemistry Chapter - Nuclear Chemistry - The Nucleus I. Introduction A. Nucleons. Neutrons and protons B. Nuclides. Atoms identified by the number of protons and neutrons in the nucleus 8 a. radium-8 or 88 Ra II.

More information

Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University

Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Neutrons: discovery In 1920, Rutherford postulated that there were neutral, massive particles in

More information

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms.

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms. Lecture 4 TITLE: Quantization of radiation and matter: Wave-Particle duality Objectives In this lecture, we will discuss the development of quantization of matter and light. We will understand the need

More information

Atoms and Nuclei 1. The radioactivity of a sample is X at a time t 1 and Y at a time t 2. If the mean life time of the specimen isτ, the number of atoms that have disintegrated in the time interval (t

More information

PHYS 4 CONCEPT PACKET Complete

PHYS 4 CONCEPT PACKET Complete PHYS 4 CONCEPT PACKET Complete Written by Jeremy Robinson, Head Instructor Find Out More +Private Instruction +Review Sessions WWW.GRADEPEAK.COM Need Help? Online Private Instruction Anytime, Anywhere

More information

Physics 107 Final Exam December 13, Your Name: Questions

Physics 107 Final Exam December 13, Your Name: Questions Physics 107 Final Exam December 13, 1993 Your Name: Questions 1. 11. 21. 31. 41. 2. 12. 22. 32. 42. 3. 13. 23. 33. 43. 4. 14. 24. 34. 44. 5. 15. 25. 35. 45. 6. 16. 26. 36. 46. 7. 17. 27. 37. 47. 8. 18.

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building.

Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building. Nuclear Physics PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html Periodic table of elements We saw that the periodic table of elements can

More information

CHAPTER 2 INTERACTION OF RADIATION WITH MATTER

CHAPTER 2 INTERACTION OF RADIATION WITH MATTER CHAPTER 2 INTERACTION OF RADIATION WITH MATTER 2.1 Introduction When gamma radiation interacts with material, some of the radiation will be absorbed by the material. There are five mechanisms involve in

More information

Exercise 1 Atomic line spectra 1/9

Exercise 1 Atomic line spectra 1/9 Exercise 1 Atomic line spectra 1/9 The energy-level scheme for the hypothetical one-electron element Juliettium is shown in the figure on the left. The potential energy is taken to be zero for an electron

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives correlated to the College Board AP Physics 2 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring Understanding 1.A:

More information

Interaction of Neutrons With Matter

Interaction of Neutrons With Matter Interaction of Neutrons With Matter Neutrons interactions depends on energies: from > 100 MeV to < 1 ev Neutrons are uncharged particles: No interaction with atomic electrons of material interaction with

More information

1.4 The Tools of the Trade!

1.4 The Tools of the Trade! 1.4 The Tools of the Trade! Two things are required for material analysis: excitation mechanism for originating characteristic signature (radiation) radiation detection and identification system (spectroscopy)

More information

CHAPTER 12 TEST REVIEW

CHAPTER 12 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 76 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 12 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics Molecular Spectroscopy Lectures 1 & 2 Part I : Introductory concepts Topics Why spectroscopy? Introduction to electromagnetic radiation Interaction of radiation with matter What are spectra? Beer-Lambert

More information

CHEM 312: Lecture 9 Part 1 Nuclear Reactions

CHEM 312: Lecture 9 Part 1 Nuclear Reactions CHEM 312: Lecture 9 Part 1 Nuclear Reactions Readings: Modern Nuclear Chemistry, Chapter 10; Nuclear and Radiochemistry, Chapter 4 Notation Energetics of Nuclear Reactions Reaction Types and Mechanisms

More information

The Bohr Model of Hydrogen

The Bohr Model of Hydrogen The Bohr Model of Hydrogen Suppose you wanted to identify and measure the energy high energy photons. One way to do this is to make a calorimeter. The CMS experiment s electromagnetic calorimeter is made

More information

Cross-Sections for Neutron Reactions

Cross-Sections for Neutron Reactions 22.05 Reactor Physics Part Four Cross-Sections for Neutron Reactions 1. Interactions: Cross-sections deal with the measurement of interactions between moving particles and the material through which they

More information