Magnetic Resonance in magnetic materials

Size: px
Start display at page:

Download "Magnetic Resonance in magnetic materials"

Transcription

1 Ferdinando Borsa, Dipartimento di Fisica, Universita di Pavia Magnetic Resonance in magnetic materials Information on static and dynamic magnetic properties from Nuclear Magnetic Resonance and Relaxation

2

3 Both NMR-NQR and EPR are radiofrequency spectroscopies NMR-NQR in Mhz range EPR in GHz range In NMR the magnetic moment interacting with the local magnetic field is fixed and not affected by the environment µ = g µ N I = γ h bar I ( g factor fixed Nucleus is passive probe of internal fields in matter!!!!!) In EPR the moment depends on the environment µ = g β I = γ h bar I ( g factor depends on orbital contributions and thus depends on material )

4 Study of local magnetic properties by NMR spectra H loc =H dip + H contact H dip = I A S H contact = B I S f res = γ (H+ H+H loc ) H EN r r r r r r S I ( Si rij )( Ij rij ) 2 γ N γ eh i j = 3 + I 3 5 j A% ij S i 2 ij rij rij r r

5 Ordered magnetic state or superparamagnetic state: local internal field even in zero external f =γh + g <s> A magnetic field The local field H int = g <s> A is seen as static by the resonant nucleus if the fluctuation time is longer than the inverse interaction energy ( in frequency) τ > A -1

6 NMR study of the critical exponent for M(T) order parameter in 3D Heisemberg magnets The time-averaged sublattice magnetization M in zero external field obeys the relation M ~ (T N T) 1/3 with remarkable accuracy just below T N. This is strikingly similar to the behavior of the difference in densities between the coexisting liquid and vapor phases observed experimentally near fluid critical point ( UNIVERSALITY OF CRITICAL PHENOMENA ) First determinaton of the critical exponent for 3D Heisemberg paramagnet: P.Heller and G. Benedeck, PRL 8, 428 (1962) from NMR of 19 F in MnF 2

7 H 0 H local ( α ) = H I (T ) + H 0 + p (T ) H 0 H local ( β ) = - H I (T ) + H 0 + p (T ) H 0 υ ( T ) = γ 19 H I (T)

8 υ(t) / υ(0) = M(T) / M(0) M(T) / M(0)= A ( T N T ) 1/3

9 Easy magnetization axis Fe8 Ground state spin configuration Fe (3+) s=5/2 S=10 (giant spin)

10 57 Fe-NMR spectrum in 57 Fe8 from S.H.Baek et al. 5 7 F e F e - N M R Spin echo intensity (a.u) H = 0 T T = 1. 5 K f r e q u e n c y ( M H z ) Observation of 57 Fe-NMR signal under zero magnetic field resonance frequency is proportional to internal field (H int ) ω res =γ N H int The direction of H int is opposite to the that of spin moments H int µ S Core- polarization

11 Internal spin structure of Fe8 (parallel field) Y.Furukawa et al. PRB 68, (R) (2003) frequency (M Hz) T=1.5K Fe1, Fe Fe3,Fe4 Fe5~Fe8 H (T) ω res =γ N H eff H eff = H int +H ext For two of eight Fe 3+ ions H int is parallel to H ext (spin direction is antiparallel) For other six Fe 3+ ions H int is antiparallel to H ext (spin direction is parallel) H ext

12 Spin moments on Fe 3+ ions in Fe8 spin moments (µ B ) Comparison with neutron diffraction results Y. Pontillon et al., J. Am. Chem. Soc, 121 (1999)5342 NMR results F e 1 F e 2 F e 3 F e 4 H int =A<S> A=-126kOe/µ B F e 5 F e 6 F e 7 F e 8 NMR N.D. Total spin moments NMR = 16.9 µ B N.D. = µ B (Magnetization measurements ~20 µ B ) Spin density is slightly distributed over the cluster including organic framework

13 1 H in External Field H o m I = -1/2 m I = +1/2 E = hω = hγ H 12 N N 0 H 0 N 2 N 1 = exp hωn k T B Disproportion between UP than DOWN spins leads to nuclear magnetization M 0 = N ( γ h) N We define the process of growth towards the equilibrium magnetization as SPIN LATTICE RELAXATION 2 4k T B H 0

14 Nuclear spin lattice relaxation in the weak collision limit + - hν L H (t)= H Z + H P (t) W( - + ) =W -+ W( + - ) = W +- W -+ = W +- exp( - hν L /kt) W +- =W 1/T 1 = 2W H P (t) H P (0) exp( -i ν L t) dt 1 / T

15 Relationship between nuclear spin-lattice relaxation rate and spectral density of spin fluctuation (a) weak collision approximation (i) Fluctuation time τ <<T 1 (ii)time dependent perturbation theory (a) (b) strong collision approximation (i) Direct Exchange of Energy Moriya s Formula i( ωn ± ωe) t 1 = 2( γ Nγ eh) ( + 1) { α ij i ( ) i (0) +... ij T s s s t s e dt + z z iωn t...+ β s ( t) s (0) e dt} ij i i Longitudinal Term Transversal term

16 In presence of SRO and strong correlation among interacting electron spins, magnetic systems are better described in terms of collective variables in q-space obtained by Fourier transforming the local spin variables in real space 1/T 1 = (hγ n γ e ) 2 /(4π) dt cos(ω n t) dq (1/4 Α ± (q) < S ± q (t) S± -q (t)> + Α z (q) ) < S z q (t) Sz -q (t)>) Or by using the fluctuation dissipation theorem: < S q (t) S -q (t) > cos(ωt) dt = 2 kt/ω Im χ ( q, ω ) 1/T 1 =(hγ n γ e ) 2 /(4πg 2 µ B2 ) k B T [1/4Σ q Α ± (q) χ ± (q) f q± (ω e ) + Σ q Α z (q)χ z (q)f qz (ω n )]

17 Critical spin dynamics in FeF2 ( T N = K ) δυ(t) = A [( T T N ) / T N ] n ( n = ± 0.01 ) A.M. Gottlieb and P.Heller, PRB,3, 3615 ( 1971)

18 SUPER-PARAMAGNETIC PARAMAGNETIC BEHAVIOR Magnetic energy for single domain particles with uniaxial anisotropy is: E = K V Sin 2 ( θ ) K is anisotropy V is volume 2 mimima θ = 0 θ =180 When the energy barrier is comparable or smaller than the thermal energy the particles magnetization fluctuates between two minima with a characteristic time given by τ. τ = τ 0 e kv kbt

19 CI CONCENTREREMO SU: Fe30 Fe10 Cr8 Fe6:Li

20 Magnetic properties of molecular rings and clusters ALCUNI MAGNETI MOLECOLARI E LORO PRINCIPALI CARATTERISTICHE

21 6 5 4 H=0.47 T H=0.73 T H=1.23 T H=2.74 T H=4.7 T A field dependent peak is observed A field dpendent peak is observed 1/T 1 (ms -1 ) T (K) The peak has universal features Cr8 1/( T 1 χt ) (emu/mol K ms) Cr8 H = 0.47 T Cr8 H = 0.73 T Cr8 H = 1.23 T 0.8 Fe6(Na) H = 0.5 T Fe6(Na) H = 1 T Fe6(Li) H = 1.5 T Fe10 H = 1.28 T 0.6 Fe10 H = 2.5 T Fe30 H = 0.47 T T/T 0 (H)

22 The quantum description can be used also for overdamped states by replacing the delta functions with Lorenzian defined by the lifetime width of the quantum states <S i (t)s j (0)> = Tr exp(-βh)exp(iht/h)s j exp(-iht/h)s i /Tr exp(-βt) 1/T 1 =Σ i,j Σ n,m exp(-βe n )[A<n S j m> <m S i n>δ(e n -E m -ω L )]/Σ n exp(-βe n ) Tχ A τ / (1+ω L2 τ 2 )

23 1 ω ( T) ω ( T) = A = T T T 1 c AχT c 2 ( ) ( ) + 2 c L c L ω ω ω ω, The proton spin lattice relaxation rate 1/T1 depends in first approximation from: 1) A i.e. Magnitude of proton-electron interaction 2) χt = C i.e. Magnitude of the local magnetic moment on the ion 3) ω c (T) i.e. Magnitude and temperature dependence of the characteristic frequency for the fluctuations ( relaxation) of the ring magnetization

24 The characteristic frequency ω c appears to have a power law T dependence and to scale with the gap between ground state and first excited state: S = 1 S = 0 ω c (MHz) 10 4 ~ (T/ ) T/ Cr T Cr T Fe6(Li) 1.5 T Fe6(Na) 1 T Fe T

25 Characteristic frequency derived from NMR scaled by the ground state gap 10 4 Cr 8 ~ (T/ ) Γ (MHz) Cr8 H=0.47 T Cr8 H=0.73 T Cr8 H=1.23 T Cr8 H=2.73 T Cr8 H=4.7 T T/ Γ (MHz) ~ (T/ ) T/ Cr T Cr T Fe6(Li) 1.5 T Fe6(Na) 1 T Fe T - ω c is the lifetime Γ of the magnetic levels? - A BASSA T, Γ DIPENDE ANCHE DA H!!!

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Relaxation. Ravinder Reddy

Relaxation. Ravinder Reddy Relaxation Ravinder Reddy Relaxation What is nuclear spin relaxation? What causes it? Effect on spectral line width Field dependence Mechanisms Thermal equilibrium ~10-6 spins leads to NMR signal! T1 Spin-lattice

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

NMR, the vector model and the relaxation

NMR, the vector model and the relaxation NMR, the vector model and the relaxation Reading/Books: One and two dimensional NMR spectroscopy, VCH, Friebolin Spin Dynamics, Basics of NMR, Wiley, Levitt Molecular Quantum Mechanics, Oxford Univ. Press,

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening Spectral Broadening echanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

NMR Dynamics and Relaxation

NMR Dynamics and Relaxation NMR Dynamics and Relaxation Günter Hempel MLU Halle, Institut für Physik, FG Festkörper-NMR 1 Introduction: Relaxation Two basic magnetic relaxation processes: Longitudinal relaxation: T 1 Relaxation Return

More information

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy Nuclear spin dynamics in quantum regime of a single-molecule magnet Andrea Morello UBC Physics & Astronomy Kamerlingh Onnes Laboratory Leiden University Nuclear spins in SMMs Intrinsic source of decoherence

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

What is the susceptibility?

What is the susceptibility? What is the susceptibility? Answer which one? M Initial susceptibility Mean susceptibility M st M 0 0 m High field susceptibility i dm = dh H =0 H st H M M st M 0 0 m i H st H H What is the susceptibility?

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

Nuclear magnetic resonance spectroscopy

Nuclear magnetic resonance spectroscopy nuclear spin transitions O Nuclear magnetic resonance spectroscopy 1 H, 13 C, 2-dimensional which transitions? wavelength and intensity; ppm what happens if we change the environment of the nucleus? substituent

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Spin Relaxation and NOEs BCMB/CHEM 8190

Spin Relaxation and NOEs BCMB/CHEM 8190 Spin Relaxation and NOEs BCMB/CHEM 8190 T 1, T 2 (reminder), NOE T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Relaxation & Multidimensional Spectrocopy Vrije Universiteit Brussel 9th December 2011 Outline 1 Relaxation 2 Principles 3 Outline 1 Relaxation 2 Principles 3 Establishment of Thermal Equilibrium As previously

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

3 Chemical exchange and the McConnell Equations

3 Chemical exchange and the McConnell Equations 3 Chemical exchange and the McConnell Equations NMR is a technique which is well suited to study dynamic processes, such as the rates of chemical reactions. The time window which can be investigated in

More information

Lecture 5: Bloch equation and detection of magnetic resonance

Lecture 5: Bloch equation and detection of magnetic resonance Lecture 5: Bloch equation and detection of magnetic resonance Lecture aims to eplain:. Bloch equations, transverse spin relaation time and *. Detection of agnetic Resonance: Free Induction Deca Bloch equations

More information

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaxation Bloch Equation 1 Spin Intrinsic angular momentum of

More information

Ferdowsi University of Mashhad

Ferdowsi University of Mashhad Spectroscopy in Inorganic Chemistry Nuclear Magnetic Resonance Spectroscopy spin deuterium 2 helium 3 The neutron has 2 quarks with a -e/3 charge and one quark with a +2e/3 charge resulting in a total

More information

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ.

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ. Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ. +Vasiliev(Turku) 31 P NMR at low temperatures ( down to

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

1 Magnetism, Curie s Law and the Bloch Equations

1 Magnetism, Curie s Law and the Bloch Equations 1 Magnetism, Curie s Law and the Bloch Equations In NMR, the observable which is measured is magnetization and its evolution over time. In order to understand what this means, let us first begin with some

More information

Magnetic Resonance Spectroscopy ( )

Magnetic Resonance Spectroscopy ( ) Magnetic Resonance Spectroscopy In our discussion of spectroscopy, we have shown that absorption of E.M. radiation occurs on resonance: When the frequency of applied E.M. field matches the energy splitting

More information

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory 1. Introduction 64-311 Laboratory Experiment 11 NMR Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful and theoretically complex analytical tool. This experiment will introduce to

More information

Magnetism at finite temperature: molecular field, phase transitions

Magnetism at finite temperature: molecular field, phase transitions Magnetism at finite temperature: molecular field, phase transitions -The Heisenberg model in molecular field approximation: ferro, antiferromagnetism. Ordering temperature; thermodynamics - Mean field

More information

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Lecture 6: Physical Methods II UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Physical Methods used in bioinorganic chemistry X ray crystallography X ray absorption (XAS)

More information

10.3 NMR Fundamentals

10.3 NMR Fundamentals 10.3 NMR Fundamentals nuclear spin calculations and examples NMR properties of selected nuclei the nuclear magnetic moment and precession around a magnetic field the spin quantum number and the NMR transition

More information

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons Fundamental MRI Principles Module 2 N S 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons positively charged neutrons no significant charge electrons negatively charged Protons

More information

Spin Interactions. Giuseppe Pileio 24/10/2006

Spin Interactions. Giuseppe Pileio 24/10/2006 Spin Interactions Giuseppe Pileio 24/10/2006 Magnetic moment µ = " I ˆ µ = " h I(I +1) " = g# h Spin interactions overview Zeeman Interaction Zeeman interaction Interaction with the static magnetic field

More information

NMR course at the FMP: NMR of organic compounds and small biomolecules - II -

NMR course at the FMP: NMR of organic compounds and small biomolecules - II - NMR course at the FMP: NMR of organic compounds and small biomolecules - II - 16.03.2009 The program 2/76 CW vs. FT NMR What is a pulse? Vectormodel Water-flip-back 3/76 CW vs. FT CW vs. FT 4/76 Two methods

More information

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in: Solution Set Hand out:.. Hand in:.. Repetition. The magnetization moves adiabatically during the application of an r.f. pulse if it is always aligned along the effective field axis. This behaviour is observed

More information

NMR Spectroscopy. for 1 st B.Tech INTRODUCTION Lecture -1 Indian Institute of Technology, Dhanbad

NMR Spectroscopy. for 1 st B.Tech INTRODUCTION Lecture -1 Indian Institute of Technology, Dhanbad NMR Spectroscopy for 1 st B.Tech Lecture -1 Indian Institute of Technology, Dhanbad by Dr. R P John & Dr. C. Halder INTRODUCTION Nucleus of any atom has protons and neutrons Both Proton and Neutron has

More information

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1 Chapter 1 Production of Net Magnetization Magnetic resonance (MR) is a measurement technique used to examine atoms and molecules. It is based on the interaction between an applied magnetic field and a

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Spin Dynamics & Vrije Universiteit Brussel 25th November 2011 Outline 1 Pulse/Fourier Transform NMR Thermal Equilibrium Effect of RF Pulses The Fourier Transform 2 Symmetric Exchange Between Two Sites

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

NMR Spectroscopy: A Quantum Phenomena

NMR Spectroscopy: A Quantum Phenomena NMR Spectroscopy: A Quantum Phenomena Pascale Legault Département de Biochimie Université de Montréal Outline 1) Energy Diagrams and Vector Diagrams 2) Simple 1D Spectra 3) Beyond Simple 1D Spectra 4)

More information

Spin. Nuclear Spin Rules

Spin. Nuclear Spin Rules Spin Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 203 MRI Lecture Intrinsic angular momentum of elementary particles -- electrons, protons, neutrons. Spin is quantized. Key concept

More information

ESR spectroscopy of catalytic systems - a primer

ESR spectroscopy of catalytic systems - a primer ESR spectroscopy of catalytic systems - a primer Thomas Risse Fritz-Haber-Institute of Max-Planck Society Department of Chemical Physics Faradayweg 4-6 14195 Berlin T. Risse, 3/22/2005, 1 ESR spectroscopy

More information

Chem343 (Fall 2009) NMR Presentation

Chem343 (Fall 2009) NMR Presentation Chem343 (Fall 2009) NMR Presentation Y Ishii Oct 16, 2009 1 NMR Experiment Cautions Before you start, Read the handouts for background information. Read NMR procedure handouts for the procedures of the

More information

Magnetic Resonance Spectroscopy EPR and NMR

Magnetic Resonance Spectroscopy EPR and NMR Magnetic Resonance Spectroscopy EPR and NMR A brief review of the relevant bits of quantum mechanics 1. Electrons have spin, - rotation of the charge about its axis generates a magnetic field at each electron.

More information

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N Tb Hf O 7 7 χ ac(t ) χ(t ) M(H) C p(t ) µ χ ac(t ) µ 7 7 7 R B 7 R B R 3+ 111 7 7 7 7 111 θ p = 19 7 7 111 7 15 7 7 7 7 7 7 7 7 T N.55 3+ 7 µ µ B 7 7 7 3+ 4f 8 S = 3 L = 3 J = 6 J + 1 = 13 7 F 6 3+ 7 7

More information

4.2 Elastic and inelastic neutron scattering

4.2 Elastic and inelastic neutron scattering 4.2 ELASTIC AD IELASTIC EUTRO SCATTERIG 73 4.2 Elastic and inelastic neutron scattering If the scattering system is assumed to be in thermal equilibrium at temperature T, the average over initial states

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005 Polarised Nucleon Targets for Europe, nd meeting, Bochum Temperature dependence of nuclear spin-lattice relaxations in liquid ethanol with dissolved TEMPO radicals H. Štěpánková, J. Englich, J. Kohout,

More information

Polarized solid deuteron targets EU-SpinMap Dubrovnik

Polarized solid deuteron targets EU-SpinMap Dubrovnik Experimentalphysik I Arbeitsgruppe Physik der Hadronen und Kerne Prof. Dr. W. Meyer G. Reicherz, Chr. Heß, A. Berlin, J. Herick Polarized solid deuteron targets EU-SpinMap 11.10.2010 Dubrovnik Polarized

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Schematic for resistivity measurement

Schematic for resistivity measurement Module 9 : Experimental probes of Superconductivity Lecture 1 : Experimental probes of Superconductivity - I Among the various experimental methods used to probe the properties of superconductors, there

More information

The Physical Basis of the NMR Experiment

The Physical Basis of the NMR Experiment The Physical Basis of the NMR Experiment 1 Interaction of Materials with Magnetic Fields F F S N S N Paramagnetism Diamagnetism 2 Microscopic View: Single Spins an electron has mass and charge in addition

More information

Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy INTRODUCTION TO Magnetic Resonance Spectroscopy ESR, NMR, NQR D. N. SATHYANARAYANA Formerly, Chairman Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore % I.K. International

More information

Spectroscopy of Polymers

Spectroscopy of Polymers Spectroscopy of Polymers Jack L. Koenig Case Western Reserve University WOMACS Professional Reference Book American Chemical Society, Washington, DC 1992 Contents Preface m xiii Theory of Polymer Characterization

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft MR Fundamentals 26 October 2010 Mitglied der Helmholtz-Gemeinschaft Mitglied der Helmholtz-Gemeinschaft Nuclear Spin Nuclear Spin Nuclear magnetic resonance is observed in atoms with odd number of protons

More information

Control of Spin Systems

Control of Spin Systems Control of Spin Systems The Nuclear Spin Sensor Many Atomic Nuclei have intrinsic angular momentum called spin. The spin gives the nucleus a magnetic moment (like a small bar magnet). Magnetic moments

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

Polarized Neutrons Hirohiko SHIMIZU Department of Physics, Nagoya University

Polarized Neutrons Hirohiko SHIMIZU Department of Physics, Nagoya University Polarized Neutrons Hirohiko SHIMIZU shimizu@phi.phys.nagoya-u.jp Department of Physics, Nagoya University Introduction Neutron 1T Ni 244neV Strong Interaction 60neV 0neV - 60neV g γ d nneutron u d W G

More information

Chapter 3. Magnetic Model. 3.1 Magnetic interactions

Chapter 3. Magnetic Model. 3.1 Magnetic interactions Chapter 3 Magnetic Model In this chapter, the micromagnetic model for the description of the magnetic properties of a laterally nanostructured film during growth is presented. The main physical idea of

More information

Muon Spin Relaxation Functions

Muon Spin Relaxation Functions Muon Spin Relaxation Functions Bob Cywinski Department of Physics and Astronomy University of eeds eeds S 9JT Muon Training Course, February 005 Introduction Positive muon spin relaxation (µsr) is a point-like

More information

Laser MEOP of 3 He: Basic Concepts, Current Achievements, and Challenging Prospects

Laser MEOP of 3 He: Basic Concepts, Current Achievements, and Challenging Prospects Polarization in Noble Gases, October 8-13, 2017 Laser MEOP of 3 He: Basic Concepts, Current Achievements, and Challenging Prospects Pierre-Jean Nacher Geneviève Tastevin Laboratoire Kastler-Brossel ENS

More information

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei : An introduction to Solid State NMR spectroscopy Dr. Susanne Causemann (Solid State NMR specialist/ researcher) Interaction between nuclear spins and applied magnetic fields B 0 application of a static

More information

Solid-state NMR of spin > 1/2

Solid-state NMR of spin > 1/2 Solid-state NMR of spin > 1/2 Nuclear spins with I > 1/2 possess an electrical quadrupole moment. Anisotropic Interactions Dipolar Interaction 1 H- 1 H, 1 H- 13 C: typically 50 khz Anisotropy of the chemical

More information

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Thermal and Statistical Physics Department Exam Last updated November 4, L π Thermal and Statistical Physics Department Exam Last updated November 4, 013 1. a. Define the chemical potential µ. Show that two systems are in diffusive equilibrium if µ 1 =µ. You may start with F =

More information

NMR spectroscopy. Matti Hotokka Physical Chemistry Åbo Akademi University

NMR spectroscopy. Matti Hotokka Physical Chemistry Åbo Akademi University NMR spectroscopy Matti Hotokka Physical Chemistry Åbo Akademi University Angular momentum Quantum numbers L and m (general case) The vector precesses Nuclear spin The quantum numbers are I and m Quantum

More information

Fundamental MRI Principles Module Two

Fundamental MRI Principles Module Two Fundamental MRI Principles Module Two 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons neutrons electrons positively charged no significant charge negatively charged Protons

More information

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY 20 CHAPTER MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY 20.1 Introduction to Molecular Spectroscopy 20.2 Experimental Methods in Molecular Spectroscopy 20.3 Rotational and Vibrational Spectroscopy 20.4 Nuclear

More information

Appendix II - 1. Figure 1: The splitting of the spin states of an unpaired electron

Appendix II - 1. Figure 1: The splitting of the spin states of an unpaired electron Appendix II - 1 May 2017 Appendix II: Introduction to EPR Spectroscopy There are several general texts on this topic, and this appendix is only intended to give you a brief outline of the Electron Spin

More information

Topics. Spin. The concept of spin Precession of magnetic spin Relaxation Bloch Equation

Topics. Spin. The concept of spin Precession of magnetic spin Relaxation Bloch Equation Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2005 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaation Bloch Equation Spin Intrinsic angular momentum of elementary

More information

Drickamer type. Disk containing the specimen. Pressure cell. Press

Drickamer type. Disk containing the specimen. Pressure cell. Press ε-fe Drickamer type Press Pressure cell Disk containing the specimen Low Temperature Cryostat Diamond Anvil Cell (DAC) Ruby manometry Re gasket for collimation Small size of specimen space High-density

More information

Principles of EPR and Image Acquisition

Principles of EPR and Image Acquisition The University of Chicago Center for EPR Imaging in Vivo Physiology Principles of EPR and Image Acquisition Boris Epel Outline Electron Paramagnetic Resonance (EPR) Oxygen Partial Tension Measuring using

More information

.O. Demokritov niversität Münster, Germany

.O. Demokritov niversität Münster, Germany Quantum Thermodynamics of Magnons.O. Demokritov niversität Münster, Germany Magnon Frequency Population BEC-condensates http://www.uni-muenster.de/physik/ap/demokritov/ k z k y Group of NonLinea Magnetic

More information

T 1, T 2, NOE (reminder)

T 1, T 2, NOE (reminder) T 1, T 2, NOE (reminder) T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations of the system following perturbation

More information

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by:

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by: Bloch Equations We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by: M = [] µ i i In terms of the total spin

More information

10.4 Continuous Wave NMR Instrumentation

10.4 Continuous Wave NMR Instrumentation 10.4 Continuous Wave NMR Instrumentation coherent detection bulk magnetization the rotating frame, and effective magnetic field generating a rotating frame, and precession in the laboratory frame spin-lattice

More information

Nuclear Magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) E E increases with increasing magnetic field strength Boltzmann distribution at thermal equilibrium: N (m=-1/2) /N (m=+1/2) = e ( E/kT) with E = γ(h/2π)b o NMR Physical

More information

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides Marc-Henri Julien Laboratoire de Spectrométrie Physique Université J. Fourier Grenoble I Acknowledgments

More information

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10) 2009, Department of Chemistry, The University of Western Ontario 7a.1 7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text 11.1 11.5, 12.1 12.5, 12.10) A. Electromagnetic Radiation Energy is

More information

Spin. Nuclear Spin Rules

Spin. Nuclear Spin Rules Spin Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2012 MRI Lecture 1 Intrinsic angular momentum of elementary particles -- electrons, protons, neutrons. Spin is quantized. Key concept

More information

4/4/11. Particles possess intrinsic angular momentum. Spin angular momentum is quantized (it can only take on discrete values)

4/4/11. Particles possess intrinsic angular momentum. Spin angular momentum is quantized (it can only take on discrete values) For the completely filled shells, subshell (4d 10 ) the orbital magnetic momentum is zero; for the 5s orbital M L is also zero. Hypothesis: the argent atom possesses no magnetic momentum >> they move in

More information

1.b Bloch equations, T 1, T 2

1.b Bloch equations, T 1, T 2 1.b Bloch equations, T 1, T Magnetic resonance eperiments are usually conducted with a large number of spins (at least 1 8, more typically 1 1 to 1 18 spins for electrons and 1 18 or more nuclear spins).

More information

Spin fluctuations in MnGe chiral Magnet

Spin fluctuations in MnGe chiral Magnet Spin fluctuations in MnGe chiral Magnet Isabelle Mirebeau, Nicolas Martin, Maxime Deutsch Laboratoire Léon Brillouin CE-Saclay 91191 Gif sur Yvette France Post-docs: Nicolas Martin (2014-16) Maxime Deutsch

More information

Overhauser Magnetometers For Measurement of the Earth s Magnetic Field

Overhauser Magnetometers For Measurement of the Earth s Magnetic Field Overhauser Magnetometers For Measurement of the Earth s Magnetic Field By: Dr. Ivan Hrvoic GEM Systems Inc. (Magnetic field Workshop on Magnetic Observatory Instrumentation Espoo, Finland. 1989) TABLE

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Ecole Polytechnique Département de Chimie CHI 551 Dr. Grégory Nocton Bureau 01 30 11 A Tel: 44 02 Ecole polytechnique / CNRS Laboratoire de Chimie Moléculaire E-mail:

More information

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006 Quantum Tunneling of Magnetization in Molecular Magnets ANDREW D. KENT Department of Physics, New York University Tutorial T2: Molecular Magnets, March 12, 2006 1 Outline 1. Introduction Nanomagnetism

More information

Critical Behavior I: Phenomenology, Universality & Scaling

Critical Behavior I: Phenomenology, Universality & Scaling Critical Behavior I: Phenomenology, Universality & Scaling H. W. Diehl Fachbereich Physik, Universität Duisburg-Essen, Campus Essen 1 Goals recall basic facts about (static equilibrium) critical behavior

More information

arxiv:cond-mat/ v1 1 Dec 1999

arxiv:cond-mat/ v1 1 Dec 1999 Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain Vladimir L. Safonov and H. Neal Bertram Center for Magnetic Recording Research, University of California San arxiv:cond-mat/9912014v1

More information

INTRODUCTION TO NMR and NMR QIP

INTRODUCTION TO NMR and NMR QIP Books (NMR): Spin dynamics: basics of nuclear magnetic resonance, M. H. Levitt, Wiley, 2001. The principles of nuclear magnetism, A. Abragam, Oxford, 1961. Principles of magnetic resonance, C. P. Slichter,

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Optimized statistical ensembles for slowly equilibrating classical and quantum systems

Optimized statistical ensembles for slowly equilibrating classical and quantum systems Optimized statistical ensembles for slowly equilibrating classical and quantum systems IPAM, January 2009 Simon Trebst Microsoft Station Q University of California, Santa Barbara Collaborators: David Huse,

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Jeffrey A. Fessler EECS Department The University of Michigan NSS-MIC: Fundamentals of Medical Imaging Oct. 20, 2003 NMR-0 Background Basic physics 4 magnetic fields

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Nuclear Magnetism Vrije Universiteit Brussel 21st October 2011 Outline 1 Overview and Context 2 3 Outline 1 Overview and Context 2 3 Context Proteins (and other biological macromolecules) Functional characterisation

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

Nuclear Magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) The Nuclear Magnetic Resonance Spectroscopy (NMR) is one of the most important spectroscopic methods to explore the structure and dynamic

More information

Hyperfine interaction

Hyperfine interaction Hyperfine interaction The notion hyperfine interaction (hfi) comes from atomic physics, where it is used for the interaction of the electronic magnetic moment with the nuclear magnetic moment. In magnetic

More information

3.3 Energy absorption and the Green function

3.3 Energy absorption and the Green function 142 3. LINEAR RESPONSE THEORY 3.3 Energy absorption and the Green function In this section, we first present a calculation of the energy transferred to the system by the external perturbation H 1 = Âf(t)

More information