Classical Description of NMR Parameters: The Bloch Equations

Size: px
Start display at page:

Download "Classical Description of NMR Parameters: The Bloch Equations"

Transcription

1 Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession in a Static Magnetic Field 3) Chemical Shift 4) Laboratory Frame and Rotating Frame 5) The B 1 Field 6) 90 Pulse: Pulse Length 7) T 1 and T 2 Relaxation 2 1

2 The Nobel Prize in Physics 1952 "for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith" Felix Bloch Stanford University Stanford, CA, USA b in Zurich, Switzerland d Edward Mills Purcell Harvard University Cambridge, MA, USA b d Ref: 3 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation Bloch formulated a semi-classical model to describe the behavior of a sample of non-interacting spin-1/2 nuclei in a static magnetic field. The evolution of bulk magnetic moment [M(t)] is central to the Bloch equations 4 2

3 1) Classical Behavior of Magnetic Nuclei: The Bloch Equations Evolution of bulk angular momentum J(t): M = γj In the presence of a magnetic field (includes static field B o and radio-frequency (rf) field B 1 ), M(t) experiences a torque (T). T = dj(t)/dt = M(t) x B(t) Evolution of bulk magnetic moment M(t): dm(t)/dt = M(t) x γb(t) M(t) represents the directly observed bulk magnetization. 5 1) Classical Behavior of Magnetic Nuclei: The Bloch Equations Note that M(t) is a vector quantity [also denoted M(t)] The bulk magnetic moment (M) and angular momentum (J) of a macroscopic sample are given by the vector sum of the corresponding quantities for individual nuclei, µ and I. 6 3

4 1) Classical Behavior of Magnetic Nuclei: The Bloch Equations Evolution of M: dm(t)/dt = M(t) x γb(t) M represents the directly observed bulk magnetization. The Bloch equations are solutions of dm(t)/dt. It helps explain: - Isolated spin behaviors - Precession in a Static Field - Chemical Shifts - Lab Frame versus Rotating Frame - The B 1 Field - Effect of Single Pulses - T 1 and T 2 relaxations 7 2) Precession in a Static Field Evolution of M: dm(t)/dt = M(t) x γb(t) Simplified case: B(t) = (0, 0, B o ) and M o = (M x (0), 0, 0) In complex notation: M x (t) = M x (0)cos(ω o t) M y (t) = M x (0)sin(ω o t) M(t) = M x (0)[cosω o t + isinω o t] = M x (0)exp[+iω o t] 8 4

5 Solution to Bloch Equations (time=0 on x axis) General case i j k dm(t)/dt = γ M x M y M z B x B y B o dm x (t)/dt = γ(m y B o - M z B y ); dm y (t)/dt = -γ(m x B o - M z B x ); dm z (t)/dt = γ(m x B y - M y B x ) Simplified case: M o = M x (0); B t = (0, 0, B o ) The static field B o is along the z axis, thus B x = B y = 0 i j k dm/dt = d(m x, M y, M z )/dt = γ M x M y M z 0 0 B o 9 Simplified case (cont d) dm x /dt = γ(m y B o ); dm y /dt = -γ(m x B o ); dm z /dt = 0 dm/dt = γ(m y B o, -M x B o, 0) M x and M y are NOT independent of each other. Mathematically, it is convenient to consider M x and M y as real and imaginary parts of a complex magnetization: M + = M x + im y d(m x + im y )/dt = γ(m y B o - M x B o ) = γb o (M y - im x ) d(m x + im y )/dt = -iγb o (M x + im y ) = -iγb o (M + ) 10 5

6 d(m + )/dt = -iγb o (M + ) d(m + )/dt = -iγb o (M + ) M + (t) = M + (0) e -iγbot M + (t) = M + (0) e +iωot (ω o = -γb o ) M x (t) + im y (t) = [M x (0) + im y (0) ]*[cos(ω o t) + isin(ω o t)] M x (t) = M x (0)cos(ω o t) - M y (0)sin(ω o t) M y (t) = M y (0)cos(ω o t) + M x (0)sin(ω o t) since M o = M x (0) and M y (0) = 0, then: M x (t) = M o cos(ω o t) M y (t) = M o sin(ω o t) 11 3) Chemical Shift Not all nuclei see exactly B o. The local effective field (B o i) is modified by the electronic environment. Different spins have different shielding constants (σ i ) and thus rotate at different angular frequencies (ω i ). ω i = -γb o i = -γb o (1-σ i) The term σ i represents an average or isotropic shielding constant: σ = (σ xx + σ yy + σ zz )/3 The term Δσ i represents the chemical shift anisotropy (CSA): Δσ = σ zz - ( σ xx + σ yy)/2 For simplicity σ i terms are often neglected. 12 6

7 3) Chemical Shift Shielding constants (σ i ) are <<< 1, which means that the variation in ω i (Δω) is much smaller than ω o : ω i = -γb o (1-σ i) = ω o + Δω For 1 H at 500 MHz (B o =11.7 Tesla) ν o = ω o /2π 500 MHz In general : Δω /2π 7500 Hz We choose a reference signal (TMS or DSS) to represent ω o and measure relative frequencies δ =[(ω i - ω DSS )/ ω DSS ] x 10 6 (in ppm) 13 1 H Chemical Shifts in RNA 14 7

8 4) Lab Frame and Rotating Frame Lab Frame: ω i = -γb o i = -γb o (1-σ i) = ω o (1-σ i) M(t) = M x (0)[cosω o t + isinω o t] M(t) = M x (0) e +iωot e +iωot = clockwise rotation At B o = 11.7 tesla, ω o /2π 500 MHz for 1 H 15 4) Lab Frame and Rotating Frame (cont d) Rotating frame: ω eff = ω i - ω rot Mathematically, we rotate the lab frame at an angular frequency ω rot : 16 8

9 4) Lab Frame and Rotating Frame (cont d) General formalism (Rotating frame): [dm(t)/dt] rot = [dm(t)/dt] lab + M(t) X ω rot [dm(t)/dt] rot = M(t) X [γb(t) + ω rot ] B eff = B(t) + ω rot /γ (ω rot = - γb rot ) B eff = B(t) - B rot ω eff = ω(t) - ω rot Special case: B(t) = B o and ω rot = ω o = ω DSS then ω eff = ω i - ω rot ω = ω eff i - ω DSS = Δ and ω eff /2π in Hz-kHz not MHz!!! 17 4) Lab Frame and Rotating Frame (Conclusions) This rotating frame (ω rot = ω o) is very useful when we consider the effect of the radio-frequency field B 1 It allows simplification of time-dependent Bloch equations Also very useful for QM formalism Experimentally, detected signals are subtracted from carrier frequency 18 9

10 5) The B 1 Field B 1 is a radio-frequency field, which creates a linearly polarized oscillating magnetic field. The B 1 field can be decomposed in 2 equal fields of half intensity. For B 1 along x: B rf = 2B 1 cos(ω rf t) B rf = B 1 (e+iωrft + e -iωrft ) where B 1 is the amplitude and ω rf is the frequency related to B rf 19 5) The B 1 Field (cont d) 20 10

11 5) The B 1 Field (cont d) Only the field rotating in the same sense as the magnetic moment interacts significantly with the magnetic moment (resonance effect). B rf = B 1 e +iω rft In the rotating frame: ω rot = ω rf B eff = (B 1, 0, ΔB o ) where B 1 = -ω rf /γ and ΔB o = -Δ/γ; Δ = ω o - ω rf 21 6) 90 Pulse : Pulse Length M o = (0, 0, M z (0)); B eff = (-ω rf /γ,0, -Δ/γ) i j k dm(t)/dt = γ M x M y M z -ω rf /γ 0 -Δ/γ Note: The are there to remind us that we are in the rotating frame. They are often omitted. dm x (t)/dt = -M y Δ dm y (t)/dt = +M x Δ - M z ω rf dm z (t)/dt = +M y ω rf 22 11

12 6) 90 Pulse : Pulse Length (cont d) Lets say that Δ = 0 for now. Thus dm x (t)/dt = 0; dm y (t)/dt = -M z ω rf ; dm z (t)/dt = +M y ω rf. Solution: M x (t) = 0; M y (t) = -M z (0)sinω rf t; M z (t) = M z (0)cosω rf t. The magnetization rotates about x in the y -z plane. 23 6) 90 Pulse : Pulse Length (cont d) length for 90 pulse (θ = π/2 ): θ = ω rf*τ p = π/2 τ p = θ/ω rf = pulse length Example: Typical parameters for hard pulse on 1 H If τ p = 10 µs for 90 pulse (θ = π/2 = 0.25 radian) ω rf = θ/ τ p = 0.25/ 10 µs = 25 khz 24 12

13 6) 90 Pulse : Pulse Length (cont d) Proof: (rotating frame simplifies) dm x (t)/dt = 0; dm y (t)/dt = - M z ω rf ; dm z (t)/dt = +M y ω rf d 2 M y (t)/dt 2 = - ω rf dm z (t)/dt = - ω rf 2 M y Possible solution to differential equation: M y (t) = A cosω rf t + B sinω rf t d 2 M z (t)/dt 2 = ω rf dm y (t)/dt = - ω rf2 M z M z (t) = Acosω rf t + Bsinω rf t 25 6) 90 Pulse : Pulse Length (cont d) M x (t) = M x (0) = 0 M y (0) = A M z (0) = A = 0 dm z (t)/dt = Bω rf cosω rf t = Bω rf t=o t=o dm z (t)/dt = M y ω rf = 0 B = 0 t=o t=o dm y (t)/dt = B ω rf cosω rf t = B ω rf t=o t=o dm y (t)/dt = -M z ω rf = M z (0)ω rf B = M z (0) t=o t=o 26 13

14 7) T 1 and T 2 Relaxation T 1 : longitudinal or spin-lattice relaxation time, returning back to equilibrium (back to +z) T 2 : transverse or spin-spin relaxation time, dephasing in the x-y plane R 1 = 1/T 1 ; R 2 = 1/T 2 R 1 and R 2 are rate constants Lets consider some simplified cases i.e. after pulse (B 1 = 0) and on resonance (ΔB = 0): 27 7) T 1 and T 2 Relaxation T 2 relaxation dm x (t)/dt = -R 2 M x (t) dm y (t)/dt = -R 2 M y (t) Solving for M x : dm x (t)/ M x (t) = -R 2 dt ln M x (t) o = - R 2 t o ln M x (t)/ M x (0) = - R 2 t M x (t) = M x (0)e -R 2t M y (t) = M y (0)e -R 2t t t 28 14

15 7) T 1 and T 2 Relaxation T 1 relaxation dm z (t)/dt = R 1 [M o - M z (t)] Solving for M z : dm z (t)/ [M z (t) - M o ] = -R 1 dt t t ln M z (t) - M o o = - R 1 t o ln [M z (t) - M o ]/ [M z (0) - M o ] = - R 1 t M z (t) = M o - [M o - M z (0)] e -R 1t 29 7) T 1 and T 2 Relaxation: Summary For isolated spins, the bulk magnetization behaves as described by the classical Bloch equation dm(t)/dt = M(t)xγB(t) - [M o - M z (0)] e -R1t - M x,y (0)e -R2t After, 90 x pulse, the bulk magnetization can be detected along y (simple 1D experiment)

16 Exercises (due in a week from now) Solve the Bloch equation [dm(t)/dt = M(t) x γb(t)] for the following case: B(t) = (0, 0, B o ) and M o = (0, M y (0), 0). Explain you results in terms of a vector diagram. Solve the Bloch equation [dm(t)/dt = M(t) x γb(t)] for the following case: M o = (0, 0, M z (0)); B eff = (0,-ω rf /γ,-δ/γ), with Δ = 0. Explain you results in terms of a vector diagram. What is the strength of the B 1 field (in khz) for a 90 pulse of 12,5 µs? 31 16

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

1 Magnetism, Curie s Law and the Bloch Equations

1 Magnetism, Curie s Law and the Bloch Equations 1 Magnetism, Curie s Law and the Bloch Equations In NMR, the observable which is measured is magnetization and its evolution over time. In order to understand what this means, let us first begin with some

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Jeffrey A. Fessler EECS Department The University of Michigan NSS-MIC: Fundamentals of Medical Imaging Oct. 20, 2003 NMR-0 Background Basic physics 4 magnetic fields

More information

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by:

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by: Bloch Equations We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by: M = [] µ i i In terms of the total spin

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

10.4 Continuous Wave NMR Instrumentation

10.4 Continuous Wave NMR Instrumentation 10.4 Continuous Wave NMR Instrumentation coherent detection bulk magnetization the rotating frame, and effective magnetic field generating a rotating frame, and precession in the laboratory frame spin-lattice

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

Biomedical Imaging Magnetic Resonance Imaging

Biomedical Imaging Magnetic Resonance Imaging Biomedical Imaging Magnetic Resonance Imaging Charles A. DiMarzio & Eric Kercher EECE 4649 Northeastern University May 2018 Background and History Measurement of Nuclear Spins Widely used in physics/chemistry

More information

Bloch Equations & Relaxation UCLA. Radiology

Bloch Equations & Relaxation UCLA. Radiology Bloch Equations & Relaxation MRI Systems II B1 I 1 I ~B 1 (t) I 6 ~M I I 5 I 4 Lecture # Learning Objectives Distinguish spin, precession, and nutation. Appreciate that any B-field acts on the the spin

More information

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening Spectral Broadening echanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Sketch of the MRI Device

Sketch of the MRI Device Outline for Today 1. 2. 3. Introduction to MRI Quantum NMR and MRI in 0D Magnetization, m(x,t), in a Voxel Proton T1 Spin Relaxation in a Voxel Proton Density MRI in 1D MRI Case Study, and Caveat Sketch

More information

Physical fundamentals of magnetic resonance imaging

Physical fundamentals of magnetic resonance imaging Physical fundamentals of magnetic resonance imaging Stepan Sereda University of Bonn 1 / 26 Why? Figure 1 : Full body MRI scan (Source: [4]) 2 / 26 Overview Spin angular momentum Rotating frame and interaction

More information

The Theory of Nuclear Magnetic Resonance Behind Magnetic Resonance Imaging. Catherine Wasko Physics 304 Physics of the Human Body May 3, 2005

The Theory of Nuclear Magnetic Resonance Behind Magnetic Resonance Imaging. Catherine Wasko Physics 304 Physics of the Human Body May 3, 2005 The Theory of Nuclear Magnetic Resonance Behind Magnetic Resonance Imaging Catherine Wasko Physics 304 Physics of the Human Body May 3, 2005 Magnetic resonance imaging (MRI) is a tool utilized in the medical

More information

NMR Dynamics and Relaxation

NMR Dynamics and Relaxation NMR Dynamics and Relaxation Günter Hempel MLU Halle, Institut für Physik, FG Festkörper-NMR 1 Introduction: Relaxation Two basic magnetic relaxation processes: Longitudinal relaxation: T 1 Relaxation Return

More information

3 Chemical exchange and the McConnell Equations

3 Chemical exchange and the McConnell Equations 3 Chemical exchange and the McConnell Equations NMR is a technique which is well suited to study dynamic processes, such as the rates of chemical reactions. The time window which can be investigated in

More information

NMR Spectroscopy: A Quantum Phenomena

NMR Spectroscopy: A Quantum Phenomena NMR Spectroscopy: A Quantum Phenomena Pascale Legault Département de Biochimie Université de Montréal Outline 1) Energy Diagrams and Vector Diagrams 2) Simple 1D Spectra 3) Beyond Simple 1D Spectra 4)

More information

NMR course at the FMP: NMR of organic compounds and small biomolecules - II -

NMR course at the FMP: NMR of organic compounds and small biomolecules - II - NMR course at the FMP: NMR of organic compounds and small biomolecules - II - 16.03.2009 The program 2/76 CW vs. FT NMR What is a pulse? Vectormodel Water-flip-back 3/76 CW vs. FT CW vs. FT 4/76 Two methods

More information

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaxation Bloch Equation 1 Spin Intrinsic angular momentum of

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Simon Lacoste-Julien Electromagnetic Theory Project 198-562B Department of Physics McGill University April 21 2003 Abstract This paper gives an elementary introduction

More information

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft MR Fundamentals 26 October 2010 Mitglied der Helmholtz-Gemeinschaft Mitglied der Helmholtz-Gemeinschaft Nuclear Spin Nuclear Spin Nuclear magnetic resonance is observed in atoms with odd number of protons

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

Relaxation. Ravinder Reddy

Relaxation. Ravinder Reddy Relaxation Ravinder Reddy Relaxation What is nuclear spin relaxation? What causes it? Effect on spectral line width Field dependence Mechanisms Thermal equilibrium ~10-6 spins leads to NMR signal! T1 Spin-lattice

More information

The Physical Basis of the NMR Experiment

The Physical Basis of the NMR Experiment The Physical Basis of the NMR Experiment 1 Interaction of Materials with Magnetic Fields F F S N S N Paramagnetism Diamagnetism 2 Microscopic View: Single Spins an electron has mass and charge in addition

More information

NMR, the vector model and the relaxation

NMR, the vector model and the relaxation NMR, the vector model and the relaxation Reading/Books: One and two dimensional NMR spectroscopy, VCH, Friebolin Spin Dynamics, Basics of NMR, Wiley, Levitt Molecular Quantum Mechanics, Oxford Univ. Press,

More information

Chem343 (Fall 2009) NMR Presentation

Chem343 (Fall 2009) NMR Presentation Chem343 (Fall 2009) NMR Presentation Y Ishii Oct 16, 2009 1 NMR Experiment Cautions Before you start, Read the handouts for background information. Read NMR procedure handouts for the procedures of the

More information

Classical behavior of magnetic dipole vector. P. J. Grandinetti

Classical behavior of magnetic dipole vector. P. J. Grandinetti Classical behavior of magnetic dipole vector Z μ Y X Z μ Y X Quantum behavior of magnetic dipole vector Random sample of spin 1/2 nuclei measure μ z μ z = + γ h/2 group μ z = γ h/2 group Quantum behavior

More information

Magnetic Resonance Imaging in a Nutshell

Magnetic Resonance Imaging in a Nutshell Magnetic Resonance Imaging in a Nutshell Oliver Bieri, PhD Department of Radiology, Division of Radiological Physics, University Hospital Basel Department of Biomedical Engineering, University of Basel,

More information

MRI Physics I: Spins, Excitation, Relaxation

MRI Physics I: Spins, Excitation, Relaxation MRI Physics I: Spins, Excitation, Relaxation Douglas C. Noll Biomedical Engineering University of Michigan Michigan Functional MRI Laboratory Outline Introduction to Nuclear Magnetic Resonance Imaging

More information

Lecture 12 February 11, 2016

Lecture 12 February 11, 2016 MATH 262/CME 372: Applied Fourier Analysis and Winter 2016 Elements of Modern Signal Processing Lecture 12 February 11, 2016 Prof. Emmanuel Candes Scribe: Carlos A. Sing-Long, Edited by E. Bates 1 Outline

More information

INTRODUCTION TO NMR and NMR QIP

INTRODUCTION TO NMR and NMR QIP Books (NMR): Spin dynamics: basics of nuclear magnetic resonance, M. H. Levitt, Wiley, 2001. The principles of nuclear magnetism, A. Abragam, Oxford, 1961. Principles of magnetic resonance, C. P. Slichter,

More information

Introduction of Key Concepts of Nuclear Magnetic Resonance

Introduction of Key Concepts of Nuclear Magnetic Resonance I have not yet lost that sense of wonder, and delight, that this delicate motion should reside in all ordinary things around us, revealing itself only to those who looks for it. E. M. Purcell, Nobel Lecture.

More information

Factoring 15 with NMR spectroscopy. Josefine Enkner, Felix Helmrich

Factoring 15 with NMR spectroscopy. Josefine Enkner, Felix Helmrich Factoring 15 with NMR spectroscopy Josefine Enkner, Felix Helmrich Josefine Enkner, Felix Helmrich April 23, 2018 1 Introduction: What awaits you in this talk Recap Shor s Algorithm NMR Magnetic Nuclear

More information

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) MEDICAL IMAGING CLASS NOTES 1 Magnetic Resonance Imaging (MRI) Benjamin Kimia I. What should go in this report? History of MRI, from NRM: II. Review of Magnetic moments Nuclei with an odd number or protons,

More information

Topics. Spin. The concept of spin Precession of magnetic spin Relaxation Bloch Equation

Topics. Spin. The concept of spin Precession of magnetic spin Relaxation Bloch Equation Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2005 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaation Bloch Equation Spin Intrinsic angular momentum of elementary

More information

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance A Hands on Introduction to NMR 22.920 Lecture #1 Nuclear Spin and Magnetic Resonance Introduction - The aim of this short course is to present a physical picture of the basic principles of Nuclear Magnetic

More information

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons Fundamental MRI Principles Module 2 N S 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons positively charged neutrons no significant charge electrons negatively charged Protons

More information

Theoretische Physik 2: Elektrodynamik (Prof. A-S. Smith) Home assignment 9

Theoretische Physik 2: Elektrodynamik (Prof. A-S. Smith) Home assignment 9 WiSe 202 20.2.202 Prof. Dr. A-S. Smith Dipl.-Phys. Ellen Fischermeier Dipl.-Phys. Matthias Saba am Lehrstuhl für Theoretische Physik I Department für Physik Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

Spin. Nuclear Spin Rules

Spin. Nuclear Spin Rules Spin Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 203 MRI Lecture Intrinsic angular momentum of elementary particles -- electrons, protons, neutrons. Spin is quantized. Key concept

More information

ν 1H γ 1H ν 13C = γ 1H 2π B 0 and ν 13C = γ 13C 2π B 0,therefore = π γ 13C =150.9 MHz = MHz 500 MHz ν 1H, 11.

ν 1H γ 1H ν 13C = γ 1H 2π B 0 and ν 13C = γ 13C 2π B 0,therefore = π γ 13C =150.9 MHz = MHz 500 MHz ν 1H, 11. Problem Set #1, CEM/BCMB 4190/6190/8189 1). Which of the following statements are rue, False, or Possibly rue, for the hypothetical element X? he ground state spin is I0 for 5 4 b. he ground state spin

More information

More NMR Relaxation. Longitudinal Relaxation. Transverse Relaxation

More NMR Relaxation. Longitudinal Relaxation. Transverse Relaxation More NMR Relaxation Longitudinal Relaxation Transverse Relaxation Copyright Peter F. Flynn 2017 Experimental Determination of T1 Gated Inversion Recovery Experiment The gated inversion recovery pulse sequence

More information

Shimming of a Magnet for Calibration of NMR Probes UW PHYSICS REU 2013

Shimming of a Magnet for Calibration of NMR Probes UW PHYSICS REU 2013 Shimming of a Magnet for Calibration of NMR Probes RACHEL BIELAJEW UW PHYSICS REU 2013 Outline Background The muon anomaly The g-2 Experiment NMR Design Helmholtz coils producing a gradient Results Future

More information

Magnetic resonance fingerprinting

Magnetic resonance fingerprinting Magnetic resonance fingerprinting Bart Tukker July 14, 2017 Bachelor Thesis Mathematics, Physics and Astronomy Supervisors: dr. Rudolf Sprik, dr. Chris Stolk Korteweg-de Vries Instituut voor Wiskunde Faculteit

More information

Optimizing Phases of CPMG Pulse Sequence and Applying Exact Solution to Measure Relaxation Time

Optimizing Phases of CPMG Pulse Sequence and Applying Exact Solution to Measure Relaxation Time Optimizing Phases of CPMG Pulse Sequence and Applying Exact Solution to Measure Relaxation Time Alex Bain 1, Christopher Anand 2, Zhenghua Nie 3 1 Department of Chemistry & Chemical Biology 2 Department

More information

Principles of MRI. Vinyl Record. Last time: Today: Homework Due tonight! EE225E / BIO265. Transforms a temporal signal to a spatial signal

Principles of MRI. Vinyl Record. Last time: Today: Homework Due tonight! EE225E / BIO265. Transforms a temporal signal to a spatial signal What is this? ` Principles of MRI Lecture 05 EE225E / BIO265 Instructor: Miki Lustig UC Berkeley, EECS The first NMR spectrum of ethanol 1951. 1 2 Today Last time: Linear systems, Fourier Transforms, Sampling

More information

Spin. Nuclear Spin Rules

Spin. Nuclear Spin Rules Spin Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2012 MRI Lecture 1 Intrinsic angular momentum of elementary particles -- electrons, protons, neutrons. Spin is quantized. Key concept

More information

Problem Set #6 BioE 326B/Rad 226B

Problem Set #6 BioE 326B/Rad 226B . Chemical shift anisotropy Problem Set #6 BioE 26B/Rad 226B 2. Scalar relaxation of the 2 nd kind. 0 imaging 4. NMRD curves Chemical Shift Anisotropy The Hamiltonian a single-spin system in a magnetic

More information

Lecture #6 NMR in Hilbert Space

Lecture #6 NMR in Hilbert Space Lecture #6 NMR in Hilbert Space Topics Review of spin operators Single spin in a magnetic field: longitudinal and transverse magnetiation Ensemble of spins in a magnetic field RF excitation Handouts and

More information

V27: RF Spectroscopy

V27: RF Spectroscopy Martin-Luther-Universität Halle-Wittenberg FB Physik Advanced Lab Course V27: RF Spectroscopy ) Electron spin resonance (ESR) Investigate the resonance behaviour of two coupled LC circuits (an active rf

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Enseignant-chercheur Equipe IMAGES - Télécom ParisTech pietro.gori@telecom-paristech.fr September 20, 2017 P. Gori BIOMED 20/09/2017 1 / 76

More information

Introduction to NMR! Ravinder Reddy!

Introduction to NMR! Ravinder Reddy! Introduction to NMR! Ravinder Reddy! Brief History of NMR! First detection of NMR! MSNMR! FT NMR! 2D NMR! 2D-NMR and protein structure! Development of MRI! Outline! Concept of SPIN! Spin angular momentum!

More information

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in: Solution Set Hand out:.. Hand in:.. Repetition. The magnetization moves adiabatically during the application of an r.f. pulse if it is always aligned along the effective field axis. This behaviour is observed

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Spin Dynamics & Vrije Universiteit Brussel 25th November 2011 Outline 1 Pulse/Fourier Transform NMR Thermal Equilibrium Effect of RF Pulses The Fourier Transform 2 Symmetric Exchange Between Two Sites

More information

Utrecht University. Radiofrequency pulse design through optimal control and model order reduction of the Bloch equation

Utrecht University. Radiofrequency pulse design through optimal control and model order reduction of the Bloch equation Utrecht University Master s thesis Radiofrequency pulse design through optimal control and model order reduction of the Bloch equation Author: Willem van Valenberg Supervisors: Gerard L.G. Sleijpen Alessandro

More information

1.b Bloch equations, T 1, T 2

1.b Bloch equations, T 1, T 2 1.b Bloch equations, T 1, T Magnetic resonance eperiments are usually conducted with a large number of spins (at least 1 8, more typically 1 1 to 1 18 spins for electrons and 1 18 or more nuclear spins).

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

Lecture 21. Nuclear magnetic resonance

Lecture 21. Nuclear magnetic resonance Lecture 21 Nuclear magnetic resonance A very brief history Stern and Gerlach atomic beam experiments Isidor Rabi molecular beam exp.; nuclear magnetic moments (angular momentum) Felix Bloch & Edward Purcell

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

COPYRIGHTED MATERIAL. Basic Principles. 1.1 Introduction

COPYRIGHTED MATERIAL. Basic Principles. 1.1 Introduction . Introduction Basic Principles The field of spectroscopy is in general concerned with the interaction between matter and electromagnetic radiation. Atoms and molecules have a range of discrete energy

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 13 Structure t Determination: ti Nuclear Magnetic Resonance Spectroscopy Revisions by Dr. Daniel Holmes MSU Paul D. Adams University of Arkansas

More information

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging BMB 601 MRI Ari Borthakur, PhD Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging University of Pennsylvania School of Medicine A brief history

More information

NMR Instrumentation BCMB/CHEM Biomolecular NMR

NMR Instrumentation BCMB/CHEM Biomolecular NMR NMR Instrumentation BCMB/CHEM 8190 Biomolecular NMR Instrumental Considerations - Block Diagram of an NMR Spectrometer Magnet Sample B 0 Lock Probe Receiver Computer Transmit Superconducting Magnet systems

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

VIII. NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY

VIII. NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY 1 VIII. NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY Molecules are extremely small entities; thus, their direct detection and direct investigation is still almost impossible. For the detection and detailed

More information

Spin Relaxation and NOEs BCMB/CHEM 8190

Spin Relaxation and NOEs BCMB/CHEM 8190 Spin Relaxation and NOEs BCMB/CHEM 8190 T 1, T 2 (reminder), NOE T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations

More information

Ferdowsi University of Mashhad

Ferdowsi University of Mashhad Spectroscopy in Inorganic Chemistry Nuclear Magnetic Resonance Spectroscopy spin deuterium 2 helium 3 The neutron has 2 quarks with a -e/3 charge and one quark with a +2e/3 charge resulting in a total

More information

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 4 k (t) = γ 2π k y (t) = γ 2π K-space At each point in time, the received signal is the Fourier transform of the object

More information

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x )

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x ) Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2013 MRI Lecture 5 GE Medical Systems 2003 Gibbs Artifact Apodization rect(k ) Hanning Window h(k )=1/2(1+cos(2πk ) 256256 image 256128

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

Chemical Exchange. Spin-interactions External interactions Magnetic field Bo, RF field B1

Chemical Exchange. Spin-interactions External interactions Magnetic field Bo, RF field B1 Chemical Exchange Spin-interactions External interactions Magnetic field Bo, RF field B1 Internal Interactions Molecular motions Chemical shifts J-coupling Chemical Exchange 1 Outline Motional time scales

More information

The Two Level System: Resonance

The Two Level System: Resonance Chapter 1 The Two Level System: Resonance 1.1 Introduction The cornerstone of contemporary Atomic, Molecular and Optical Physics (AMO Physics) is the study of atomic and molecular systems and their interactions

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Part II: Magnetic Resonance Imaging (MRI)

Part II: Magnetic Resonance Imaging (MRI) Part II: Magnetic Resonance Imaging (MRI) Contents Magnetic Field Gradients Selective Excitation Spatially Resolved Reception k-space Gradient Echo Sequence Spin Echo Sequence Magnetic Resonance Imaging

More information

Nuclear magnetic resonance spectroscopy

Nuclear magnetic resonance spectroscopy nuclear spin transitions O Nuclear magnetic resonance spectroscopy 1 H, 13 C, 2-dimensional which transitions? wavelength and intensity; ppm what happens if we change the environment of the nucleus? substituent

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) Magnetic Resonance Imaging Introduction The Components The Technology (MRI) Physics behind MR Most slides taken from http:// www.slideworld.org/ viewslides.aspx/magnetic- Resonance-Imaging- %28MRI%29-MR-Imaging-

More information

Physics 221A Fall 1996 Notes 13 Spins in Magnetic Fields

Physics 221A Fall 1996 Notes 13 Spins in Magnetic Fields Physics 221A Fall 1996 Notes 13 Spins in Magnetic Fields A nice illustration of rotation operator methods which is also important physically is the problem of spins in magnetic fields. The earliest experiments

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

Control of Spin Systems

Control of Spin Systems Control of Spin Systems The Nuclear Spin Sensor Many Atomic Nuclei have intrinsic angular momentum called spin. The spin gives the nucleus a magnetic moment (like a small bar magnet). Magnetic moments

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Lectures for CCB 538 James Aramini, PhD. CABM 014A jma@cabm.rutgers.edu J.A.! 04/21/14! April 21!!!!April 23!! April 28! Outline 1. Introduction / Spectroscopy Overview! 2. NMR

More information

Exam 8N080 - Introduction to MRI

Exam 8N080 - Introduction to MRI Exam 8N080 - Introduction to MRI Friday April 10 2015, 18.00-21.00 h For this exam you may use an ordinary calculator (not a graphical one). In total there are 5 assignments and a total of 50 points can

More information

Solid state and advanced NMR

Solid state and advanced NMR Solid state and advanced NMR Dr. Magnus Wolf-Watz Department of Chemistry Umeå University magnus.wolf-watz@chem.umu.se NMR is useful for many things!!! Chemistry Structure of small molecules, chemical

More information

III.4 Nuclear Magnetic Resonance

III.4 Nuclear Magnetic Resonance III.4 Nuclear Magnetic Resonance Radiofrequency (rf) spectroscopy on nuclear spin states in a uniaxial constant magnetic field B = B 0 z (III.4.1) B 0 is on the order of 1-25 T The rf frequencies vary

More information

NMR Relaxation and Molecular Dynamics

NMR Relaxation and Molecular Dynamics Ecole RMN Cargese Mars 2008 NMR Relaxation and Molecular Dynamics Martin Blackledge IBS Grenoble Carine van Heijenoort ICSN, CNRS Gif-sur-Yvette Solution NMR Timescales for Biomolecular Motion ps ns µs

More information

Basics of NMR Spectroscopy. Mark Maciejewski Nov 29, 2016

Basics of NMR Spectroscopy. Mark Maciejewski Nov 29, 2016 Basics of NMR Spectroscopy Mark Maciejewski markm@uchc.edu Nov 29, 2016 What is Spectroscopy? Spectroscopy is the study of the interaction of electromagnetic radiation (light) with matter. NMR uses electromagnetic

More information

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum,

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, 16.02.2009 Solid-state and solution NMR spectroscopy have many things in common Several concepts have been/will

More information

e 2m p c I, (22.1) = g N β p I(I +1), (22.2) = erg/gauss. (22.3)

e 2m p c I, (22.1) = g N β p I(I +1), (22.2) = erg/gauss. (22.3) Chemistry 26 Molecular Spectra & Molecular Structure Week # 7 Nuclear Magnetic Resonance Spectroscopy Along with infrared spectroscopy, nuclear magnetic resonance (NMR) is the most important method available

More information

Fundamental MRI Principles Module Two

Fundamental MRI Principles Module Two Fundamental MRI Principles Module Two 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons neutrons electrons positively charged no significant charge negatively charged Protons

More information

Center for Sustainable Environmental Technologies, Iowa State University

Center for Sustainable Environmental Technologies, Iowa State University NMR Characterization of Biochars By Catherine Brewer Center for Sustainable Environmental Technologies, Iowa State University Introduction Nuclear magnetic resonance spectroscopy (NMR) uses a very strong

More information

Magnetic Resonance Spectroscopy ( )

Magnetic Resonance Spectroscopy ( ) Magnetic Resonance Spectroscopy In our discussion of spectroscopy, we have shown that absorption of E.M. radiation occurs on resonance: When the frequency of applied E.M. field matches the energy splitting

More information

Magnetic Resonance Imaging in Medicine

Magnetic Resonance Imaging in Medicine Institute for Biomedical Engineering University and ETH Zurich Gloriastrasse 35 CH- 8092 Zurich Switzerland Magnetic Resonance Imaging in Medicine D. Meier, P. Boesiger, S. Kozerke 2012 All rights reserved.

More information

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1 Chapter 1 Production of Net Magnetization Magnetic resonance (MR) is a measurement technique used to examine atoms and molecules. It is based on the interaction between an applied magnetic field and a

More information

arxiv:cond-mat/ v1 1 Dec 1999

arxiv:cond-mat/ v1 1 Dec 1999 Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain Vladimir L. Safonov and H. Neal Bertram Center for Magnetic Recording Research, University of California San arxiv:cond-mat/9912014v1

More information

June 16, Signal generation and gradient fields in MRI. Maximilian Oehm. Summary of physical fundamentals. Motivation. Complex representation

June 16, Signal generation and gradient fields in MRI. Maximilian Oehm. Summary of physical fundamentals. Motivation. Complex representation in MRI of Signal in MRI June 16, 2015 in MRI Contents of 1 of 2 3 4 5 6 7 in MRI of of Magnetic field B e z (few T) Splits up energy levels N+ N N ++N 1ppm M = m V B No measurement in z-direction possible

More information

I. INTRODUCTION A. OVERVIEW OF THE INSTRUMENT. Rev 1.0 3/09

I. INTRODUCTION A. OVERVIEW OF THE INSTRUMENT. Rev 1.0 3/09 A. OVERVIEW OF THE INSTRUMENT I. INTRODUCTION Congratulations, you have acquired for your students the most versatile, sensitive, rugged and reliable nuclear magnetic resonance spectrometer designed specifically

More information