An introduction to Solid State NMR and its Interactions

Size: px
Start display at page:

Download "An introduction to Solid State NMR and its Interactions"

Transcription

1 An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA Saclay thibault.charpentier@cea.fr

2 Nuclear Magnetic Resonance Spin Magnetic Field The Rabi oscillation N = N ℏ I Rabi oscillations in quantum dots Source: Pres/Quantro/Qsite/projects/qip.htm

3 The Zeeman effect 3 I= B E= N. B m= 3/ = N ℏ I. B =ℏ I Z ℏ H B = m= 1/ The Larmor frequency m= 1/ = N B N = B m= 3/ NMR spectrum of an isolated nucleus m= 1

4 The spin operators 3/ 1/ I Z= 1/ 3/ 1 I Y = I i I 3 I Z m =m m I m = I I 1 mm 1 m 1 I m = I I 1 mm 1 m 1 IX I = I Y IZ 1 I X = I I I= I = 3/ 3/ I = 3/ 3/

5 The Larmor precession z B The classical approach to Larmor precession N y d N dt = N N t B x The quantum approach to Larmor precession iℏ d I dt =i ℏ d dt, I ] t =i ℏ I B t I t = t [ H N

6 The nuclear magnetization In NMR, the only direct observable is the macroscopic magnetization i M= i But NMR spectroscopist know how to play with more complex objects... At equilibrium, N up z B y x N down exp E y kbt the magnetization is along the magnetic field x M z Boltzman populations M x =M y=

7 Sensitivity of NMR The Curie Law (high temperature limit) M = B =N I ℏ I I 1 3kT B The quantum approach = N I N =N I N ℏ Tr I eq M =ℏ I Z H H eq exp kb T In the high temperature limit eq IZ M =N ℏ Tr I eq I N Z kb T kt Description of NMR experiments in term of I operators

8 The Resonance Phenomenum B Nutation z M t = I H t H Z RF y T x T Pulse Angle = 1 w w Application of a tranverse RF magnetic field at the Larmor frequency produces the precession of the nuclear magnetization around the RF field (nutation) in the socalled rotating frame t = B I cos t = I cos t H 1 x 1 x RF N RF RF d I dt LAB = I z N B1 cos RF t x Time Dependent Rotating frame at RF around B : x, y, z LAB x, y, z T d I dt T = I { RF } z 1 x T Time Independent

9 Pulsed Fourier Transform NMR Typical Timing of a Solid State NMR experiment RF Pulse Thermal Equilibrium & Relaxation p ms-hours s Free Precession Decay s-ms Macroscopic Magnetization Motion p =M x M = M z t p =M x cos t y sin t M M The complex NMR signal s t M exp i t Fourier Transform

10 Pulsed Fourier Transform NMR z Bloch equations dm x dt dm y dt dm z dt Mx B = i M y T = = My T i M x y M z M eq x T1 Density operator (quantum state) t =a x t I x a y t I y a z t I z M t Tr I. t y Coherent state M x M y x I z : magnetization ; I, I single quantum coherence The only directly observable entity

11 Pulsed Fourier Transform NMR Free Precession Decay Fourier Transform (phase correction) Signal Processing (Apodization) NMR Spectrum

12 The NMR signal in theory t I exp i H t s t=tr I exp i H x Initial state: I x System evolves under: H One quantum transitions are observed: I s t m m 1 I m exp i m, m 1 t The NMR frequencies m, m 1= m 1 H m 1 m H m The contribution of each transition to the signal amplitude is (isotropic!!) m 1 I m Hamiltonian of NMR interactions are needed H DFT calculations provide H!

13 NMR Interactions B B t, RF = ℏ I B H H B = H N ext local Z inter. External fields to manipulate the system: EPR Electrons NMR A complex situation... Nuclear Spins I B loc Nuclear Spins S B B t, RF Internal fields: B loc NMR inter. Phonons MicroWaves,... =H H H H H... H Z CS J D Q Chemistry: inter.

14 NMR Interactions are tensors A xx =AX = A B loc yx A zx A xy A xz Xx A yy A yz. X y A zy A zz Xz = ℏ I. A. X H N Second-rank Tensor = A=1, X B, B RF Zeeman Interaction =B A=, X Magnetic shielding = A=D, X S Dipolar Magnetic couplings (through space) = A= J, X S Indirect Magnetic couplings (through bond) = I A=Q, X Quadrupolar Interaction (electric couplings)

15 NMR Interactions: PAS Diagonalization of A yields the Principal Axis System (PAS) A xx A= A yx A zx A xy A xz A XX A yy 1 = X. A yz A AYY A zy A zz A ZZ. X A =X 1. APAS. X A A Principal Axes labeling: 1 Aiso= Tr A 3 AZZ A ZZ Aiso A XX Aiso AYY Aiso AYY Aiso A XX

16 NMR Interactions: PAS Introducing a convenient representation for encoding this orientational dependence 1/ 1 APAS = Aiso 1 A 1/ 1 1 Isotropic shift: Aiso=1/3Tr A Strength of the anisotropy: A= A ZZ Aiso Symmetry of the anisotropy A = A XX AYY / A (asymmetry parameter):

17 NMR Interactions: PAS Relative orientation of the PAS with respect to a reference frame (crystallographic axes, laboratory frame,...) Factorization of XA provides the three Euler angles A, A, A X A=R A, A, A =exp i A I z exp i A I y exp i A I z (x,y,z) is the PAS of the reference frame B A ZZ In NMR the position of a line (single crystal) is dependent upon the six parameters: Aiso, A, A, A, A, A A XX AYY

18 The secular approximation High Field NMR: B B loc Perturbation Expansion of the NMR interactions H Z H inter. H inter. H CS H Q H Q H D H J... Keeping terms invariant under rotation around B B A zz A XX A ZZ AYY

19 A general representation of the NMR interactions Powerful Tensorial approach to derive all formula! m m =C H 1 R, m T m m= Euler angles =,, Spatial dependence R = D, m n,m n, n,± NMR parameters = Spin Operator dependence T, m [ I z,t, m ]=m T, m,,±1 II, =, = T =, 1 3I 6 (first order ) secular approximation easy : m=! 1 H =C R, T Z 3 I I 1

20 The Chemical Shift Tensor Absolute chemical shielding (GIPAW output) Isotropic chemical shift = REF 1 iso = iso REF exp iso ppm=1 6 Chemical Shift Anisotropy (CSA), exp iso REF Hz REF Hz z PAS H CSA= CS, I Z = R, I Z 3 CS, = XX sin cos YY sin sin ZZ cos CS, = iso {3 cos 1 B sin cos } x PAS y PAS

21 NMR powder spectrum S powder t = sin d d exp i, t TF S powder

22 The quadrupole Interaction I 1/ Electric coupling between the nuclear quadrupole moment Q and local electric field gradient V(rnuc) at the nucleus Quadrupolar Coupling Constant ( ~ MHz ) C Q= Quadrupolar asymmetry parameter First order H = 1 Q CQ 6I I 1 Q= Second order (complex...) h V XX V YY Q R T eq T,= V ZZ 1 6 V ZZ V iso= 3 I Z I I 1 CQ 1 l l k H = l=,,4 A k= l, l B k Dl, 6I I 1 Q l 3 Z A = f I, I Z Second Order Quadrupolar Induced Shift! = A B Q Isotropic shift

23 Quadrupolar nuclei Powder Quadrupolar Static spectra

24 z LAB B The Dipolar Interaction = H D r S r IS I ℏ I S y LAB 3 IS { = D PAS ℏ I S = 3 r IS Homonuclear H = Heteronuclear H = 1 D ℏ I S 3 IS r ℏ I S 1 r 3 IS D R T D 1 x LAB 1 D } 3 I. S I r IS S r IS = I D S r IS R IS 3 I Z SZ 1

25 Indirect J coupling Small interaction (~Hz), anisotropic effects (so far) neglected H J = I J iso 1 J ani S J iso I S I iso J iso Unlike spins J iso I iso S iso H J =J iso I S H J =J iso I Z S Z IS 3 IS IS I S iso Like spins I I

26 Multiple interactions Lineshape is also dependant upon the relative orientation of CSA PAS with respect to quadrupolar PAS (or vice-versa) In the crystallographic axes frame (GIPAW calculation) X, c =R, c,, c,, c X Q, c =R Q, c, Q, c, Q, c X,c X 1 Q,c =R, Q,, Q,, Q B V ZZ ZZ XX V V YY XX YY

27 High Resolution NMR Brownian Motion in Liquids t = H H t H iso ani t = H ani Only isotropic contributions! iso, J iso In rigid lattices, broad lines iso, J iso + CSA, CSA, C Q, Q, CSA,Q, CSA, Q, CSA, Q

28 Magic Angle Spinning Sample B D M R 3cos 1 3 cos M 1= Second Rank A ZZ A ZZ A XX AYY B AYY Aiso M A XX A ZZ M = t = A ZZ A ZZ t A ZZ A ZZ t

29 MAS at work I =1/ +1/ <-> -1/ Static spectrum Low speed MAS spectrum High speed MAS spectrum CSA + Dipolar ( 13C-13C ) Spinning sidebands ROT ROT Proton decoupling is necessary (sample rotation + spin rotation! )

30 MAS at work Na I =3/ 3 NaAlH4 +1/ <-> -1/ +3/ <-> +1/ -3/ <-> -1/ B = 7.5 T vrot=1 khz

31 NaAlH4 MAS at work Al I =5/ 7 +1/ <-> -1/ Central transition Satellite transitions B = 7.5 T vrot=1 khz

32 The MAS NMR signal in theory t s t m m 1 I m exp i m, m 1 udu Time-dependent transitions frequencies: t m 1 m H t m m, m 1= m 1 H Euler angles of the PAS in the rotor fixed frame m, m 1,, =, m m, exp { i m ROT t } d exp { i m,m 1 u du }=e t i t,, : MAS lineshape I k, : spinning sidebands pattern i k ROT t k I k, e

33 The NMR Laboratory torturing probe... MAS probe MAS Rotor Superconducting magnet

34 NMR parameters: DFT vs Experiment Quadrupolar parameters (I>1/) (MHz) C Q, Q Isotropic Chemical shift (ppm) iso Chemical shift anisotropy (ppm) CSA, CSA Relative orientation of CSA PAS in Quad. PAS (Three Euler angles) CSA, Q Isotropic J couplings (1-3 bonds) 1, CSA, Q, CSA,Q J Si O J Si O Si NMR provides methods for measurements of Dipolar interactions (only the structure is needed)

Chem8028(1314) - Spin Dynamics: Spin Interactions

Chem8028(1314) - Spin Dynamics: Spin Interactions Chem8028(1314) - Spin Dynamics: Spin Interactions Malcolm Levitt see also IK m106 1 Nuclear spin interactions (diamagnetic materials) 2 Chemical Shift 3 Direct dipole-dipole coupling 4 J-coupling 5 Nuclear

More information

Spin Interactions. Giuseppe Pileio 24/10/2006

Spin Interactions. Giuseppe Pileio 24/10/2006 Spin Interactions Giuseppe Pileio 24/10/2006 Magnetic moment µ = " I ˆ µ = " h I(I +1) " = g# h Spin interactions overview Zeeman Interaction Zeeman interaction Interaction with the static magnetic field

More information

6 NMR Interactions: Zeeman and CSA

6 NMR Interactions: Zeeman and CSA 6 NMR Interactions: Zeeman and CSA 6.1 Zeeman Interaction Up to this point, we have mentioned a number of NMR interactions - Zeeman, quadrupolar, dipolar - but we have not looked at the nature of these

More information

Direct dipolar interaction - utilization

Direct dipolar interaction - utilization Direct dipolar interaction - utilization Two main uses: I: magnetization transfer II: probing internuclear distances Direct dipolar interaction - utilization Probing internuclear distances ˆ hetero D d

More information

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum,

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, 16.02.2009 Solid-state and solution NMR spectroscopy have many things in common Several concepts have been/will

More information

Solid-state NMR of spin > 1/2

Solid-state NMR of spin > 1/2 Solid-state NMR of spin > 1/2 Nuclear spins with I > 1/2 possess an electrical quadrupole moment. Anisotropic Interactions Dipolar Interaction 1 H- 1 H, 1 H- 13 C: typically 50 khz Anisotropy of the chemical

More information

Spin Relaxation and NOEs BCMB/CHEM 8190

Spin Relaxation and NOEs BCMB/CHEM 8190 Spin Relaxation and NOEs BCMB/CHEM 8190 T 1, T 2 (reminder), NOE T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations

More information

NMR (CHEM8028) Solid-state NMR: Anisotropic interactions and how we use them. Dr Philip Williamson January 2015

NMR (CHEM8028) Solid-state NMR: Anisotropic interactions and how we use them. Dr Philip Williamson January 2015 NMR (CEM808) Solid-state NMR: Anisotropic interactions and how we use them Dr Philip Williamson January 015 NMR: From Molecular to Cellular Level Cell Solid State NMR Mitochondrion Membrane Liquid NMR

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt Spin Dynamics Basics of Nuclear Magnetic Resonance Second edition Malcolm H. Levitt The University of Southampton, UK John Wiley &. Sons, Ltd Preface xxi Preface to the First Edition xxiii Introduction

More information

T 1, T 2, NOE (reminder)

T 1, T 2, NOE (reminder) T 1, T 2, NOE (reminder) T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations of the system following perturbation

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

NMR Dynamics and Relaxation

NMR Dynamics and Relaxation NMR Dynamics and Relaxation Günter Hempel MLU Halle, Institut für Physik, FG Festkörper-NMR 1 Introduction: Relaxation Two basic magnetic relaxation processes: Longitudinal relaxation: T 1 Relaxation Return

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

The Physical Basis of the NMR Experiment

The Physical Basis of the NMR Experiment The Physical Basis of the NMR Experiment 1 Interaction of Materials with Magnetic Fields F F S N S N Paramagnetism Diamagnetism 2 Microscopic View: Single Spins an electron has mass and charge in addition

More information

Modern Solid State NMR strategies for the structural characterization of amorphous solids Leo van Wüllen

Modern Solid State NMR strategies for the structural characterization of amorphous solids Leo van Wüllen Modern Solid State NMR strategies for the structural characterization of amorphous solids Leo van Wüllen Institute of Physical Chemistry University of Münster The van Wüllen group at Münster Inorganic

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

Nuclear magnetic resonance in condensed matter

Nuclear magnetic resonance in condensed matter University of Ljubljana Faculty of mathematics and physics Physics department SEMINAR Nuclear magnetic resonance in condensed matter Author: Miha Bratkovič Mentor: prof. dr. Janez Dolinšek Ljubljana, October

More information

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by:

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by: Bloch Equations We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by: M = [] µ i i In terms of the total spin

More information

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1 Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2a-d,g,h,j 2.6, 2.9; Chapter 3: 1a-d,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate

More information

10.4 Continuous Wave NMR Instrumentation

10.4 Continuous Wave NMR Instrumentation 10.4 Continuous Wave NMR Instrumentation coherent detection bulk magnetization the rotating frame, and effective magnetic field generating a rotating frame, and precession in the laboratory frame spin-lattice

More information

1 Magnetism, Curie s Law and the Bloch Equations

1 Magnetism, Curie s Law and the Bloch Equations 1 Magnetism, Curie s Law and the Bloch Equations In NMR, the observable which is measured is magnetization and its evolution over time. In order to understand what this means, let us first begin with some

More information

Principles of Magnetic Resonance

Principles of Magnetic Resonance С. Р. Slichter Principles of Magnetic Resonance Third Enlarged and Updated Edition With 185 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Contents 1. Elements of Resonance

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations CONTENTS Preface Acknowledgements Symbols Abbreviations 1 INTRODUCTION 1.1 Scope of pulse EPR 1.2 A short history of pulse EPR 1.3 Examples of Applications 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon

More information

Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy INTRODUCTION TO Magnetic Resonance Spectroscopy ESR, NMR, NQR D. N. SATHYANARAYANA Formerly, Chairman Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore % I.K. International

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

Principles of Nuclear Magnetic Resonance in One and Two Dimensions

Principles of Nuclear Magnetic Resonance in One and Two Dimensions Principles of Nuclear Magnetic Resonance in One and Two Dimensions Richard R. Ernst, Geoffrey Bodenhausen, and Alexander Wokaun Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule

More information

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei : An introduction to Solid State NMR spectroscopy Dr. Susanne Causemann (Solid State NMR specialist/ researcher) Interaction between nuclear spins and applied magnetic fields B 0 application of a static

More information

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft MR Fundamentals 26 October 2010 Mitglied der Helmholtz-Gemeinschaft Mitglied der Helmholtz-Gemeinschaft Nuclear Spin Nuclear Spin Nuclear magnetic resonance is observed in atoms with odd number of protons

More information

8 NMR Interactions: Dipolar Coupling

8 NMR Interactions: Dipolar Coupling 8 NMR Interactions: Dipolar Coupling 8.1 Hamiltonian As discussed in the first lecture, a nucleus with spin I 1/2 has a magnetic moment, µ, associated with it given by µ = γ L. (8.1) If two different nuclear

More information

NMR Shifts. I Introduction and tensor/crystal symmetry.

NMR Shifts. I Introduction and tensor/crystal symmetry. NMR Shifts. I Introduction and tensor/crystal symmetry. These notes were developed for my group as introduction to NMR shifts and notation. 1) Basic shift definitions and notation: For nonmagnetic materials,

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Investigation of Local Structures in Cation- Ordered Microwave Dielectric a Solid-State Nmr and First Principle Calculation Study

Investigation of Local Structures in Cation- Ordered Microwave Dielectric a Solid-State Nmr and First Principle Calculation Study College of William and Mary W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2017 Investigation of Local Structures in Cation- Ordered Microwave Dielectric

More information

3 Chemical exchange and the McConnell Equations

3 Chemical exchange and the McConnell Equations 3 Chemical exchange and the McConnell Equations NMR is a technique which is well suited to study dynamic processes, such as the rates of chemical reactions. The time window which can be investigated in

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews Advanced Quadrupolar NMR Sharon Ashbrook School of Chemistry, University of St Andrews Quadrupolar nuclei: revision single crystal powder ST 500 khz ST ω 0 MAS 1 khz 5 khz second-order broadening Example:

More information

Cross Polarization 53 53

Cross Polarization 53 53 Cross Polarization 53 Why don t we normally detect protons in the solid-state BPTI Strong couplings between protons ( >20kHz) Homogeneous interaction Not readily averaged at moderate spinning speeds Rhodopsin

More information

PROTEIN NMR SPECTROSCOPY

PROTEIN NMR SPECTROSCOPY List of Figures List of Tables xvii xxvi 1. NMR SPECTROSCOPY 1 1.1 Introduction to NMR Spectroscopy 2 1.2 One Dimensional NMR Spectroscopy 3 1.2.1 Classical Description of NMR Spectroscopy 3 1.2.2 Nuclear

More information

0.5. Dip. Freq. HkHzL D HppmL

0.5. Dip. Freq. HkHzL D HppmL .5 -.5 1 2-1 D HppmL 3-2 Dip. Freq. HkHzL 4 5-3 Figure 5-11: Graph of the CT function for the Ix self-magnetization, when σ()=ix for an oriented sample,, as a function of the dipolar coupling frequency

More information

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaxation Bloch Equation 1 Spin Intrinsic angular momentum of

More information

Center for Sustainable Environmental Technologies, Iowa State University

Center for Sustainable Environmental Technologies, Iowa State University NMR Characterization of Biochars By Catherine Brewer Center for Sustainable Environmental Technologies, Iowa State University Introduction Nuclear magnetic resonance spectroscopy (NMR) uses a very strong

More information

TECNICHE DI ALTA E BASSA RISOLUZIONE IN NMR STATO SOLIDO

TECNICHE DI ALTA E BASSA RISOLUZIONE IN NMR STATO SOLIDO TECNICHE DI ALTA E BASSA RISOLUZIONE IN NMR STATO SOLIDO Roberto Gobetto Dipartimento di Chimica I.F.M., Università di Torino, Via P. Giuria 7, 10125 Torino Chemical Shift Anisotropy s q Chemical shift

More information

NMR, the vector model and the relaxation

NMR, the vector model and the relaxation NMR, the vector model and the relaxation Reading/Books: One and two dimensional NMR spectroscopy, VCH, Friebolin Spin Dynamics, Basics of NMR, Wiley, Levitt Molecular Quantum Mechanics, Oxford Univ. Press,

More information

Principios Básicos de RMN en sólidos destinado a usuarios. Gustavo Monti. Fa.M.A.F. Universidad Nacional de Córdoba Argentina

Principios Básicos de RMN en sólidos destinado a usuarios. Gustavo Monti. Fa.M.A.F. Universidad Nacional de Córdoba Argentina Principios Básicos de RMN en sólidos destinado a usuarios Gustavo Monti Fa.M.A.F. Universidad Nacional de Córdoba Argentina CONTENIDOS MODULO 2: Alta resolución en sólidos para espines 1/2 Introducción

More information

CHAPTER 5 DIPOLAR COHERENCE TRANSFER IN THE PRESENCE OF CHEMICAL SHIFT FOR UNORIENTED AND ORIENTED HOMONUCLEAR TWO SPIN-½ SOLID STATE SYSTEMS

CHAPTER 5 DIPOLAR COHERENCE TRANSFER IN THE PRESENCE OF CHEMICAL SHIFT FOR UNORIENTED AND ORIENTED HOMONUCLEAR TWO SPIN-½ SOLID STATE SYSTEMS CHAPTE 5 DIPOLA COHEENCE TANSFE IN THE PESENCE OF CHEMICAL SHIFT FO UNOIENTED AND OIENTED HOMONUCLEA TWO SPIN-½ SOLID STATE SYSTEMS Introduction In this chapter, coherence transfer is examined for the

More information

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep.

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep. Rotational Motion Chapter 4 P. J. Grandinetti Chem. 4300 Sep. 1, 2017 P. J. Grandinetti (Chem. 4300) Rotational Motion Sep. 1, 2017 1 / 76 Angular Momentum The angular momentum of a particle with respect

More information

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance A Hands on Introduction to NMR 22.920 Lecture #1 Nuclear Spin and Magnetic Resonance Introduction - The aim of this short course is to present a physical picture of the basic principles of Nuclear Magnetic

More information

PHYSICAL REVIEW B VOLUME 58, NUMBER 5

PHYSICAL REVIEW B VOLUME 58, NUMBER 5 PHYSICAL REVIEW B VOLUME 58, NUMBER 5 1 AUGUST 1998-I Scaling and labeling the high-resolution isotropic axis of two-dimensional multiple-quantum magic-angle-spinning spectra of half-integer quadrupole

More information

Second Order Effects, Overtone NMR, and their Application to Overtone Rotary Recoupling of 14 N- 13 C Spin Pairs under Magic-Angle-Spinning

Second Order Effects, Overtone NMR, and their Application to Overtone Rotary Recoupling of 14 N- 13 C Spin Pairs under Magic-Angle-Spinning Second Order Effects, Overtone NMR, and their Application to Overtone Rotary Recoupling of 14 N- 13 C Spin Pairs under Magic-Angle-Spinning 1. The NMR Interactions NMR is defined by a series of interactions,

More information

THEORY OF MAGNETIC RESONANCE

THEORY OF MAGNETIC RESONANCE THEORY OF MAGNETIC RESONANCE Second Edition Charles P. Poole, Jr., and Horacio A. Farach Department of Physics University of South Carolina, Columbia A Wiley-lnterscience Publication JOHN WILEY & SONS

More information

Author(s) Takegoshi, K; Nakamura, S; Terao, T.

Author(s) Takegoshi, K; Nakamura, S; Terao, T. Title C-13-H-1 dipolar-driven C-13-C-13 r irradiation in nuclear magnetic res Author(s) Takegoshi, K; Nakamura, S; Terao, T Citation JOURNAL OF CHEMICAL PHYSICS (2003), 2341 Issue Date 2003-02-01 URL http://hdl.handle.net/2433/49979

More information

NMR-spectroscopy. I: basics. Peter Schmieder

NMR-spectroscopy. I: basics. Peter Schmieder NMR-spectroscopy I: basics Why spectroscopy? 2/102 Why spectroscopy It is well established that all biological relevant processes take place via interactions of molecules, either small ones (metall ions,

More information

Classical behavior of magnetic dipole vector. P. J. Grandinetti

Classical behavior of magnetic dipole vector. P. J. Grandinetti Classical behavior of magnetic dipole vector Z μ Y X Z μ Y X Quantum behavior of magnetic dipole vector Random sample of spin 1/2 nuclei measure μ z μ z = + γ h/2 group μ z = γ h/2 group Quantum behavior

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

NMR-spectroscopy of proteins in solution. Peter Schmieder

NMR-spectroscopy of proteins in solution. Peter Schmieder NMR-spectroscopy of proteins in solution Basic aspects of NMR-Spektroskopie Basic aspects of NMR-spectroscopy 3/84 Prerequisite for NMR-spectroscopy is a nuclear spin that can be thought of as a mixture

More information

Sideband Patterns from Rotor-Encoded Longitudinal Magnetization in MAS Recoupling Experiments

Sideband Patterns from Rotor-Encoded Longitudinal Magnetization in MAS Recoupling Experiments Journal of Magnetic Resonance 146, 140 156 (2000) doi:10.1006/jmre.2000.2119, available online at http://www.idealibrary.com on Sideband Patterns from Rotor-Encoded Longitudinal Magnetization in MAS Recoupling

More information

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis: Problem Set 2 Due Thursday, October 1, 29 Problems from Cotton: Chapter 4: 4.6, 4.7; Chapter 6: 6.2, 6.4, 6.5 Additional problems: (1) Consider the D 3h point group and use a coordinate system wherein

More information

Natural abundance solid-state 95 Mo MAS NMR of MoS 2 reveals precise 95 Mo anisotropic parameters from its central and satellite transitions

Natural abundance solid-state 95 Mo MAS NMR of MoS 2 reveals precise 95 Mo anisotropic parameters from its central and satellite transitions Electronic Supplementary Information for: Natural abundance solid-state 95 Mo MAS NMR of MoS 2 reveals precise 95 Mo anisotropic parameters from its central and satellite transitions Hans J. Jakobsen,*

More information

Polarized solid deuteron targets EU-SpinMap Dubrovnik

Polarized solid deuteron targets EU-SpinMap Dubrovnik Experimentalphysik I Arbeitsgruppe Physik der Hadronen und Kerne Prof. Dr. W. Meyer G. Reicherz, Chr. Heß, A. Berlin, J. Herick Polarized solid deuteron targets EU-SpinMap 11.10.2010 Dubrovnik Polarized

More information

Relaxation. Ravinder Reddy

Relaxation. Ravinder Reddy Relaxation Ravinder Reddy Relaxation What is nuclear spin relaxation? What causes it? Effect on spectral line width Field dependence Mechanisms Thermal equilibrium ~10-6 spins leads to NMR signal! T1 Spin-lattice

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

NMR-CASTEP. Jonathan Yates. Cavendish Laboratory, Cambridge University. J-coupling cons. NMR-CASTEP York 2007 Jonathan Yates.

NMR-CASTEP. Jonathan Yates. Cavendish Laboratory, Cambridge University. J-coupling cons. NMR-CASTEP York 2007 Jonathan Yates. Jonathan Yates Cavendish Laboratory, Cambridge University 2 2 1 3 2 N1a-N7b a hemical shift Experiment Calculation [ppm] [ppm] -43.8-47.4 "(31P) 29 "( Si1) -213.3-214.8 "(29Si2) -217.0-218.7 29-119.1-128.6

More information

4 Spin-echo, Spin-echo Double Resonance (SEDOR) and Rotational-echo Double Resonance (REDOR) applied on polymer blends

4 Spin-echo, Spin-echo Double Resonance (SEDOR) and Rotational-echo Double Resonance (REDOR) applied on polymer blends 4 Spin-echo, Spin-echo ouble Resonance (SEOR and Rotational-echo ouble Resonance (REOR applied on polymer blends The next logical step after analyzing and concluding upon the results of proton transversal

More information

Experiment and Modelling in Structural NMR

Experiment and Modelling in Structural NMR EPJ Web of Conferences 30, 01001 (2012) DOI: 10.1051/epjconf/20123001001 Owned by the authors, published by EDP Sciences, 2012 Experiment and Modelling in Structural NMR November 28th December 2 nd 2011

More information

Nuclear Quadrupole Resonance Spectroscopy. Some examples of nuclear quadrupole moments

Nuclear Quadrupole Resonance Spectroscopy. Some examples of nuclear quadrupole moments Nuclear Quadrupole Resonance Spectroscopy Review nuclear quadrupole moments, Q A negative value for Q denotes a distribution of charge that is "football-shaped", i.e. a sphere elongated at the poles; a

More information

NMR spectroscopy. Matti Hotokka Physical Chemistry Åbo Akademi University

NMR spectroscopy. Matti Hotokka Physical Chemistry Åbo Akademi University NMR spectroscopy Matti Hotokka Physical Chemistry Åbo Akademi University Angular momentum Quantum numbers L and m (general case) The vector precesses Nuclear spin The quantum numbers are I and m Quantum

More information

III.4 Nuclear Magnetic Resonance

III.4 Nuclear Magnetic Resonance III.4 Nuclear Magnetic Resonance Radiofrequency (rf) spectroscopy on nuclear spin states in a uniaxial constant magnetic field B = B 0 z (III.4.1) B 0 is on the order of 1-25 T The rf frequencies vary

More information

Limites et Potentiel de la RMN pour la caractérisation structurale de l environnement des éléments «traces»

Limites et Potentiel de la RMN pour la caractérisation structurale de l environnement des éléments «traces» Limites et Potentiel de la RMN pour la caractérisation structurale de l environnement des éléments «traces» USTV - REACH Thibault Charpentier 25 Novembre 2013 23 septembre 2013 CEA 10 AVRIL 2012 PAGE 1

More information

Hyperfine interaction

Hyperfine interaction Hyperfine interaction The notion hyperfine interaction (hfi) comes from atomic physics, where it is used for the interaction of the electronic magnetic moment with the nuclear magnetic moment. In magnetic

More information

Symmetry-Based Double Quantum Recoupling in Solid State NMR. Marina Carravetta

Symmetry-Based Double Quantum Recoupling in Solid State NMR. Marina Carravetta Symmetry-Based Double Quantum Recoupling in Solid State NMR Marina Carravetta N. S + NH Physical Chemistry Division Arrhenius Laboratory Stockholm University 2002 PAGINA VUOTA Abstract This thesis deals

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Simon Lacoste-Julien Electromagnetic Theory Project 198-562B Department of Physics McGill University April 21 2003 Abstract This paper gives an elementary introduction

More information

Introduction of Key Concepts of Nuclear Magnetic Resonance

Introduction of Key Concepts of Nuclear Magnetic Resonance I have not yet lost that sense of wonder, and delight, that this delicate motion should reside in all ordinary things around us, revealing itself only to those who looks for it. E. M. Purcell, Nobel Lecture.

More information

Biomedical Imaging Magnetic Resonance Imaging

Biomedical Imaging Magnetic Resonance Imaging Biomedical Imaging Magnetic Resonance Imaging Charles A. DiMarzio & Eric Kercher EECE 4649 Northeastern University May 2018 Background and History Measurement of Nuclear Spins Widely used in physics/chemistry

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Experiment and Modelling in Structural NMR

Experiment and Modelling in Structural NMR EPJ Web of Conferences 30, 04002 (2012) DOI: 10.1051/epjconf/20123004002 Owned by the authors, published by EDP Sciences, 2012 Experiment and Modelling in Structural NMR November 28th December 2 nd 2011

More information

NMR Spectroscopy: A Quantum Phenomena

NMR Spectroscopy: A Quantum Phenomena NMR Spectroscopy: A Quantum Phenomena Pascale Legault Département de Biochimie Université de Montréal Outline 1) Energy Diagrams and Vector Diagrams 2) Simple 1D Spectra 3) Beyond Simple 1D Spectra 4)

More information

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc.

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc. Prof. O. B. Wright, Autumn 007 Mechanics Lecture 9 More on rigid bodies, coupled vibrations Principal axes of the inertia tensor If the symmetry axes of a uniform symmetric body coincide with the coordinate

More information

NMR-spectroscopy in solution - an introduction. Peter Schmieder

NMR-spectroscopy in solution - an introduction. Peter Schmieder NMR-spectroscopy in solution - an introduction 2/92 Advanced Bioanalytics NMR-Spectroscopy Introductory session (11:00 12:30) Basic aspects of NMR-spectroscopy NMR parameter Multidimensional NMR-spectroscopy

More information

Magic-Angle Spinning (MAS) drive bearing

Magic-Angle Spinning (MAS) drive bearing Magic-Angle Spinning (MAS) magic-angle spinning is done pneumatically spinning frequency can be stabilized within a few Hz Magic-Angle Spinning (MAS) drive bearing Magic-Angle Spinning (MAS) Maximum spinning

More information

Demonstration of the Coupled Evolution Rules 163 APPENDIX F: DEMONSTRATION OF THE COUPLED EVOLUTION RULES

Demonstration of the Coupled Evolution Rules 163 APPENDIX F: DEMONSTRATION OF THE COUPLED EVOLUTION RULES Demonstration of the Coupled Evolution Rules 163 APPENDIX F: DEMONSTRATION OF THE COUPLED EVOLUTION RULES Before going into the demonstration we need to point out two limitations: a. It assumes I=1/2 for

More information

2.1. NMR Spectroscopy, Anisotropic Nuclear Spin Interaction.

2.1. NMR Spectroscopy, Anisotropic Nuclear Spin Interaction. Chapter II. Molecular segments orientation study using 29 Si NMR methods. 2.1. NMR Spectroscopy, Anisotropic Nuclear Spin Interaction. The term Nuclear Magnetic Resonance (NMR) unifies a big variety of

More information

Parameters, Calculation of Nuclear Magnetic Resonance

Parameters, Calculation of Nuclear Magnetic Resonance Parameters, Calculation of Nuclear Magnetic Resonance Cynthia J. Jameson University of Illinois at Chicago, Chicago, IL, USA 1 Introduction 1 1.1 Absolute Shielding Tensor and Nuclear Magnetic Resonance

More information

ELECTRON PARAMAGNETIC RESONANCE

ELECTRON PARAMAGNETIC RESONANCE ELECTRON PARAMAGNETIC RESONANCE = MAGNETIC RESONANCE TECHNIQUE FOR STUDYING PARAMAGNETIC SYSTEMS i.e. SYSTEMS WITH AT LEAST ONE UNPAIRED ELECTRON Examples of paramagnetic systems Transition-metal complexes

More information

Tutorial Session - Exercises. Problem 1: Dipolar Interaction in Water Moleclues

Tutorial Session - Exercises. Problem 1: Dipolar Interaction in Water Moleclues Tutorial Session - Exercises Problem 1: Dipolar Interaction in Water Moleclues The goal of this exercise is to calculate the dipolar 1 H spectrum of the protons in an isolated water molecule which does

More information

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS PRACTICAL ASPECTS OF MR RELAXATIO STUDIES OF BIOMOLECULAR DYAMICS Further reading: Can be downloaded from my web page Korzhnev D.E., Billeter M., Arseniev A.S., and Orekhov V. Y., MR Studies of Brownian

More information

ν + = e2 qq φ = 36.9,andθ = Pankratov [4] obtained ν 0 = ν + ν = e2 qq φ = 34.1, and θ = Boogaarts et al. [5]

ν + = e2 qq φ = 36.9,andθ = Pankratov [4] obtained ν 0 = ν + ν = e2 qq φ = 34.1, and θ = Boogaarts et al. [5] 14 N NQR Study of Diphenylamine Janez Seliger a,b and Veselko Žagar a a Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia b University of Ljubljana, Faculty of Mathematics and Physics, Department

More information

Dipolar Recoupling in Magic-Angle-Spinning Nuclear Magnetic Resonance. Andreas Brinkmann

Dipolar Recoupling in Magic-Angle-Spinning Nuclear Magnetic Resonance. Andreas Brinkmann Dipolar Recoupling in Magic-Angle-Spinning Nuclear Magnetic Resonance Andreas Brinkmann Division of Physical Chemistry Arrhenius Laboratory Stockholm University 2001 Dipolar Recoupling in Magic-Angle-Spinning

More information

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005 Polarised Nucleon Targets for Europe, nd meeting, Bochum Temperature dependence of nuclear spin-lattice relaxations in liquid ethanol with dissolved TEMPO radicals H. Štěpánková, J. Englich, J. Kohout,

More information

* Universite des Sciences et Techniques de Lille

* Universite des Sciences et Techniques de Lille XXII. INTERPRETATION OF QUADRUPOLAR POWDER SPECTRA: STATIC AND MAS EXPERIMENTS. (TUTORIAL SESSION) J.P. AMOUREUX*, C. FERNANDEZ* and P. GRANGER** * Universite des Sciences et Techniques de Lille 59655

More information

Rotational Raman Spectroscopy

Rotational Raman Spectroscopy Rotational Raman Spectroscopy If EM radiation falls upon an atom or molecule, it may be absorbed if the energy of the radiation corresponds to the separation of two energy levels of the atoms or molecules.

More information

A Primer for Nuclear Magnetic Relaxation in Liquids

A Primer for Nuclear Magnetic Relaxation in Liquids A Primer for Nuclear Magnetic Relaxation in Liquids NAGARAJAN MURALI, V.V. KRISHNAN Varian NMR Systems, 3 Hansen Way M/S D-98, Palo Alto, California 9434 Molecular Biophysics Group, Biology and Biotechnology

More information

NMR STUDY OF EXCHANGE AND HYDRATION SITE IDENTIFICATION IN MCM-41

NMR STUDY OF EXCHANGE AND HYDRATION SITE IDENTIFICATION IN MCM-41 NMR STUDY OF EXCHANGE AND HYDRATION SITE IDENTIFICATION IN MCM-41 by Jamal Hassan A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy

More information

Part II: Magnetic Resonance Imaging (MRI)

Part II: Magnetic Resonance Imaging (MRI) Part II: Magnetic Resonance Imaging (MRI) Contents Magnetic Field Gradients Selective Excitation Spatially Resolved Reception k-space Gradient Echo Sequence Spin Echo Sequence Magnetic Resonance Imaging

More information

NUCLEAR MAGNETIC RESONANCE. Introduction. Vol. 10 NUCLEAR MAGNETIC RESONANCE 637

NUCLEAR MAGNETIC RESONANCE. Introduction. Vol. 10 NUCLEAR MAGNETIC RESONANCE 637 Vol. 10 NUCLEAR MAGNETIC RESONANCE 637 NUCLEAR MAGNETIC RESONANCE Introduction An important objective in materials science is the establishment of relationships between the microscopic structure or molecular

More information

Hamiltonians with focus on Anisotropic interac4ons (Chemical Shi8 Anisotropy and Dipolar Interac4ons) The (solid- state NMR) world is anisotropic

Hamiltonians with focus on Anisotropic interac4ons (Chemical Shi8 Anisotropy and Dipolar Interac4ons) The (solid- state NMR) world is anisotropic Hamiltonians with focus on Anisotropic interac4ons (Chemical Shi8 Anisotropy and Dipolar Interac4ons) The (solid- state NMR) world is anisotropic! Munich School November 2014!! Beat H. Meier beme@ethz.ch

More information

NMR at Very Low Temperatures: Population Difference Thermometry 1

NMR at Very Low Temperatures: Population Difference Thermometry 1 258 Bulletin of Magnetic Resonance Contents NMR at Very Low Temperatures: Population Difference Thermometry 1 Neil S. Sullivan Department of Physics University of Florida 215 Williamson Hall Gainesville,

More information

GIPAW: A solid-state theory for NMR

GIPAW: A solid-state theory for NMR GIPAW: A solid-state theory for NMR Jonathan Yates jonathan.yates@materials.ox.ac.uk Materials Modelling Laboratory, Oxford Materials NMR parameters we will focus on non-metallic, diamagnetic materials

More information