Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

Size: px
Start display at page:

Download "Molecular prototypes for spin-based CNOT and SWAP quantum logic gates"

Transcription

1 Bellaterra: anuary 2011 Architecture & Design of Molecule Logic Gates and Atom Circuits Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Fernando LUIS Instituto de Ciencia de Materiales de Aragón (Zaragoza, Spain)

2 Outline Molecular design of CNOT and SWAP quantum gates Tb 2 Integration of SMM into superconducting microdevices

3 Outline Molecular design of CNOT and SWAP quantum gates Tb 2 Integration of SMM into superconducting microdevices

4 Quantum computers Quantum processing of information Bit Qubit 1 Richard Feynman,

5 Molecular qubits Unitary operations Single qubits Chemically synthesized Scalability Identical entities 1 Read-out 0 R b rf Carry magnetic moment S m= Initialization m=+10

6 Molecular qubits Unitary operations Single qubits 1 Cr 7 Ni, S = 1/2 A. Ardavan et al. Phys. Rev. Lett. 98, (2007) 0 S. Bertaina et al. Nature 453 (2008) V 15, S = 1/2

7 CNOT (universal) quantum logic gate control target

8 CNOT quantum logic gate control target 1. Two qubits 2. Coupling 3. Asymmetry

9 D. Aguilà et al, Inorg. Chem. 49 (2010) 6784 G. Aromí, D. Aguilà, P. Gámez, F. Luis, and O. Roubeau, Chem. Soc. Rev., (2012), DOI: /C1CS15115K Molecular design Dinuclear [Tb] 2 complex Linked to three asymmetric H 3 L ligands Two anisotropic spins in different coordinations

10 Definition of qubit states [LaTb] = 6, g = 3/2

11 T(emu K/ Oe mol Tb) Definition of qubit states [LaTb] = 6, g = 3/ eff g B 2 T eff eff g B 1 m = 0 m = ±4 Tb D = 19 K T(K) m = ±5 m = ±6 180 K! H anis DS 2 z g B H x x H y y H z z Two states

12 c p /R Definition of qubit states [LaTb] = 6, g = 3/2 Y 10 0 LaTb H 10-1 H = 0 0 H = T 0 H = 0.25 T m = 0 m = ±4 Tb 10-2 Debye H 1 10 m6 T (K) g H 0 H = 0.5 T 0 H = 1 T B z z m = ±5 m = ±6 Two states m = -6 2g H cos Y B m = +6

13 T(emu K/ Oe mol Tb) Coupling between the Tb 3+ qubits [Tb] [LaTb] 8 [Tb] 2 2 T eff H exch T(K) ex z1 z2 AF coupling

14 c p /R c p /R Coupling between the Tb 3+ qubits 10 0 [LaTb] [Tb] Tb nuclear spins Debye T (K) 10 0 [Tb] 2 ex K 10-1 = 4 ex 2 = 2.14 K H exch T (K) ex z1 z2

15 T(emu K/ Oe mol Tb) Magnetic asymmetry min (13 1mHz mk) 10 1/2 f μ B Hz 1MHz SQUID (dc) 15.8 mhz 1.58 Hz 158 Hz 15.8 khz 5 ex = K = T(K)

16 T(emu K/ Oe mol Tb) T(emuK/Oe mole Tb 2 ) Magnetic asymmetry mhz 1.58 Hz 158 Hz 15.8 khz dc 0 H = 0.1 T SQUID (dc) 15.8 mhz 1.58 Hz 158 Hz 15.8 khz T(K) 5 ex = K = T(K)

17 T(emu K/ Oe mol Tb) T(emuK/Oe mole Tb 2 ) Magnetic asymmetry mhz 1.58 Hz 158 Hz 15.8 khz dc 0 H = 0.1 T SQUID (dc) 15.8 mhz 1.58 Hz 158 Hz 15.8 khz ex = K = 66 deg T(K) T(K) ex = K = 0 = 66 degrees Noncollinear anisotropy axes z 2 z 1

18 M( B /Tb 2 molecule) T(emuK/Oe mole Tb 2 ) Magnetic asymmetry mhz 1.58 Hz 158 Hz 15.8 khz dc 0 H = 0.1 T T(K) z 2 z Hall T = 0.26 K Hall T = 2.0 K SQUID T = 2.0 K = 66 degrees 2 theory T = 0.26 K = 66 o 0 = 0 o H (T) Noncollinear anisotropy axes

19 c p /R c p /R c p /R Magnetic asymmetry 1 Experiment 0 H = theory: = 0 0 H = T 0 H = 0.25 T 0 H = 0.5 T z 1 z theory: = 66 deg. 0 H = 0 0 H = T 0 H = 0.25 T 0 H = 0.5 T = 66 degrees H = 0 0 H = T 0 H = 0.25 T 0 H = 0.5 T T(K) Noncollinear anisotropy axes

20 Heterometallic clusters [LaEr] Er 3+ = 15/2, g = 6/5 [CeEr] Ce 3+ = 5/2, g = 6/7 [CeY]

21 All ingredients are met! Tb 1 Non-collinear easy axes or different ions 99.99% lie in the ground state below 20 K Tb 2 z Tb 1 Tb 2 m = 0 m = ±4 Antiferromagnetic exchange below 3 K x y 180 K! m = ±5 m = ±6 two qubits interaction = 66 deg

22 Energy(K) 0 H (T) [Tb] 2 as a CNOT logic gate ) ( z z z z hf z z z z B z z ex m I I A H H g H CNOT

23 Energy(K) EPR signal (a.u.) Implementation by EPR CNOT T = 6 K = 9.8 GHz X-band H (T) H (T) CNOT transitions are not forbidden

24 F. Luis et al, Phys. Rev. Lett. 107, (2011). Energy(K) EPR signal (a.u.) T = 6 K = 9.8 GHz H (T) H (T) SWAP gate operations are also possible!

25 Intensity (a.u.) echo intensity (a.u.) Quantum coherence? (X-band pulsed EPR) Tb 2 : m = -6 m = +6 ECHO? NOT OBSERVED Ce 2 : m = -1/2 m = +1/2 OBSERVED!! CNOT 8.0x T 1 = 1 s T 2 = 250 ns x H(G) time(ns)

26 Outline Molecular design of CNOT and SWAP quantum gates Tb 2 Integration of SMM into superconducting microdevices

27 Hybrid quantum computation architectures Magnetic qubits as hardware for quantum computers.. Tejada, E. M. Chudnovsky, E. del Barco,. M. Hernandez and T. P. Spiller, Nanotechnology 12 (2001) Cavity QED Based on Collective Magnetic Dipole Coupling: Spin Ensembles as Hybrid Two-Level Systems. Atac Imamoglu, PRL 102, (2009) Molecule-based qubits and qugates Superconducting circuits

28 The goal: maximizing the flux coupling 1. Scaling down the dimensions of the loop 2. Playing with the sample position!!! The first challenge is the placement of a single nanoparticle close to the nanosquid while achieving sufficient magnetic coupling between the particle and the device C. P. Foley and H. Hilgenkamp. Supercond. Sci. Technol. 22, (2009).

29 M Martínez-Pérez,. Sesé, F. Luis, D. Drung and T. Schurig Rev. Sci. Instrum. 81, (2010) The device: microsquid ac susceptometer

30 (F 0 Oe/ B A) d coupled n i Cross-section view B i P P

31 The tool: Dip pen nanolithography AFM Tip Water Meniscus Writing Direction Substrate

32 The sample: ferritin-based nanomagnets (CoO) CoO 2 nm sized Antiferromagnetic particle ~ 12 B

33 Height (nm) Au Au SiO 2 Cross-sectional view Al Nb ~10 nm Section (μm)

34 Direct deposition on the most sensitive areas 10 5 molecules/dot

35 M.. Martínez-Pérez, E. Bellido, R.. De Miguel,. Sese, A. Lostao, C. Gómez-Moreno, D. Drung, T. Schurig, D. Ruiz-Molina, and F. Luis, APL. 99, (2011) Detection of the linear response of a SMM monolayer ' [emu/mol(clus)oe] Hz 2.1 khz 72 khz T (K) Sensitivity 10 2 B /Hz 1/2

36 Mn 12 Gd 2

37 Towards the implementation of quantum computation architectures Magnetic qubits as hardware for quantum computers.. Tejada, E. M. Chudnovsky, E. del Barco,. M. Hernandez and T. P. Spiller, Nanotechnology 12 (2001) Cavity QED Based on Collective Magnetic Dipole Coupling: Spin Ensembles as Hybrid Two-Level Systems. Atac Imamoglu, PRL 102, (2009) Molecule-based qubits and qugates DPN!!! Superconducting circuits

38 CONCLUSIONS [LnLn ] clusters, designed and synthesized via coordination chemistry, meet the following ingredients proper definition of qubit states weak AF coupling between qubits magnetic asymmetry molecular prototypes for CNOT quantum gates SWAP gate operations can be performed in the same molecule Dip pen nanolithography offers a very attractive tool to integrate molecular qubits into superconducting microdevices: towards the implementation of quantum architectures

39 Dietmar Drung Thomas Schurig Ana Repollés Olivier Roubeau Marco Evangelisti María osé Martínez David Zueco Agustín Camon avier Sesé Rosa Cordoba Rocío de Miguel Ana Isabel Lostao Guillem Aromí (et al.) Elena Bellido Daniel Ruiz

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón Martes cuántico Zaragoza, 8 th October 2013 Atomic and molecular spin qubits Fernando LUIS Instituto de Ciencia de Materiales de Aragón Outline Quantum information with spins 1 0 Atomic defects in semiconductors

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Spins Dynamics in Nanomagnets. Andrew D. Kent

Spins Dynamics in Nanomagnets. Andrew D. Kent Spins Dynamics in Nanomagnets Andrew D. Kent Department of Physics, New York University Lecture 1: Magnetic Interactions and Classical Magnetization Dynamics Lecture 2: Spin Current Induced Magnetization

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

Spin electric coupling and coherent quantum control of molecular nanomagnets

Spin electric coupling and coherent quantum control of molecular nanomagnets Spin electric coupling and coherent quantum control of molecular nanomagnets Dimitrije Stepanenko Department of Physics University of Basel Institute of Physics, Belgrade February 15. 2010 Collaborators:

More information

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006 Quantum Tunneling of Magnetization in Molecular Magnets ANDREW D. KENT Department of Physics, New York University Tutorial T2: Molecular Magnets, March 12, 2006 1 Outline 1. Introduction Nanomagnetism

More information

Beyond the Giant Spin Approximation: The view from EPR

Beyond the Giant Spin Approximation: The view from EPR Beyond the Giant Spin Approximation: The view from EPR Simple is Stephen Hill, NHMFL and Florida State University At UF: Saiti Datta, Jon Lawrence, Junjie Liu, Erica Bolin better In collaboration with:

More information

Optically-controlled controlled quantum dot spins for quantum computers

Optically-controlled controlled quantum dot spins for quantum computers Optically-controlled controlled quantum dot spins for quantum computers David Press Yamamoto Group Applied Physics Department Ph.D. Oral Examination April 28, 2010 1 What could a Quantum Computer do? Simulating

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Quantum Detection Applications of NanoSQUIDs fabricated by Focussed Ion Beam

Quantum Detection Applications of NanoSQUIDs fabricated by Focussed Ion Beam Journal of Physics: Conference Series Quantum Detection Applications of NanoSQUIDs fabricated by Focussed Ion Beam To cite this article: L Hao 2011 J. Phys.: Conf. Ser. 286 012013 Related content - Introduction

More information

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent Spin Dynamics in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University Collaborators: Gregoire de Loubens, Enrique del Barco Stephen Hill Dmitry Garanin Myriam Sarachik, Yosi

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

!. 2) 3. '45 ( !"#!$%!&&' 9,.. : Cavity QED . / 3., /*. Ion trap 6..,%, Magnetic resonance Superconductor

!. 2) 3. '45 ( !#!$%!&&' 9,.. : Cavity QED . / 3., /*. Ion trap 6..,%, Magnetic resonance Superconductor 0 1!"#!$%!&&' ()*+,-! 2) 3 '45 ( 0 9, : 3, * 6,%, -73 35 8 Cavity QED Magnetic resonance Ion trap Superconductor 7 : ) :; 1 ( 6 7? 2 + ' - < 75 @ *6 97

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube Objective: learn about nano-manipulation techniques with a STM or an AFM. 5.1: With a nanotube Moving a nanotube Cutting a nanotube Images at large distance At small distance : push the NT Voltage pulse

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Developing Quantum Logic Gates: Spin-Resonance-Transistors Developing Quantum Logic Gates: Spin-Resonance-Transistors H. W. Jiang (UCLA) SRT: a Field Effect Transistor in which the channel resistance monitors electron spin resonance, and the resonance frequency

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Michael Ruby, Nino Hatter, Benjamin Heinrich Falko Pientka, Yang Peng, Felix von Oppen, Nacho Pascual, Katharina

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Magnetic qubits as hardware for quantum computers

Magnetic qubits as hardware for quantum computers INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY Nanotechnology 12 (2001) 181 186 www.iop.org/journals/na PII: S0957-4484(01)20911-8 Magnetic qubits as hardware for quantum computers J Tejada 1,4, E M Chudnovsky

More information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information QSIT09.L03 Page 1 2.0 Basic Elements of a Quantum Information Processor 2.1 Classical information processing 2.1.1 The carrier of information - binary representation of information as bits (Binary digits).

More information

MOLECULAR SPINTRONICS. Eugenio Coronado

MOLECULAR SPINTRONICS. Eugenio Coronado MOLECULAR SPITROICS Eugenio Coronado Spintronics Manipulation of the spin by electrical means (current, electric field) optical means (light) mechanical means (pressure). At the nanoscale Molecular Spintronics

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

engineering of spatial nano- and micro-arrangements of pure and composite materials is of

engineering of spatial nano- and micro-arrangements of pure and composite materials is of Surface-confined molecular coolers for cryogenics By Giulia Lorusso, Mark Jenkins, Pablo González-Monje, Ana Arauzo, Javier Sesé, Daniel Ruiz-Molina, Olivier Roubeau, and Marco Evangelisti* [*] Dr. G.

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy Chapter 103 Spin-Polarized Scanning Tunneling Microscopy Toyo Kazu Yamada Keywords Spin-polarized tunneling current Spin polarization Magnetism 103.1 Principle Spin-polarized scanning tunneling microscopy

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Nearly-quantumless magnetic cooling. using molecules. Marco Evangelisti

Nearly-quantumless magnetic cooling. using molecules. Marco Evangelisti Martes cuántico Zaragoza 26 de enero, 2016 Instituto de Ciencia de Materiales de Aragón CSIC and Universidad de Zaragoza 50009 Zaragoza, Spain WWW: http://molchip.unizar.es/ Nearly-quantumless magnetic

More information

Factoring 15 with NMR spectroscopy. Josefine Enkner, Felix Helmrich

Factoring 15 with NMR spectroscopy. Josefine Enkner, Felix Helmrich Factoring 15 with NMR spectroscopy Josefine Enkner, Felix Helmrich Josefine Enkner, Felix Helmrich April 23, 2018 1 Introduction: What awaits you in this talk Recap Shor s Algorithm NMR Magnetic Nuclear

More information

MAGNETIC QUBITS AS HARDWARE FOR QUANTUM COMPUTERS.

MAGNETIC QUBITS AS HARDWARE FOR QUANTUM COMPUTERS. MAGNETIC QUBITS AS HARDWARE FOR QUANTUM COMPUTERS. J. Tejada*, E. M. Chudnovsky, E. del Barco*, J. M. Hernandez* and T. P. Spiller * Physics Department. University of Barcelona, Diagonal 647, 08028 Barcelona,

More information

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots International School of Physics "Enrico Fermi : Quantum Spintronics and Related Phenomena June 22-23, 2012 Varenna, Italy Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots Seigo Tarucha

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Magnetic anisotropy in frustrated clusters and monolayers: Cr on triangular Au(111) surface

Magnetic anisotropy in frustrated clusters and monolayers: Cr on triangular Au(111) surface Magnetic anisotropy in frustrated clusters and monolayers: Cr on triangular Au(111) surface László Balogh Krisztián Palotás László Udvardi László Szunyogh Department of Theoretical Physics Budapest University

More information

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles Quantum Computation 650 Spring 2009 Lectures 1-21 The World of Quantum Information Marianna Safronova Department of Physics and Astronomy February 10, 2009 Outline Quantum Information: fundamental principles

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Electron spin qubits in P donors in Silicon

Electron spin qubits in P donors in Silicon Electron spin qubits in P donors in Silicon IDEA League lectures on Quantum Information Processing 7 September 2015 Lieven Vandersypen http://vandersypenlab.tudelft.nl Slides with black background courtesy

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides

Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides Martin Dressel 1. Physikalisches Institut, Universität Stuttgart, Germany Outline 1. Introduction ESR resonators 2. Strip

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Laser Spectroscopy on Bunched Radioactive Ion Beams

Laser Spectroscopy on Bunched Radioactive Ion Beams Laser Spectroscopy on Bunched Radioactive Ion Beams Jon Billowes University of Manchester Balkan School on Nuclear Physics, Bodrum 2004 Lecture 1. 1.1 Nuclear moments 1.2 Hyperfine interaction in free

More information

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination ICSM212, Istanbul, May 3, 212, Theoretical Magnetism I, 17:2 p. 1 EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination Václav Drchal Institute of Physics ASCR, Praha, Czech Republic in collaboration

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Superconducting devices based on coherent operation of Josephson junction arrays above 77K

Superconducting devices based on coherent operation of Josephson junction arrays above 77K Electronic Devices, Invited talk, ISS 2017, Tokyo, Japan Superconducting devices based on coherent operation of Josephson junction arrays above 77K Boris Chesca Physics Department, Loughborough University,

More information

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP Manipulating and characterizing spin qubits based on donors

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants MolNanoSpin: Spintronique moléculaire avec des molécules-aimants W. Wernsdorfer : Institut Néel T. Mallah : Institut de Chimie Moléculaire et des Matériaux d'orsay P. Mialane : Institut Lavoisier Journées

More information

«Chaînes Aimants» et «Molécules Aimants» dans les Oxydes. GDR MCM2 & MEETICC Strasbourg, 5 6 octobre 2017

«Chaînes Aimants» et «Molécules Aimants» dans les Oxydes. GDR MCM2 & MEETICC Strasbourg, 5 6 octobre 2017 «Chaînes Aimants» et «Molécules Aimants» dans les Oxydes MCM2 MEETICC GDR MCM2 & MEETICC Strasbourg, 5 6 octobre 2017 «Propriétés magnétiques & électroniques : échelles de temps et d espace» Can oxides

More information

Quantum Coherent Properties of Spins - III

Quantum Coherent Properties of Spins - III Quantum Coherent Properties of Spins - III December 20-22, 2010 University of Central Florida, Orlando FL Student Union Building (Room: Key West AB, second floor) WORKSHOP WEBPAGE: http://pitp.physics.ubc.ca/confs/spins10

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Supporting information

Supporting information Supporting information Assembly of lanthanide(iii) cubanes and dimers with single-molecule magnetism and photoluminescence Ho-Yin Wong, Wesley Ting Kwok Chan, Ga-Lai Law* Department of Applied Biology

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0 (two-qubit gate): tools: optical dipole force P 3/2 P 1/2 F = -1.5 F n=3 n=3 n=0 S 1/2 n=0 optical dipole force is state dependent tools: optical dipole force (e.g two qubits) ω 2 k1 d ω 1 optical dipole

More information

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble The Nanotube SQUID J.-P. Cleuziou,, Th. Ondarçuhu uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble Outline Sample fabrication Proximity effect in CNT The CNT superconducting

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics Lecture 3: 2-qubit

More information

The Quantum Supremacy Experiment

The Quantum Supremacy Experiment The Quantum Supremacy Experiment John Martinis, Google & UCSB New tests of QM: Does QM work for 10 15 Hilbert space? Does digitized error model also work? Demonstrate exponential computing power: Check

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain.

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain. This journal is The Royal Society of Chemistry 13 Electronic Supplementary Information {Dy(α-fur) 3 } n : from double relaxation Single-Ion Magnet behavior to 3D ordering E.Bartolomé, a J. Bartolomé, b

More information

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Gloria Platero Instituto de Ciencia de Materiales (ICMM), CSIC, Madrid, Spain María Busl (ICMM), Rafael Sánchez,Université de Genève Toulouse,

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places

Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places The 64 th Compton Lecture Series Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places http://kicp.uchicago.edu/~odom/compton.htm Lecture 5: Using the Fine Structure Constant to Push

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Quantum computation with trapped ions

Quantum computation with trapped ions Abstract Since the first preparation of a single trapped, laser-cooled ion by Neuhauser et el. in 198, a continuously increasing degree of control over the of single ions has been achieved, such that what

More information

Quantum Information Processing with Liquid-State NMR

Quantum Information Processing with Liquid-State NMR Quantum Information Processing with Liquid-State NMR Pranjal Vachaspati, Sabrina Pasterski MIT Department of Physics (Dated: May 8, 23) We demonstrate the use of a Bruker Avance 2 NMR Spectrometer for

More information

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation QSIT09.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical

More information

Magnetic semiconductors. (Dilute) Magnetic semiconductors

Magnetic semiconductors. (Dilute) Magnetic semiconductors Magnetic semiconductors We saw last time that: We d like to do spintronics in semiconductors, because semiconductors have many nice properties (gateability, controllable spin-orbit effects, long spin lifetimes).

More information

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012 Superoperators for NMR Quantum Information Processing Osama Usman June 15, 2012 Outline 1 Prerequisites 2 Relaxation and spin Echo 3 Spherical Tensor Operators 4 Superoperators 5 My research work 6 References.

More information

The exchange interaction between FM and AFM materials

The exchange interaction between FM and AFM materials Chapter 1 The exchange interaction between FM and AFM materials When the ferromagnetic (FM) materials are contacted with antiferromagnetic (AFM) materials, the magnetic properties of FM materials are drastically

More information

Precision Penning Trap Experiments with Exotic Ions

Precision Penning Trap Experiments with Exotic Ions Klaus.blaum@mpi-hd.mpg.de EMMI Physics Days 2011, GSI Darmstadt Precision Penning Trap Experiments with Exotic Ions Klaus Blaum November 08, 2011 Outline Introduction and motivation Principle of Penning

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

Electron spin coherence exceeding seconds in high-purity silicon

Electron spin coherence exceeding seconds in high-purity silicon Electron spin coherence exceeding seconds in high-purity silicon Alexei M. Tyryshkin, Shinichi Tojo 2, John J. L. Morton 3, H. Riemann 4, N.V. Abrosimov 4, P. Becker 5, H.-J. Pohl 6, Thomas Schenkel 7,

More information

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace Quantum Computing Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September 2010 10:00am PST, Teleplace The Hope All computing is constrained by the laws of Physics and

More information

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Nuclear spin spectroscopy for semiconductor hetero and nano structures (Interaction and Nanostructural Effects in Low-Dimensional Systems) November 16th, Kyoto, Japan Nuclear spin spectroscopy for semiconductor hetero and nano structures Yoshiro Hirayama Tohoku University

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Single qubit + CNOT gates

Single qubit + CNOT gates Lecture 6 Universal quantum gates Single qubit + CNOT gates Single qubit and CNOT gates together can be used to implement an arbitrary twolevel unitary operation on the state space of n qubits. Suppose

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

Introduction to Quantum Mechanics of Superconducting Electrical Circuits

Introduction to Quantum Mechanics of Superconducting Electrical Circuits Introduction to Quantum Mechanics of Superconducting lectrical Circuits What is superconductivity? What is a osephson junction? What is a Cooper Pair Box Qubit? Quantum Modes of Superconducting Transmission

More information

Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry

Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry Mohamed I. Ibrahim*, Christopher Foy*, Donggyu Kim*, Dirk R. Englund, and

More information

IBM quantum experience: Experimental implementations, scope, and limitations

IBM quantum experience: Experimental implementations, scope, and limitations IBM quantum experience: Experimental implementations, scope, and limitations Plan of the talk IBM Quantum Experience Introduction IBM GUI Building blocks for IBM quantum computing Implementations of various

More information

compound Cs 2 Cu 2 Mo 3 O 12

compound Cs 2 Cu 2 Mo 3 O 12 133 Cs-NMR study on aligned powder of competing spin chain compound A Yagi 1, K Matsui 1 T Goto 1, M Hase 2 and T Sasaki 3 1 2 Sophia University, Physics Division, Tokyo, 102-8554, Japan National Institute

More information

Magnetic Resonance in Quantum

Magnetic Resonance in Quantum Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland Proposed experiment for the anapole measurement in francium Luis A. Orozco Joint Quantum Institute University of Maryland FrPNC collaboration: S. Aubin, J. A. Behr, V. Flambaum, E. Gomez, G. Gwinner, K.

More information