Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Size: px
Start display at page:

Download "Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón"

Transcription

1 Martes cuántico Zaragoza, 8 th October 2013 Atomic and molecular spin qubits Fernando LUIS Instituto de Ciencia de Materiales de Aragón

2 Outline Quantum information with spins 1 0 Atomic defects in semiconductors Molecular quantum bits & gates

3 Outline Quantum information with spins 1 0 Atomic defects in semiconductors Molecular quantum bits & gates

4 Quantum computers Process information using quantum laws Bit Qubit 1 R. P. Feynman, Int. J. Theoret. Phys. 21, 467 (1982) 0

5 Qubits Single qubits 1 0 R 0 H

6 T 2 (s) Qubits Single qubits DE /h 1-40 GHz R 0 H year M. H. Devoret and R. J. Schoelkopf, Science 339, 1169 (2013)

7 Spin qubits Electron spin in a magnetic field B dc S = ½ g = GHz/T DE = g B B dc K/T

8 Spin qubits Electron spin in a magnetic field B dc B 1 e iwt S = ½ g = 2 1 Dt 0 I. I. Rabi, Phys. Rev. B 51, 652 (1937)

9 Spin qubits Electron spin in a magnetic field B dc B 1 e iwt En resonancia: w = DE/h S = ½ g = 2 1 Dt 0 I. I. Rabi, Phys. Rev. B 51, 652 (1937) 0 ( t) cos 2 R B h 0 e i ( t) ( t) sin 2 B1 13 MHz/mT 1

10 Decoherence T1 R 0 ( t) cos 2 0 e i ( t) ( t) sin 2 1

11 Decoherence T 2 R 0 ( t) cos 2 0 e i ( t) ( t) sin 2 1

12 Decoherence Two well defined states High quantum coherence: Q M 2RT Integration into a scalable architecture: Read-out Control Communicate T 2 R 0 ( t) cos 2 0 e i ( t) ( t) sin 2 1

13 Outline Quantum information with spins 1 0 Atomic defects in semiconductors Molecular quantum bits & gates

14 31 P donors in silicon Si 31 P +

15 31 P donors in silicon Si e - 31 P + B. E. Kane, Nature 393, 133 (1998)

16 31 P donors in silicon Si e - 31 P + Very low decoherence because of: T 2 1 s at T = 1.8 K Weak spin-lattice interactions Low concentration of e - spins ( cm -3 ) Low concentration of nuclear spins (5% 29 Si) A. M. Tyrishkin et al., Nature Mater. 11, 143 (2011)

17 Read-out Translate spin state into charge current SET I SET A. Morello et al., Nature 467, 687 (2010)

18 Read-out & coherent control Translate spin state into charge current J. J. Pla et al., Nature 489, 541 (2012) SET I SET A. Morello et al., Nature 467, 687 (2010) Dt(s)

19 NV centers in diamond NV -

20 NV centers in diamond DE = 2.9 GHz H S = 1 g = DS E( S S ) g HS z 3 A x y m S = 0 B m S = +1 m S = +1

21 NV centers in diamond 3 E m S = ±1 m S = 0 H S = 1 g = 2 LASER DE = 2.9 GHz DS E( S S ) g HS z 3 A FLUORESCENCE x y m S = 0 B m S = -1 m S = +1

22 NV centers in diamond 3 E m S = ±1 m S = cm cm cm -2 H S = 1 g = 2 LASER DE = 2.9 GHz DS E( S S ) g HS z 3 A FLUORESCENCE x y m S = 0 B m S = -1 m S = +1 A. Gruber et al., Science 276, 2012 (1997)

23 Single-spin read-out m S = ±1 m S = 0 3 E 3 A m S = 0 LASER m S = -1 m S = +1 1 m S = A Spin-dependent fluorescence spin read-out and state initialization F. Jelezko et al., Appl. Phys. Lett. 81, 2160 (2002)

24 Single-spin read-out m S = ±1 m S = 0 3 E 3 A m S = 0 LASER m S = -1 m S = +1 1 m S = A Spin-dependent fluorescence spin read-out and state initialization F. Jelezko et al., APL 81, 2160 (2002)

25 Coherent control m S = ±1 m S = 0 3 E 3 A m S = 0 LASER m S = -1 m S = +1 1 Dt m S = A Microwaves 2.9 GHz Dt(ns) F. Jelezko et al., Phys. Rev. Lett 92, (2004) L. Childress et al., Science 314, 281 (2006)

26 Decoherence Substitutional N atoms (s = ½): spin bath Polarization (high B dc, low T) R. Hanson et al., Science 320, 352 (2008)

27 Decoherence Substitutional N atoms (s = ½): spin bath Dynamical decoupling Polarization (high B dc, low T) R. Hanson et al., Science 320, 352 (2008) G. De Lange et al., Science 330, 60 (2010)

28 Spin qubits in semiconductors Two well defined states High quantum coherence: Integration into a scalable architecture: Read-out Control Communicate Further reading (reviews) R. Hanson & D. Awschalom, Coherent manipulation of single spins in semiconductors, Nature 453, 1043 (2008) J. J. L. Morton, D. R. McCaney, M. A. Eriksson & S. A. Lyon, Embracing the quantum limit in silicon computing, Nature 479, 345 (2011) D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, J. R. Petta, Quantum Spintronics: Engineering and Manipulating Quantum Spins in Semiconductors, Science 339, 1174 (2013)

29 Outline Quantum information with spins 1 0 Atomic defects in semiconductors Molecular quantum bits & gates

30 Molecular spin qubits Leuenberger and Loss, Nature 410, 789 (2001) Mn 12 S = 10 g = 2 m= m=+10

31 Molecular spin qubits Leuenberger and Loss, Nature 410, 789 (2001) Cr 7 Ni, S = 1/2 A. Ardavan et al. Phys. Rev. Lett. 98, (2007); ibid (2012). Mn 12 S = 10 g = 2 V 15, S = 1/2 m= m=+10 S. Bertaina et al. Nature 453 (2008)

32 Single-ion magnets Ligand shell (non magnetic) Lanthanide (Er, Ho, Gd, Tm ) = g J J LnW 10 LnW Å Some outstanding characteristics Simple (just 1 magnetic atom) Weak interactions Magnetic solubility Nuclear-spin free systems Control over parameters M. A. AlDamen et al, J. Am. Chem. Soc. 130, 8874 (2008); M. A. Aldamen et al, Inorg. Chem. 48, 3467 (2009)

33 Single-ion magnets Ligand shell (non magnetic) Lanthanide (Er, Ho, Gd, Tm ) = g J J LnW 10 LnW Å Some outstanding characteristics Simple (just 1 magnetic atom) Weak interactions Magnetic solubility Nuclear-spin free systems Control over parameters M. A. AlDamen et al, J. Am. Chem. Soc. 130, 8874 (2008); M. A. Aldamen et al, Inorg. Chem. 48, 3467 (2009)

34 Molecular design of spin qubits GdW 10 GdW 30 J z J y 4 K 0.5 K Easy axis Easy plane

35 S z (a.u.) Coherent control: pulsed EPR Rabi Oscillations H=1000 G (16_32) ns pulse length T s Time(ns) J y 6.5 GHz M. J. Martínez-Pérez, et al. Phys. Rev. Lett. 108, (2012).

36 Coupling to Q dots or C nanotubes Read-out and coherent manipulation I M. Urdampilleta et al., Nature Mater. 10, 502 (2011); R. Vincent et al., Nature 488, 357 (2012)

37 Universal CNOT quantum gate control target A. Barenco et al., Phys. Rev. A 52, 3457 (1995)

38 Universal CNOT quantum gate control target 1. Two qubits 2. Coupling 3. Asymmetry A. Barenco et al., Phys. Rev. A 52, 3457 (1995)

39 Molecular design of two-qubit gates Dinuclear [Tb] 2 complex Linked to three asymmetric H 3 L ligands Two anisotropic spins in different coordinations D. Aguilà et al, Inorg. Chem. 49 (2010) 6784 G. Aromí, D. Aguilà, P. Gámez, F. Luis, and O. Roubeau, Chem. Soc. Rev. 41, (2012).

40 Energy(K) CNOT gate H ( H J H J ) A ( J I J I ) m6 2J exjz1j z2 gjb z1 z1 z2 z2 hf z1 z1 z2 z CNOT F. Luis et al, Phys. Rev. Lett. 107, (2011). 0 H (T)

41 Molecular spin qubits Two well defined states High quantum coherence Integration into a scalable architecture: Read-out Control Communicate Further reading (reviews) F. Troiani & M. Affronte, Molecular spins for quantum information technologies, Chemical Society Reviews 40, 3119 (2011) G. Aromí, D. Aguilà, P. Gámez, F. Luis & O. Roubeau, Design of magnetic coordination complexes for quantum computing, Chem. Soc. Rev. 41, 537 (2012). Molecular Magnets: Physics and Applications, edited by J. Bartolomé, F. Luis & J. F. Fernández, Springer (January 2014). ISBN

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Bellaterra: anuary 2011 Architecture & Design of Molecule Logic Gates and Atom Circuits Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Fernando LUIS Instituto de Ciencia de Materiales

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Magnetic Resonance in Quantum Information

Magnetic Resonance in Quantum Information Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

Quantum manipulation of NV centers in diamond

Quantum manipulation of NV centers in diamond Quantum manipulation of NV centers in diamond 12.09.2014 The University of Virginia Physics Colloquium Alex Retzker Jianming Cai, Andreas Albrect, M. B. Plenio,Fedor Jelezko, P. London, R. Fisher,B. Nayedonov,

More information

Optically-controlled controlled quantum dot spins for quantum computers

Optically-controlled controlled quantum dot spins for quantum computers Optically-controlled controlled quantum dot spins for quantum computers David Press Yamamoto Group Applied Physics Department Ph.D. Oral Examination April 28, 2010 1 What could a Quantum Computer do? Simulating

More information

Spin electric coupling and coherent quantum control of molecular nanomagnets

Spin electric coupling and coherent quantum control of molecular nanomagnets Spin electric coupling and coherent quantum control of molecular nanomagnets Dimitrije Stepanenko Department of Physics University of Basel Institute of Physics, Belgrade February 15. 2010 Collaborators:

More information

MOLECULAR SPINTRONICS. Eugenio Coronado

MOLECULAR SPINTRONICS. Eugenio Coronado MOLECULAR SPITROICS Eugenio Coronado Spintronics Manipulation of the spin by electrical means (current, electric field) optical means (light) mechanical means (pressure). At the nanoscale Molecular Spintronics

More information

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants MolNanoSpin: Spintronique moléculaire avec des molécules-aimants W. Wernsdorfer : Institut Néel T. Mallah : Institut de Chimie Moléculaire et des Matériaux d'orsay P. Mialane : Institut Lavoisier Journées

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

Hyperfine Interaction Estimation of Nitrogen Vacancy Center in Diamond

Hyperfine Interaction Estimation of Nitrogen Vacancy Center in Diamond Hyperfine Interaction Estimation of Nitrogen Vacancy Center in Diamond Yutaka Shikano Massachusetts Institute of Technology Tokyo Institute of Technology In collaboration with Shu Tanaka (Kinki University,

More information

Electron spin coherence exceeding seconds in high-purity silicon

Electron spin coherence exceeding seconds in high-purity silicon Electron spin coherence exceeding seconds in high-purity silicon Alexei M. Tyryshkin, Shinichi Tojo 2, John J. L. Morton 3, H. Riemann 4, N.V. Abrosimov 4, P. Becker 5, H.-J. Pohl 6, Thomas Schenkel 7,

More information

DNP in Quantum Computing Eisuke Abe Spintronics Research Center, Keio University

DNP in Quantum Computing Eisuke Abe Spintronics Research Center, Keio University DNP in Quantum Computing Eisuke Abe Spintronics Research Center, Keio University 207.08.25 Future of Hyper-Polarized Nuclear Spins @IPR, Osaka DNP in quantum computing Molecule Pseudo-pure state Algorithmic

More information

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto Quantum error correction on a hybrid spin system Christoph Fischer, Andrea Rocchetto Christoph Fischer, Andrea Rocchetto 17/05/14 1 Outline Error correction: why we need it, how it works Experimental realization

More information

Magnetic Resonance in Quantum

Magnetic Resonance in Quantum Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

The Development of a Quantum Computer in Silicon

The Development of a Quantum Computer in Silicon The Development of a Quantum Computer in Silicon Professor Michelle Simmons Director, Centre of Excellence for Quantum Computation and Communication Technology, Sydney, Australia December 4th, 2013 Outline

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

1 Ioffe Physical-Technical Institute, St. Petersburg, Russia

1 Ioffe Physical-Technical Institute, St. Petersburg, Russia Point defects in SiC as a promising basis for single-defect, singlephoton spectroscopy with room temperature controllable quantum states Pavel G. Baranov 1, a, Victor A. Soltamov 1, Alexandra A.Soltamova

More information

Electron spin qubits in P donors in Silicon

Electron spin qubits in P donors in Silicon Electron spin qubits in P donors in Silicon IDEA League lectures on Quantum Information Processing 7 September 2015 Lieven Vandersypen http://vandersypenlab.tudelft.nl Slides with black background courtesy

More information

Nearly-quantumless magnetic cooling. using molecules. Marco Evangelisti

Nearly-quantumless magnetic cooling. using molecules. Marco Evangelisti Martes cuántico Zaragoza 26 de enero, 2016 Instituto de Ciencia de Materiales de Aragón CSIC and Universidad de Zaragoza 50009 Zaragoza, Spain WWW: http://molchip.unizar.es/ Nearly-quantumless magnetic

More information

TWO- AND THREE-QUBIT ROOM-TEMPERATURE GRAPHENE QUANTUM GATES. Daniela Dragoman 1 and Mircea Dragoman Bucharest, Romania

TWO- AND THREE-QUBIT ROOM-TEMPERATURE GRAPHENE QUANTUM GATES. Daniela Dragoman 1 and Mircea Dragoman Bucharest, Romania 1 TWO- AND THREE-QUBIT ROOM-TEMPERATURE GRAPHENE QUANTUM GATES Daniela Dragoman 1 and Mircea Dragoman 2 1 Univ. Bucharest, Faculty of Physics, P.O. Box MG-11, 077125 Bucharest, Romania 2 National Institute

More information

Quantum control of spin qubits in silicon

Quantum control of spin qubits in silicon Quantum control of spin qubits in silicon Belita Koiller Instituto de Física Universidade Federal do Rio de Janeiro Brazil II Quantum Information Workshop Paraty, 8-11 September 2009 Motivation B.E.Kane,

More information

A single-atom electron spin qubit in silicon

A single-atom electron spin qubit in silicon 1 A single-atom electron spin qubit in silicon Jarryd J. Pla 1,2, Kuan Y. Tan 1,2, Juan P. Dehollain 1,2, Wee H. Lim 1,2, John J. L. Morton 3, David N. Jamieson 1,4, Andrew S. Dzurak 1,2, Andrea Morello

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations. QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING Philippe Grangier, Institut d'optique, Orsay 1. Quantum cryptography : from basic principles to practical realizations. 2. Quantum computing : a conceptual revolution

More information

Nuclear spin control in diamond. Lily Childress Bates College

Nuclear spin control in diamond. Lily Childress Bates College Nuclear spin control in diamond Lily Childress Bates College nanomri 2010 Hyperfine structure of the NV center: Excited state? Ground state m s = ±1 m s = 0 H = S + gµ S 2 z B z r s r r + S A N I N + S

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011 Quantum Information NV Centers in Diamond General Introduction Zlatko Minev & Nate Earnest April 2011 QIP & QM & NVD Outline Interest in Qubits. Why? Quantum Information Motivation Qubit vs Bit Sqrt(Not)

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Lecture 18 Luminescence Centers

Lecture 18 Luminescence Centers Lecture 18 Luminescence Centers Read: FS9 (Al2O3 sapphire with different colors) Purdue University Spring 2016 Prof. Yong P. Chen (yongchen@purdue.edu) Lecture 18 (3/24/2016) Slide 1 Basic physics: Vibronic

More information

Towards quantum simulator based on nuclear spins at room temperature

Towards quantum simulator based on nuclear spins at room temperature Towards quantum simulator based on nuclear spins at room temperature B. Naydenov and F. Jelezko C. Müller, Xi Kong, T. Unden, L. McGuinness J.-M. Cai and M.B. Plenio Institute of Theoretical Physics, Uni

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Image courtesy of Keith Schwab http://www.lbl.gov/science-articles/archive/afrd Articles/Archive/AFRD-quantum-logic.html http://www.wmi.badw.de/sfb631/tps/dqd2.gif http://qist.lanl.gov/qcomp_map.shtml

More information

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots International School of Physics "Enrico Fermi : Quantum Spintronics and Related Phenomena June 22-23, 2012 Varenna, Italy Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots Seigo Tarucha

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Magnetic semiconductors. (Dilute) Magnetic semiconductors

Magnetic semiconductors. (Dilute) Magnetic semiconductors Magnetic semiconductors We saw last time that: We d like to do spintronics in semiconductors, because semiconductors have many nice properties (gateability, controllable spin-orbit effects, long spin lifetimes).

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Precision sensing using quantum defects

Precision sensing using quantum defects Precision sensing using quantum defects Sang-Yun Lee 3rd Institute of Physics, University of Stuttgart, Germany Quantum and Nano Control, IMA at University of Minnesota April 14, 2016 Single spin probes

More information

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay 400 nm Solid State Qubits (1) S D Daniel Esteve QUAN UM ELECT RONICS GROUP SPEC, CEA-Saclay From the Copenhagen school (1937) Max Planck front row, L to R : Bohr, Heisenberg, Pauli,Stern, Meitner, Ladenburg,

More information

INTRIQ. Coherent Manipulation of single nuclear spin

INTRIQ. Coherent Manipulation of single nuclear spin INTRIQ Coherent Manipulation of single nuclear spin Clément Godfrin Eva Dupont Ferrier Michel Pioro-Ladrière K. Ferhat (Inst. Néel) R. Ballou (Inst. Néel) M. Ruben (KIT) W. Wernsdorfer (KIT) F. Balestro

More information

Quantum Dot Spin QuBits

Quantum Dot Spin QuBits QSIT Student Presentations Quantum Dot Spin QuBits Quantum Devices for Information Technology Outline I. Double Quantum Dot S II. The Logical Qubit T 0 III. Experiments I. Double Quantum Dot 1. Reminder

More information

We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1

We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1 We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1 Flip-flops Bath narrowing Experiment Source Power (dbm) 10.8 10.6 10.4 10.2 0 5

More information

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Christopher Eichler - 29.01. 2016 ScaleQIT Conference, Delft In collaboration with: C. Lang, J. Mlynek, Y. Salathe,

More information

Квантовые цепи и кубиты

Квантовые цепи и кубиты Квантовые цепи и кубиты Твердотельные наноструктуры и устройства для квантовых вычислений Лекция 2 А.В. Устинов Karlsruhe Institute of Technology, Germany Russian Quantum Center, Russia Trapped ions Degree

More information

arxiv: v2 [quant-ph] 28 Nov 2017

arxiv: v2 [quant-ph] 28 Nov 2017 Operating Quantum States in Single Magnetic Molecules: Implementation of Grover s Quantum Algorithm arxiv:1710.11229v2 [quant-ph] 28 ov 2017 C. Godfrin, 1, 2 A. Ferhat, 1, 2 R. Ballou, 1 S. Klyatskaya,

More information

Silicon-based Quantum Computing:

Silicon-based Quantum Computing: Silicon-based Quantum Computing: The path from the laboratory to industrial manufacture Australian National Fabrication Facility Andrew Dzurak UNSW - Sydney a.dzurak@unsw.edu.au Leti Innovation Days, Grenoble,

More information

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Gloria Platero Instituto de Ciencia de Materiales (ICMM), CSIC, Madrid, Spain María Busl (ICMM), Rafael Sánchez,Université de Genève Toulouse,

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011 Coherence of nitrogen-vacancy electronic spin ensembles in diamond arxiv:006.49v [cond-mat.mes-hall] 4 Jan 0 P. L. Stanwix,, L. M. Pham, J. R. Maze, 4, 5 D. Le Sage, T. K. Yeung, P. Cappellaro, 6 P. R.

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology 3 E 532 nm 1 2δω 1 Δ ESR 0 1 A 1 3 A 2 Microwaves 532 nm polarization Pulse sequence detection

More information

Nomenclature: Electron Paramagnetic Resonance (EPR) Electron Magnetic Resonance (EMR) Electron Spin Resonance (ESR)

Nomenclature: Electron Paramagnetic Resonance (EPR) Electron Magnetic Resonance (EMR) Electron Spin Resonance (ESR) Introduction to EPR Spectroscopy EPR allows paramagnetic species to be identified and their electronic and geometrical structures to be characterised Interactions with other molecules, concentrations,

More information

!. 2) 3. '45 ( !"#!$%!&&' 9,.. : Cavity QED . / 3., /*. Ion trap 6..,%, Magnetic resonance Superconductor

!. 2) 3. '45 ( !#!$%!&&' 9,.. : Cavity QED . / 3., /*. Ion trap 6..,%, Magnetic resonance Superconductor 0 1!"#!$%!&&' ()*+,-! 2) 3 '45 ( 0 9, : 3, * 6,%, -73 35 8 Cavity QED Magnetic resonance Ion trap Superconductor 7 : ) :; 1 ( 6 7? 2 + ' - < 75 @ *6 97

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Controlling Spin Qubits in Quantum Dots. C. M. Marcus Harvard University

Controlling Spin Qubits in Quantum Dots. C. M. Marcus Harvard University Controlling Spin Qubits in Quantum Dots C. M. Marcus Harvard University 1 Controlling Spin Qubits in Quantum Dots C. M. Marcus Harvard University GaAs Experiments: David Reilly (Univ. Sydney) Edward Laird

More information

Ultra-High-Sensitivity emiccd Cameras Enable Diamond Quantum Dynamics Research

Ultra-High-Sensitivity emiccd Cameras Enable Diamond Quantum Dynamics Research 2015 Princeton Instruments, Inc. All rights reserved. Ultra-High-Sensitivity emiccd Cameras Enable Diamond Quantum Dynamics Research The PI-MAX4:512EM emiccd camera deliver[s] quantitative, ultra-high-sensitivity

More information

Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University

Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University Review of quantum dots (mostly GaAs/AlGaAs), with many references: Hanson, Kouwenhoven, Petta, Tarucha, Vandersypen,

More information

arxiv:quant-ph/ v1 14 Sep 2006

arxiv:quant-ph/ v1 14 Sep 2006 Influence of qubit displacements on quantum logic operations in a silicon-based quantum computer with constant interaction D. I. Kamenev 1, G. P. Berman 1, and V. I. Tsifrinovich 2 1 Theoretical Division,

More information

Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry

Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry Mohamed I. Ibrahim*, Christopher Foy*, Donggyu Kim*, Dirk R. Englund, and

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York All optical quantum computation by engineering semiconductor macroatoms Irene D Amico Dept. of Physics, University of York (Institute for Scientific Interchange, Torino) GaAs/AlAs, GaN/AlN Eliana Biolatti

More information

Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot

Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot R. Brunner 1,2, Y.-S. Shin 1, T. Obata 1,3, M. Pioro-Ladrière 4, T. Kubo 5, K. Yoshida 1, T. Taniyama

More information

Nitrogen-Vacancy Centers in Diamond A solid-state defect with applications from nanoscale-mri to quantum computing

Nitrogen-Vacancy Centers in Diamond A solid-state defect with applications from nanoscale-mri to quantum computing Nitrogen-Vacancy Centers in Diamond A solid-state defect with applications from nanoscale-mri to quantum computing Research into nitrogen-vacancy centers in diamond has exploded in the last decade (see

More information

Electron spin decoherence due to interaction with a nuclear spin bath

Electron spin decoherence due to interaction with a nuclear spin bath Electron spin decoherence due to interaction with a nuclear spin bath Center for Quantum Device Technology Clarkson University Presenter: Dr. Semion Saikin email: saikin@clarkson.edu NSF-DMR-121146, ITR/SY:

More information

arxiv: v1 [cond-mat.mes-hall] 18 May 2012

arxiv: v1 [cond-mat.mes-hall] 18 May 2012 Detection and control of individual nuclear spins using a weakly coupled electron spin T. H. Taminiau 1, J. J. T. Wagenaar 1, T. van der Sar 1, F. Jelezko 2, V. V. Dobrovitski 3, and R. Hanson 1 1 Kavli

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Photoelectric readout of electron spin qubits in diamond at room temperature

Photoelectric readout of electron spin qubits in diamond at room temperature Photoelectric readout of electron spin qubits in diamond at room temperature. Bourgeois,, M. Gulka, J. Hruby, M. Nesladek, Institute for Materials Research (IMO), Hasselt University, Belgium IMOMC division,

More information

Spin dependent recombination an electronic readout mechanism for solid state quantum computers

Spin dependent recombination an electronic readout mechanism for solid state quantum computers Spin dependent recombination an electronic readout mechanism for solid state quantum computers Christoph Boehme, Klaus Lips Hahn Meitner Institut Berlin, Kekuléstr. 5, D-12489 Berlin, Germany August 7,

More information

arxiv: v2 [cond-mat.mes-hall] 26 Sep 2013

arxiv: v2 [cond-mat.mes-hall] 26 Sep 2013 Universal control and error correction in multi-qubit spin registers in diamond T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson Kavli Institute of Nanoscience, Delft University

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Michael Mehring Physikalisches Institut, Univ. Stuttgart, Germany. Coworkers. A. Heidebrecht, J. Mende, W. Scherer

Michael Mehring Physikalisches Institut, Univ. Stuttgart, Germany. Coworkers. A. Heidebrecht, J. Mende, W. Scherer Decoherence and Entanglement Tomography in Solids Michael Mehring Physikalisches Institut, Univ. Stuttgart, Germany Coworkers A. Heidebrecht, J. Mende, W. Scherer 5 N@C 60 and 3 P@C 60 Cooperation Boris

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Hendrik Bluhm Andre Kruth Lotte Geck Carsten Degenhardt 1 0 Ψ 1 Quantum Computing

More information

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP Manipulating and characterizing spin qubits based on donors

More information

Decoherence-protected quantum gates for a hybrid solid-state spin. register

Decoherence-protected quantum gates for a hybrid solid-state spin. register Decoherence-protected quantum gates for a hybrid solid-state spin register T. van der Sar 1, Z. H. Wang 2, M. S. Blok 1, H. Bernien 1, T. H. Taminiau 1, D.M. Toyli 3, D. A. Lidar 4, D. D. Awschalom 3,

More information

Enhanced solid-state multi-spin metrology using dynamical decoupling

Enhanced solid-state multi-spin metrology using dynamical decoupling Enhanced solid-state multi-spin metrology using dynamical decoupling L. M. Pham, N. Bar-Gill, 2, 3 C. Belthangady, 2 D. Le Sage, 2 P. Cappellaro, 4 M. D. Lukin, 3 A. Yacoby, 3 and R. L. Walsworth 2, 3

More information

arxiv: v1 [quant-ph] 11 Jun 2009

arxiv: v1 [quant-ph] 11 Jun 2009 High Field Phenomena of Qubits J. van Tol Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida-32310, USA arxiv:0906.2172v1

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

Electrically Protected Valley-Orbit Qubit in Silicon

Electrically Protected Valley-Orbit Qubit in Silicon Quantum Coherence Lab Zumbühl Group Electrically Protected Valley-Orbit Qubit in Silicon - FAM talk - Florian Froning 21.09.2018 1 Motivation I [1] Zehnder, L., Zeitschrift für Instrumentenkunde. 11: 275

More information

Coherent Control of a Single Electron Spin with Electric Fields

Coherent Control of a Single Electron Spin with Electric Fields Coherent Control of a Single Electron Spin with Electric Fields Presented by Charulata Barge Graduate student Zumbühl Group Department of Physics, University of Basel Date:- 9-11-2007 Friday Group Meeting

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Courtesy of Timo Koerber Institut für Experimentalphysik Universität Innsbruck 1. Basic experimental techniques 2. Two-particle entanglement 3. Multi-particle

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

High Field EPR at the National High. Johan van Tol. Magnetic Field Lab

High Field EPR at the National High. Johan van Tol. Magnetic Field Lab High Field EPR at the National High Johan van Tol Magnetic Field Lab Overview EPR Introduction High Field CW EPR typical examples ENDOR Pulsed EPR Relaxation rates Qubits Relaxation at high fields Outlook

More information

QuAMP Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps

QuAMP Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps QuAMP 2013 Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps Kim Lake University of Sussex Talk Outline Ion Trapping and Ytterbium

More information

Supported by NSF and ARL

Supported by NSF and ARL Ultrafast Coherent Electron Spin Flip in a 2D Electron Gas Carey Phelps 1, Timothy Sweeney 1, Ronald T. Cox 2, Hailin Wang 1 1 Department of Physics, University of Oregon, Eugene, OR 97403 2 Nanophysics

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Solid-State Spin Quantum Computers

Solid-State Spin Quantum Computers Solid-State Spin Quantum Computers 1 NV-Centers in Diamond P Donors in Silicon Kane s Computer (1998) P- doped silicon with metal gates Silicon host crystal + 31 P donor atoms + Addressing gates + J- coupling

More information

Pulse techniques for decoupling qubits

Pulse techniques for decoupling qubits Pulse techniques for decoupling qubits from noise: experimental tests Steve Lyon, Princeton EE Alexei Tyryshkin, Shyam Shankar, Forrest Bradbury, Jianhua He, John Morton Bang-bang decoupling 31 P nuclear

More information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information QSIT09.L03 Page 1 2.0 Basic Elements of a Quantum Information Processor 2.1 Classical information processing 2.1.1 The carrier of information - binary representation of information as bits (Binary digits).

More information

On-Chip Quantum Nanophotonics: Challenges and Perspectives

On-Chip Quantum Nanophotonics: Challenges and Perspectives On-Chip Quantum Nanophotonics: Challenges and Perspectives Vladimir M. Shalaev Purdue Quantum Center, Purdue University West Lafayette, IN, USA WHY QUANTUM PHOTONICS? Transformative impact: NEXT TECHNOLOGY

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA Joachim Stolze and Dieter Suter Quantum Computing A Short Course from Theory to Experiment Second, Updated and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface XIII 1 Introduction and

More information

Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond

Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond up to 600 ms have been demonstrated by performing Carr-Purcell-Meiboom-Gill (CPMG) DD sequences at lower

More information

Spin-orbit qubit in a semiconductor nanowire

Spin-orbit qubit in a semiconductor nanowire 1 Spin-orbit qubit in a semiconductor nanowire S. Nadj-Perge 1*, S. M. Frolov 1*, E. P. A. M. Bakkers 1,2 and L. P. Kouwenhoven 1 1 Kavli Institute of Nanoscience, Delft University of Technology, 2600

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism Periodic Properties Atomic & Ionic Radius Energy Electron Affinity We want to understand the variations in these properties in terms of electron configurations. The Periodic Table Elements in a column

More information