Precision sensing using quantum defects

Size: px
Start display at page:

Download "Precision sensing using quantum defects"

Transcription

1 Precision sensing using quantum defects Sang-Yun Lee 3rd Institute of Physics, University of Stuttgart, Germany Quantum and Nano Control, IMA at University of Minnesota April 14, 2016

2 Single spin probes towards optical magnetic imaging in nanoscale Sang-Yun Lee 3rd Institute of Physics, University of Stuttgart, Germany Quantum and Nano Control, IMA at University of Minnesota April 14, 2016

3 Eg=5.5 ev 1.945eV Defect based quantum systems as a probe Color centers in solids: Nitrogen-vacancy center (NV center) in diamond CB ES VB GS Optically detected spin signal Point defect Carbon vacancy + Nitrogen impurity 500nm By confocal fluorescence microscopy

4 Optical detection of a NV center spin New J. Phys. 13, (2011)

5 Optical detection of a NV center spin m S = 1 m S = 0 m S = 1 S=1 ms = 0 ESR@2.87 GHz At zero magnetic field (B 0 =0) Annu. Rev. Condens. Matter Phys. 4, 23 (2013)

6 Optical detection of a NV center spin Optical single electron spin detection at room temperature Optically Detected Magnetic Resonance 0 = bright 1 = dark A. Gruber, et al., Science 276, 2012 (1997).

7 Photon-Spin Quantum Systems Diamond Ladd et al. Nature 2010 Cer,Pr/YAG Kolesov et al. Nature Comm SiC Widmann et al. Nature Materials 2015 Christle et al. Nature Materials2015

8 Color centers in solids magnetic field sensitivity C 1 ηt C: ODMR contrast : # of photons per measurement T: measurement time ( T 2 ) Single spin detection diamond SiC NV - V Si Divacancy Y Y Y T µs (RT, LT) 100 µs (RT)* 100 µs (RT) 1 ms (LT) PL intensity 100 kcps 10 kcps 10 kcps ODMR contrast 30 % Relative sensitivity 1 4 % (RT) 160 % (LT)** 0.02 (RT) 3 (LT) 0.1 % (RT) 40 % (LT) (RT) 0.8 (LT) * M. Widmann, S.-Y. Lee*, et al., Nat Mater 14, 164 (2015). **Our recent result, unpublished. Christle, et al., Nature Materials 14, 160 (2015). Falk, et al. Phys. Rev. Lett. 112, (2014).

9 Color centers in solids Single spin detection magnetic field sensitivity C diamond 1 ηtn SiC NV - V Si Divacancy Y Y Y T µs (RT, LT) 100 µs (RT)* C: ODMR contrast : # of photons per measurement T: measurement time ( T 2 ) N: # of spins 100 µs (RT) 1 ms (LT) PL intensity 100 kcps 10 kcps 10 kcps ODMR contrast 30 % Relative sensitivity 1 4 % (RT) 160 % (LT)** 0.02 (RT) 3 (LT) 0.1 % (RT) 40 % (LT) (RT) 0.8 (LT) * M. Widmann, S.-Y. Lee*, et al., Nat Mater 14, 164 (2015). **Our recent result, unpublished. Christle, et al., Nature Materials 14, 160 (2015). Falk, et al. Phys. Rev. Lett. 112, (2014).

10 What to do with spin color centers? Motivation: Quantum computer Solid state spin qubits Quantum computer in future, maybe. NV center in diamond

11 Solid state qubits Quantum computation Quantum communication Indistinguishable single photon source Sold state qubit Quantum gate, e.g. CNOT Phys. Rev. Lett. 113, (2014) Science 329, 542 (2010) Long coherence time Spin-photon interface Quantum register Quantum error correction Science 336, 1283 (2012) Nature 497, (2013) arxiv (2015) Nature 506, 204 (2014)

12 Hybrid qubits: electron spin + nuclear spin spins Magnetic moment manipulation Single spin detection Coherence time (T 2 ) Electron Strong Fast Easy Short ( 100 µs) Role Control/ Detection Nucleus Weak Slow Hard Long ( 1 s) memory Hybrid solid state qubit 13 C 1% 14 N 99.6%

13 Solid state qubits Quantum computation Quantum communication Indistinguishable single photon source Sold state qubit Quantum gate, e.g. CNOT Phys. Rev. Lett. 113, (2014) Science 329, 542 (2010) Long coherence time Spin-photon interface Quantum register Quantum error correction Science 336, 1283 (2012) Nature 497, (2013) arxiv (2015) Nature 506, 204 (2014)

14 Quantum metrology Optical (magnetic) imaging applications! Single photon source Optical imaging Long coherence time Sensitivity (coherence time) -1/2 Quantum gate Sensing protocol Hybrid qubits: electron+nuclear spin Sensor+memory pair Industry friendly platform: SiC Practical device

15 Quantum metrology In Coupling to external AC & DC magnetic field Ĥ S D S S g B Magnetic field sensing in nano scale Spin dipolar interaction: E-field, temperature & pressure dependent Electric field sensing Strain and pressure sensing Thermometry

16 DC vector magnetometry For S=1, e.g. NV center in diamond Ĥ S D S S g B Provided by Torsten Rendler

17 Optical single spin detection setup Home-built Confocal fluorescence microscope + MW and RF radiation + magnet

18 Optical magnetic imaging Best spatial resolution=0.8 nm S. Steinert, Nat Commun (2013) M.S. Grinolds et al., Nat Nano 9 29 (2014)

19 Optical magnetic imaging NV center1 NV center2 Living Hela cell fluorescent nanodiamond particles Bright Stable Biocompatible 1 nm* Intensity (arb. u) nm CVD diam. Imp. IIa diam. powder Optical magnetic imaging of a magnetotactic bacteria (MTB) nanodiam. 2 D. Le 720Sage, 730 et 740 al., 750Nature (2013) occurency (#) nm (a) nm nanodiam. (c) wavelength (nm) intensity (arb. u.) nm (d) peak position (nm) y ( m) nanodiam wavelength (nm) k 48k 32k 16k x ( m) *I. I. Vlasov, et al., Nat Nano 9, 54 (2014). (b) Tracking position and rotation in 100 ms scale L. P. McGuinness, et al., Nat Nano (2011)

20 Optical magnetic imaging Characterization of HDD head axiv: (2016)

21 DC vector magnetometry DC magnetometry Useful for optical magnetic imaging Frequency (magnetic field) sweep Slow! Time domain measurement Fast High sensitivity AC sensing

22 Optical AC magnetometer in time domain FID based sensing /2 φ 0 τ B 0 dt i 0 e 1 2 2

23 Optical AC magnetometer in time domain Ramsey interferometer sensitivity 1 T 2 Optical polarization Laser π 2 φ T 2* 1 µs 0 τ B 0 dt π 2 Read Laser i 0 e 1 2 AC magnetic field D e.g. Nuclear spin Larmor precession = n B 0 B 0

24 Optical AC magnetometer in time domain Optical polarization φ Laser Dynamic decoupling Noise filter Quantum lock-in detection π 2 sensitivity 1 T µs π π π C T 2 = n /2 π 2 Read Laser AC magnetic field e.g. Nuclear spin Larmor precession = n B 0 B 0 D

25 Optical AC magnetometer in time domain Science 339, 561 (2013).

26 Nano NMR Science 339, 561 (2013). Few nuclear spins: Müller et al. Nature Comm Degen et al. PRL 2014

27 Nano NMR Single Protein Detection F. Shi, JW et al. Science 2015

28 Towards practical NMR in nanoscale Single electron spin sensor NMR in nanoscale: resolution 10 khz by T 2,e 'Classical' NMR sensors: Molecular structure analysis (chemical shift, 2D-NMR) CH 3 C=O OH CH 2 CH 3 chemical shift gives 'building blocks' Becker, Edwin D., High Resolution NMR, Academic Press, Wu et al. PLoS Pathogens 6 (6): e D-NMR gives 'molecular structure' Required resolution: <100 Hz! ppm 127 Hz) By Matthias Pfender

29 Optical AC magnetometer in time domain Quantum correlation measurement to overcome limit by T 2e <T 2e T c sensing sensing φ 0 τ B 0 dt Correlation Memory is saved We need a memory to store 1 for T c!! Nuclear spin T 2,n >1ms By entanglement D AC magnetic field B 0 = n B 0

30 Entanglement? Read Know! Quantum communication, quantum key distribution, quantum gate.

31 Entanglement for sensing NV center electron spin: sensor T 2e 400 µs 14 N nuclear spin: quantum memory T 2n 5 ms Rotating nuclear spin 0 e 0 n 1 e 1 n Single electron spin only preparation 0 1 e e φ 0 τ B 0 dt Entangled sensor and memory pair 0 e 0 n + 1 e 1 n preparation sensing i 0 e 1 e e 0 e 0 n +e -i 1 e 1 n Sensing & storage 1 e ( 0 n +e -i 1 n ) disentanglement for memory protection

32 Entanglement for sensing 1 e 1 n 1 e 0 n 1 0 e 1 n 5 π e 3 π e e ( 0 n + 1 n )= 0 e 0 n + 0 e 1 n 0 e 0 n + 1 e 1 n entangled!! 0 e 0 n 0 e 1 n 4 Wait for : 0 e 0 n +e -i 1 1 e 1 n 5 1 e 0 n +e -i 1 1 e 1 n = 1 e ( 0 n +e -i 1 1 n ) 2 π 2 n e ( 0 n +e -i( 1-2) 1 n ) π 2 n π e π e T c 6 π e D 8 7 π e B 0 t

33 Entanglement for sensing Quantum circuit diagram: full sensing protocol sensing φ 1 stored (φ 1 ) in a nuclear spin (memory) sensing φ 1 -φ 2 readout entangle ment disentang lement entangle ment disentangl ement τ/2 T c 13 C bath D B 0

34 Single 13 C NMR by spin sensor 13 C nuclear spins B 0 =540 mt S. Zaiser et al., submitted

35 Single 13 C NMR by spin sensor Continuous polarization, 3 khz 13 C pump 13 C bath FID 6 µw orange: T 2 *=17 ms linewidth: 58 Hz! Matthias Pfender, Nabeel Aslam et al., in preparation

36 FFT of previous FID signal. Lorentzian fit reveals linewidth of 15 Hz FWHM=15.2 Hz B 0 =1.5T

37 Towards nano NMR & MRI 2D NMR Molecular dynamics Optical imaging Nat Commun 6, (2015). Enhanced resolution: Currently, 10 Hz Goal 1 Hz NMR, 2D NMR, magnetic imaging in nanoscale for biology & medicine for single molecule spectroscopy

38 Towards nano NMR & MRI

39 Nano NMR Sebastian Zaiser, Matthias Pfender, Nabeel Aslam, Torsten Rendler, Ingmar Jakobi, Thomas Wolf, Philip Neumann, Jörg Wrachtrup In collaboration with: M. D. Lukin (Harvard), R. Walsworth J. Meyer (Leipzig) S. Prawer, L. Hollenberg (University of Melbourne) P. R. Hemmer (Texas A&M) N. B. Manson (Australian National University) F. Schmidt-Kaler, K. Singer (Mainz) V. Jacques, JF. Roch ENS Cachan G. Balasubramanian (MPI Göttingen) F. Jelezko et al. (Ulm) Renbao Liu (CUHK), N. Miziochi (Osaka University)

Nitrogen-Vacancy Centers in Diamond A solid-state defect with applications from nanoscale-mri to quantum computing

Nitrogen-Vacancy Centers in Diamond A solid-state defect with applications from nanoscale-mri to quantum computing Nitrogen-Vacancy Centers in Diamond A solid-state defect with applications from nanoscale-mri to quantum computing Research into nitrogen-vacancy centers in diamond has exploded in the last decade (see

More information

Quantum manipulation of NV centers in diamond

Quantum manipulation of NV centers in diamond Quantum manipulation of NV centers in diamond 12.09.2014 The University of Virginia Physics Colloquium Alex Retzker Jianming Cai, Andreas Albrect, M. B. Plenio,Fedor Jelezko, P. London, R. Fisher,B. Nayedonov,

More information

Towards quantum simulator based on nuclear spins at room temperature

Towards quantum simulator based on nuclear spins at room temperature Towards quantum simulator based on nuclear spins at room temperature B. Naydenov and F. Jelezko C. Müller, Xi Kong, T. Unden, L. McGuinness J.-M. Cai and M.B. Plenio Institute of Theoretical Physics, Uni

More information

Magnetic Resonance in Quantum Information

Magnetic Resonance in Quantum Information Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

Photoelectric readout of electron spin qubits in diamond at room temperature

Photoelectric readout of electron spin qubits in diamond at room temperature Photoelectric readout of electron spin qubits in diamond at room temperature. Bourgeois,, M. Gulka, J. Hruby, M. Nesladek, Institute for Materials Research (IMO), Hasselt University, Belgium IMOMC division,

More information

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011 Coherence of nitrogen-vacancy electronic spin ensembles in diamond arxiv:006.49v [cond-mat.mes-hall] 4 Jan 0 P. L. Stanwix,, L. M. Pham, J. R. Maze, 4, 5 D. Le Sage, T. K. Yeung, P. Cappellaro, 6 P. R.

More information

Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry

Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry Mohamed I. Ibrahim*, Christopher Foy*, Donggyu Kim*, Dirk R. Englund, and

More information

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011 Quantum Information NV Centers in Diamond General Introduction Zlatko Minev & Nate Earnest April 2011 QIP & QM & NVD Outline Interest in Qubits. Why? Quantum Information Motivation Qubit vs Bit Sqrt(Not)

More information

Entanglement distillation between solid-state quantum network nodes

Entanglement distillation between solid-state quantum network nodes Entanglement distillation between solid-state quantum network nodes Norbert Kalb, A. A. Reiserer, P. C. Humphreys, J. J. W. Bakermans, S. J. Kamerling, N. H. Nickerson, S. C. Benjamin, D. J. Twitchen,

More information

On-Chip Quantum Nanophotonics: Challenges and Perspectives

On-Chip Quantum Nanophotonics: Challenges and Perspectives On-Chip Quantum Nanophotonics: Challenges and Perspectives Vladimir M. Shalaev Purdue Quantum Center, Purdue University West Lafayette, IN, USA WHY QUANTUM PHOTONICS? Transformative impact: NEXT TECHNOLOGY

More information

Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond

Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond Selected for a Viewpoint in Physics PHYSICAL REVIEW B 8, 3525 2 Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond M. Steiner, P. Neumann,*

More information

Magnetic Resonance in Quantum

Magnetic Resonance in Quantum Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

MIT Department of Nuclear Science & Engineering

MIT Department of Nuclear Science & Engineering 1 MIT Department of Nuclear Science & Engineering Thesis Prospectus for the Bachelor of Science Degree in Nuclear Science and Engineering Nicolas Lopez Development of a Nanoscale Magnetometer Through Utilization

More information

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology 3 E 532 nm 1 2δω 1 Δ ESR 0 1 A 1 3 A 2 Microwaves 532 nm polarization Pulse sequence detection

More information

Sensing remote nuclear spins

Sensing remote nuclear spins Sensing remote nuclear spins Nan Zhao 1, Jan Honert 1, Berhard Schmid 1, Junichi Isoya 2, Mathew Markham 5, Daniel Twitchen 5, Fedor Jelezko 3, Ren-Bao Liu 4, Helmut Fedder 1, Jörg Wrachtrup 1 1. 3rd Institute

More information

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto Quantum error correction on a hybrid spin system Christoph Fischer, Andrea Rocchetto Christoph Fischer, Andrea Rocchetto 17/05/14 1 Outline Error correction: why we need it, how it works Experimental realization

More information

Optically Detected Magnetic Resonance Imaging. Technology, 32000, Haifa, Israel

Optically Detected Magnetic Resonance Imaging. Technology, 32000, Haifa, Israel Optically Detected Magnetic Resonance Imaging Aharon Blank, * Guy Shapiro, + Ran Fischer, + Paz London, + and David Gershoni + * Schulich Faculty of Chemistry, Technion- Israel Institute of Technology,

More information

Magnetometry of random AC magnetic fields using a single Nitrogen- Vacancy center

Magnetometry of random AC magnetic fields using a single Nitrogen- Vacancy center Magnetometry of random AC magnetic fields using a single Nitrogen- Vacancy center Abdelghani Laraoui 1, Jonathan S. Hodges 2, Carlos A. Meriles 1 1 Department of Physics, City College of New York CUNY,

More information

Friday, April 24, Hybrid approaches to quantum information science

Friday, April 24, Hybrid approaches to quantum information science Hybrid approaches to quantum information science Challenge of simultaneous isolation and control of many-body system Challenge of simultaneous isolation and control of many-body system Photons: leading

More information

Coherent manipulation of qubits for quantum hardware : the example of spins in diamond

Coherent manipulation of qubits for quantum hardware : the example of spins in diamond GDR CNRS - Nice, 25 mars 2011 Coherent manipulation of qubits for quantum hardware : the example of spins in diamond Jean-François ROCH Lab. de Photonique Quantique et Moléculaire Ecole Normale

More information

Ultra-High-Sensitivity emiccd Cameras Enable Diamond Quantum Dynamics Research

Ultra-High-Sensitivity emiccd Cameras Enable Diamond Quantum Dynamics Research 2015 Princeton Instruments, Inc. All rights reserved. Ultra-High-Sensitivity emiccd Cameras Enable Diamond Quantum Dynamics Research The PI-MAX4:512EM emiccd camera deliver[s] quantitative, ultra-high-sensitivity

More information

Excited-state spectroscopy of single NV defect in diamond using optically detected magnetic resonance arxiv: v2 [quant-ph] 10 Feb 2009

Excited-state spectroscopy of single NV defect in diamond using optically detected magnetic resonance arxiv: v2 [quant-ph] 10 Feb 2009 Excited-state spectroscopy of single NV defect in diamond using optically detected magnetic resonance arxiv:0807.2379v2 [quant-ph] 10 Feb 2009 P Neumann 1, R Kolesov 1, V Jacques 1, J Beck 1, J Tisler

More information

Side resonances and metastable excited state of NV - center in diamond

Side resonances and metastable excited state of NV - center in diamond Side resonances and metastable excited state of NV - center in diamond Alexander Ivanov 1 and Alexei Ivanov 1 1 Immanuel Kant Baltic Federal University, Nevskogo 14, 236041 Kaliningrad, Russia. aivanov023@gmail.com,

More information

arxiv: v1 [cond-mat.mes-hall] 18 May 2012

arxiv: v1 [cond-mat.mes-hall] 18 May 2012 Detection and control of individual nuclear spins using a weakly coupled electron spin T. H. Taminiau 1, J. J. T. Wagenaar 1, T. van der Sar 1, F. Jelezko 2, V. V. Dobrovitski 3, and R. Hanson 1 1 Kavli

More information

Magnetic Resonance with Single Nuclear-Spin Sensitivity. Alex Sushkov

Magnetic Resonance with Single Nuclear-Spin Sensitivity. Alex Sushkov 1 Magnetic Resonance with Single Nuclear-Spin Sensitivity Alex Sushkov 2 MRI scanner $2 million 7 tons 1500 liters of He 3 4 5 µm magnetic force microscopy (MFM) image of hard drive surface topological

More information

Enhanced solid-state multi-spin metrology using dynamical decoupling

Enhanced solid-state multi-spin metrology using dynamical decoupling Enhanced solid-state multi-spin metrology using dynamical decoupling L. M. Pham, N. Bar-Gill, 2, 3 C. Belthangady, 2 D. Le Sage, 2 P. Cappellaro, 4 M. D. Lukin, 3 A. Yacoby, 3 and R. L. Walsworth 2, 3

More information

Nuclear spin control in diamond. Lily Childress Bates College

Nuclear spin control in diamond. Lily Childress Bates College Nuclear spin control in diamond Lily Childress Bates College nanomri 2010 Hyperfine structure of the NV center: Excited state? Ground state m s = ±1 m s = 0 H = S + gµ S 2 z B z r s r r + S A N I N + S

More information

We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1

We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1 We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1 Flip-flops Bath narrowing Experiment Source Power (dbm) 10.8 10.6 10.4 10.2 0 5

More information

1 Ioffe Physical-Technical Institute, St. Petersburg, Russia

1 Ioffe Physical-Technical Institute, St. Petersburg, Russia Point defects in SiC as a promising basis for single-defect, singlephoton spectroscopy with room temperature controllable quantum states Pavel G. Baranov 1, a, Victor A. Soltamov 1, Alexandra A.Soltamova

More information

Quantum control of proximal spins using nanoscale magnetic resonance imaging

Quantum control of proximal spins using nanoscale magnetic resonance imaging Quantum control of proximal spins using nanoscale magnetic resonance imaging M. S. Grinolds, P. Maletinsky, S. Hong, M. D. Lukin, R. L. Walsworth and A. Yacoby Nature Physics vol 7 (5) pp.1-6, 2011 DOI:

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

arxiv: v1 [quant-ph] 12 Nov 2012

arxiv: v1 [quant-ph] 12 Nov 2012 Dressed-State Polarization Transfer between Bright & Dark Spins in Diamond C. Belthangady 1,2, N. Bar-Gill 1,2, L. M. Pham 3, K. Arai 4, D. Le Sage 1,2, P. Cappellaro 5, and R. L. Walsworth 1,2 1 Harvard-Smithsonian

More information

From trapped ions to macroscopic quantum systems

From trapped ions to macroscopic quantum systems 7th International Summer School of the SFB/TRR21 "Control of Quantum Correlations in Tailored Matter 21-13 July 2014 From trapped ions to macroscopic quantum systems Peter Rabl Yesterday... Trapped ions:

More information

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin M. Loretz, T. Rosskopf, C. L. Degen Department of Physics, ETH Zurich, Schafmattstrasse 6, 8093 Zurich,

More information

Error Corrected Spin-State Readout in a Nanodiamond

Error Corrected Spin-State Readout in a Nanodiamond Error Corrected Spin-State Readout in a Nanodiamond Jeffrey Holzgrafe 1,2, *, Jan Beitner 1, *, Dhiren Kara 1, Helena S. Knowles 1,3, and Mete Atatüre 1, 1 Cavendish Laboratory, University of Cambridge,

More information

Electron spin qubits in P donors in Silicon

Electron spin qubits in P donors in Silicon Electron spin qubits in P donors in Silicon IDEA League lectures on Quantum Information Processing 7 September 2015 Lieven Vandersypen http://vandersypenlab.tudelft.nl Slides with black background courtesy

More information

Nanoscale magnetic imaging with single spins in diamond

Nanoscale magnetic imaging with single spins in diamond Nanoscale magnetic imaging with single spins in diamond Ania Bleszynski Jayich UC Santa Barbara Physics AFOSR Nanoelectronics Review Oct 24, 2016 Single spin scanning magnetometer Variable temperature

More information

arxiv: v3 [quant-ph] 7 Feb 2018

arxiv: v3 [quant-ph] 7 Feb 2018 Dressed-state Generation for Virtual Memories toward Hybrid Quantum Sensing H.Morishita, 1,2, T.Tashima, 1,3, D.Mima, 2 H. Kato, 4 T.Makino, 4 S.Yamasaki, 4 M.Fujiwara, 2 andn. Mizuochi 2, 1 These authors

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov 26 February 2014 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Coherent control of solid state nuclear spin nano-ensembles

Coherent control of solid state nuclear spin nano-ensembles www.nature.com/npjqi ARTICLE OPEN Thomas Unden 1, Nikolas Tomek 1, Timo Weggler 1, Florian Frank 1, Paz London 2, Jonathan Zopes 3, Christian Degen 3, Nicole Raatz 4, Jan Meijer 4, Hideyuki Watanabe 5,

More information

Hyperfine Interaction Estimation of Nitrogen Vacancy Center in Diamond

Hyperfine Interaction Estimation of Nitrogen Vacancy Center in Diamond Hyperfine Interaction Estimation of Nitrogen Vacancy Center in Diamond Yutaka Shikano Massachusetts Institute of Technology Tokyo Institute of Technology In collaboration with Shu Tanaka (Kinki University,

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov October 2018 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Optical Magnetometry Using Nitrogen-Vacancy Centers

Optical Magnetometry Using Nitrogen-Vacancy Centers Optical Magnetometry Using Nitrogen-Vacancy Centers Michael Onyszczak Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, U.S.A. Submitted: August 18, 2017 Revised: October 19,

More information

Optical determination and magnetic manipulation of single nitrogen-vacancy color center in diamond nanocrystal

Optical determination and magnetic manipulation of single nitrogen-vacancy color center in diamond nanocrystal Optical determination and magnetic manipulation of single nitrogen-vacancy color center in diamond nanocrystal Ngoc Diep Lai, Dingwei Zheng, François Treussart, Jean-François Roch To cite this version:

More information

Implantation of labelled single nitrogen vacancy centers in diamond using 15 N

Implantation of labelled single nitrogen vacancy centers in diamond using 15 N Implantation of labelled single nitrogen vacancy centers in diamond using 15 N J. R. Rabeau *, P. Reichart School of Physics, Microanalytical Research Centre, The University of Melbourne, Parkville, Victoria

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nnano.2011.64 Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells L. P. McGuinness, Y. Yan, A. Stacey, D. A. Simpson, L.

More information

Scalable Quantum Photonics with Single Color

Scalable Quantum Photonics with Single Color Scalable Quantum Photonics with Single Color Centers in Silicon Carbide Marina Radulaski,* Matthias Widmann,* Matthias Niethammer, Jingyuan Linda Zhang, Sang-Yun Lee, Torsten Rendler, Konstantinos G. Lagoudakis,

More information

Quantum Informa,on with NV- Centers (QINVC)

Quantum Informa,on with NV- Centers (QINVC) Quantum Informa,on with NV- Centers (QINVC) Jan Meijer (Uni Leipzig) Coopera,on between CEA Saclay France, ENS Cachan France, University StuKgart Germany, University Leipzig Germany, University Warwick

More information

Direct optical interfacing of CVD diamond for deported NV-based sensing experiments

Direct optical interfacing of CVD diamond for deported NV-based sensing experiments Direct optical interfacing of CVD diamond for deported NV-based sensing experiments Ludovic Mayer 1, Thierry Debuisschert *,1 1 Thales Research & Technology, 1 avenue Augustin Fresnel, 91767 Palaiseau

More information

NV Centers in Quantum Information Technology!

NV Centers in Quantum Information Technology! NV Centers in Quantum Information Technology! De-Coherence Protection & Teleportation! Brennan MacDonald-de Neeve, Florian Ott, and Leo Spiegel! The NV Center! Point Defect in Diamond! Interesting Physics

More information

Rydberg excited Calcium Ions for quantum interactions

Rydberg excited Calcium Ions for quantum interactions Warsaw 08.03.2012 Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Igor Lesanovsky Outline 1. The R-ION consortium Who are we? 2. Physics Goals What State are of we the

More information

Room temperature entanglement between distant single spins in diamond.

Room temperature entanglement between distant single spins in diamond. Room temperature entanglement between distant single spins in diamond. F.Dolde 1, I.Jakobi 1, B.Naydenov 1, 2, N.Zhao 1, S.Pezzagna 3, C.Trautmann 4,5, J.Meijer 3, P.Neumann 1, F.Jelezko 1,2, and J.Wrachtrup

More information

Journal Club Presentation Quantum Information Science: Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond [1]

Journal Club Presentation Quantum Information Science: Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond [1] . Journal Club Presentation Quantum Information Science: Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond [1] Silvia Song Soorya Suresh Stella Sun University of Illinois Urbana-Champaign

More information

Quantum Technologies CCEM Workshop March 23 rd, 2017

Quantum Technologies CCEM Workshop March 23 rd, 2017 Quantum Technologies CCEM Workshop March 23 rd, 2017 JT Janssen Welcome to the National Physical Laboratory The first quantum revolution h V n f 2 e 1 The second quantum revolution Superposition Entanglement

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Brussels 26.03.2013 The R-ION Consortium Ferdinand Schmidt-Kaler University of Mainz/Germany Trapped ions Experiment Jochen

More information

Supported by NSF and ARL

Supported by NSF and ARL Ultrafast Coherent Electron Spin Flip in a 2D Electron Gas Carey Phelps 1, Timothy Sweeney 1, Ronald T. Cox 2, Hailin Wang 1 1 Department of Physics, University of Oregon, Eugene, OR 97403 2 Nanophysics

More information

arxiv: v1 [quant-ph] 25 May 2017

arxiv: v1 [quant-ph] 25 May 2017 Atomic-scale structure analysis of a molecule at a (6-nanometer) 3 ice crystal Xi Kong, 1,2,3, Fazhan Shi, 1,2,3, Zhiping Yang, 1, Pengfei Wang, 1,3, Nicole Raatz, 4 arxiv:1705.09201v1 [quant-ph] 25 May

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

SUPPLEMENTARY NOTE 1: ADDITIONAL CHARACTERIZATION OF NANODIAMOND SOLUTIONS AND THE OVERHAUSER EFFECT

SUPPLEMENTARY NOTE 1: ADDITIONAL CHARACTERIZATION OF NANODIAMOND SOLUTIONS AND THE OVERHAUSER EFFECT 1 SUPPLEMENTARY NOTE 1: ADDITIONAL CHARACTERIZATION OF NANODIAMOND SOLUTIONS AND THE OVERHAUSER EFFECT Nanodiamond (ND) solutions were prepared using high power probe sonication and analyzed by dynamic

More information

Optically Detected Magnetic Resonance (ODMR) for Characterization of Carbon Nanostructures

Optically Detected Magnetic Resonance (ODMR) for Characterization of Carbon Nanostructures T i t l e Optically Detected Magnetic Resonance (ODMR) for Characterization of Carbon Nanostructures Pavel G. Baranov A.F. Ioffe Physical-Technical Institute Russian Academy of Sciences International school

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond

Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond up to 600 ms have been demonstrated by performing Carr-Purcell-Meiboom-Gill (CPMG) DD sequences at lower

More information

REPORT DOCUMENTATION PAGE Form Approved OMB NO

REPORT DOCUMENTATION PAGE Form Approved OMB NO REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Axion Detection With NMR

Axion Detection With NMR PRD 84 (2011) arxiv:1101.2691 + to appear Axion Detection With NMR Peter Graham Stanford with Dmitry Budker Micah Ledbetter Surjeet Rajendran Alex Sushkov Dark Matter Motivation two of the best candidates:

More information

Optically-driven nuclear-spin-selective Rabi oscillations of single electron spins in diamond. D. Andrew Golter and Hailin Wang

Optically-driven nuclear-spin-selective Rabi oscillations of single electron spins in diamond. D. Andrew Golter and Hailin Wang Optically-driven nuclear-spin-selective Rabi oscillations of single electron spins in diamond D. Andrew Golter and Hailin Wang Department of Physics and Oregon Center for Optics University of Oregon, Eugene,

More information

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón Martes cuántico Zaragoza, 8 th October 2013 Atomic and molecular spin qubits Fernando LUIS Instituto de Ciencia de Materiales de Aragón Outline Quantum information with spins 1 0 Atomic defects in semiconductors

More information

Confocal Microscope Imaging of Single-Emitter Fluorescence and Photon Antibunching

Confocal Microscope Imaging of Single-Emitter Fluorescence and Photon Antibunching Confocal Microscope Imaging of Single-Emitter Fluorescence and Photon Antibunching By Dilyana Mihaylova Abstract The purpose of this lab is to study different types of single emitters including quantum

More information

resonances in diamond

resonances in diamond Enhanced dual-beam excitation photoelectric detection of NV magnetic resonances in diamond E. Bourgeois a,b, E. Londero c, K. Buczak d, Y. Balasubramaniam b, G. Wachter d, J. Stursa e, K. Dobes f, F. Aumayr

More information

Supplementary Information

Supplementary Information Supplementary Information Magnetic spin imaging under ambient conditions with sub-cellular resolution S. Steinert*, F. Ziem, L. Hall, A. Zappe, M. Schweikert, N. Götz, A. Aird, G. Balasubramanian, L. Hollenberg,

More information

Lecture 18 Luminescence Centers

Lecture 18 Luminescence Centers Lecture 18 Luminescence Centers Read: FS9 (Al2O3 sapphire with different colors) Purdue University Spring 2016 Prof. Yong P. Chen (yongchen@purdue.edu) Lecture 18 (3/24/2016) Slide 1 Basic physics: Vibronic

More information

arxiv: v1 [quant-ph] 12 Nov 2014

arxiv: v1 [quant-ph] 12 Nov 2014 Experimental Realization of Universal Geometric Quantum Gates with Solid- Spins C. Zu 1, W.-B. Wang 1, L. He 1, W.-G. Zhang 1, C.-Y. Dai 1, F. Wang 1, L.-M. Duan 1, 2 1 Center for Quantum Information,

More information

Wide range electrical tunability of single photon emission from chromium based colour centres in diamond

Wide range electrical tunability of single photon emission from chromium based colour centres in diamond Wide range electrical tunability of single photon emission from chromium based colour centres in diamond T. Müller 1, I. Aharonovich 2,3, L. Lombez 1, Y. Alaverdyan 1, A. N. Vamivakas 1, S. Castelletto

More information

Frequency Tunable Atomic Magnetometer based on an Atom Interferometer

Frequency Tunable Atomic Magnetometer based on an Atom Interferometer Frequency Tunable Atomic Magnetometer based on an Atom Interferometer D.A. Braje 1, J.P. Davis 2, C.L. Adler 2,3, and F.A. Narducci 2 Blaubeuren Quantum Optics Summer School 29 July 2013 1 MIT Lincoln

More information

Electron spin resonance spectroscopy of small ensemble paramagnetic spins using a single nitrogen-vacancy center in diamond

Electron spin resonance spectroscopy of small ensemble paramagnetic spins using a single nitrogen-vacancy center in diamond Electron spin resonance spectroscopy of small ensemble paramagnetic spins using a single nitrogen-vacancy center in diamond Chathuranga Abeywardana, 1 Viktor Stepanov, 1 Franklin H. Cho, 2 and Susumu 1,

More information

arxiv: v1 [quant-ph] 31 Aug 2016

arxiv: v1 [quant-ph] 31 Aug 2016 Optically Detected Magnetic Resonances of Nitrogen-Vacancy Ensembles in 13 C Enriched Diamond arxiv:1608.08706v1 [quant-ph] 31 Aug 2016 A. Jarmola, 1, Z. Bodrog, 2 P. Kehayias, 1 M. Markham, 3 J. Hall,

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

Geometric spin echo under zero field

Geometric spin echo under zero field Geometric spin echo under zero field Yuhei Sekiguchi, Yusuke Komura, Shota Mishima, Touta Tanaka, Naeko Niikura and Hideo Kosaka * Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501,

More information

Efficient creation of dipolar coupled nitrogen-vacancy spin qubits in diamond

Efficient creation of dipolar coupled nitrogen-vacancy spin qubits in diamond Efficient creation of dipolar coupled nitrogen-vacancy spin qubits in diamond I Jakobi 1, S A Momenzadeh 1, F Fávaro de Oliveira 1, J Michl 1, F Ziem 1, M Schreck 2, P Neumann 1, A Denisenko 1 and J Wrachtrup

More information

QUANTUM RELAXOMETRIC SPECTROSCOPY USING THE NITROGEN-VACANCY CENTRE IN DIAMOND

QUANTUM RELAXOMETRIC SPECTROSCOPY USING THE NITROGEN-VACANCY CENTRE IN DIAMOND QUANTUM RELAXOMETRIC SPECTROSCOPY USING THE NITROGEN-VACANCY CENTRE IN DIAMOND By James David Antony Wood https://orcid.org/0000-0002-6259-6124 SUBMITTED IN TOTAL FULFILLMENT OF THE REQUIREMENTS FOR THE

More information

The nitrogen-vacancy colour centre in diamond

The nitrogen-vacancy colour centre in diamond The nitrogen-vacancy colour centre in diamond arxiv:1302.3288v1 [cond-mat.mtrl-sci] 14 Feb 2013 Marcus W. Doherty, a,b Neil B. Manson, b Paul Delaney, c Fedor Jelezko, d Jörg Wrachtrup e and Lloyd C.L.

More information

A nitrogen-vacancy spin based molecular structure microscope using multiplexed projection reconstruction.

A nitrogen-vacancy spin based molecular structure microscope using multiplexed projection reconstruction. A nitrogen-vacancy spin based molecular structure microscope using multiplexed projection reconstruction. Andrii Lazariev 1 and Gopalakrishnan Balasubramanian 1,2 *. 1 MPRG Nanoscale Spin Imaging, Max

More information

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Developing Quantum Logic Gates: Spin-Resonance-Transistors Developing Quantum Logic Gates: Spin-Resonance-Transistors H. W. Jiang (UCLA) SRT: a Field Effect Transistor in which the channel resistance monitors electron spin resonance, and the resonance frequency

More information

Measurement Based Quantum Computing, Graph States, and Near-term Realizations

Measurement Based Quantum Computing, Graph States, and Near-term Realizations Measurement Based Quantum Computing, Graph States, and Near-term Realizations Miami 2018 Antonio Russo Edwin Barnes S. E. Economou 17 December 2018 Virginia Polytechnic Institute and State University A.

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

A Diamond Quantum Simulator

A Diamond Quantum Simulator A Diamond Quantum Simulator Martin B Plenio Institute of Theoretical Physics & Center for Quantum-BioSciences Ulm University Quantum Simulation for 2-D Systems Why? Offer unusual physics Anyons, Surface

More information

Pulsed photoelectric coherent manipulation and detection of NV centre spins in diamond

Pulsed photoelectric coherent manipulation and detection of NV centre spins in diamond Pulsed photoelectric coherent manipulation and detection of NV centre spins in diamond Michal Gulka a,b, Emilie Bourgeois a,c, Jaroslav Hruby a, Petr Siyushev d, Georg Wachter e, Friedrich Aumayr f, Philip

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

Optimization of temperature sensitivity using the optically detected magnetic resonance spectrum of a nitrogen-vacancy center ensemble

Optimization of temperature sensitivity using the optically detected magnetic resonance spectrum of a nitrogen-vacancy center ensemble Optimization of temperature sensitivity using the optically detected magnetic resonance spectrum of a nitrogen-vacancy center ensemble Kan Hayashi 1,2,3, Yuichiro Matsuzaki 3, Takashi Taniguchi 4, Takaaki

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR)

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR) Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure Nuclear Magnetic Resonance (NMR) !E = h" Electromagnetic radiation is absorbed when the energy of photon corresponds

More information

Resonantly Enhanced Microwave Photonics

Resonantly Enhanced Microwave Photonics Resonantly Enhanced Microwave Photonics Mankei Tsang Department of Electrical and Computer Engineering Department of Physics National University of Singapore eletmk@nus.edu.sg http://www.ece.nus.edu.sg/stfpage/tmk/

More information

In recent years, quantum information processing (QIP)

In recent years, quantum information processing (QIP) pubs.acs.org/nanolett Optical and Spin Coherence Properties of Nitrogen-Vacancy Centers Placed in a 100 nm Thick Isotopically Purified Diamond Layer Toyofumi Ishikawa, Kai-Mei C. Fu, Charles Santori, Victor

More information

Squeezing manipulation with atoms

Squeezing manipulation with atoms Squeezing manipulation with atoms Eugeniy E. Mikhailov The College of William & Mary March 21, 2012 Eugeniy E. Mikhailov (W&M) Squeezing manipulation LSC-Virgo (March 21, 2012) 1 / 17 About the college

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014 The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA NSF Visiting Committee, April 28-29, 2014 Paola Cappellaro Mikhail Lukin Susanne Yelin Eugene Demler CUA Theory quantum control

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information