Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Size: px
Start display at page:

Download "Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University"

Transcription

1 Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University

2 Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating light with light-storage techniques Quantum applications with atomic ensemble (DLCZ( scheme)

3 The Nobel Prize in Physics 1997 "for development of methods to cool and trap atoms with laser light" Steven Chu USA 1/3 of the prize Claude Cohen- Tannoudji France 1/3 of the prize William D. Phillips USA 1/3 of the prize Stanford University Stanford, CA, USA Collège de France; École Normale Supérieure Paris, France National Institute of Standards and Technology Gaithersburg, MD, USA b b (in Constantine, Algeria) b. 1948

4 Magneto-optical optical trap (MOT) z y σ + σ - (Optical Molasses) x From ultracold atom NTHU Ultracold atoms produced by laser cooling and trapping

5 From ultracold atom NTHU 10 K ultracold atoms T = K t 1 = 10 ms x = 4 mm t 2 = 30 ms

6 Image of ultracold atoms From ultracold atom NTHU

7 --Kerry J. Vahala,, Nature 424, 839 (2003) Single Atom-Light Interaction e g ge Resonant interaction of an atom with light allows coherent manipulation of light and atomic states However, single atom absorption cross-section section ~ 2 Cavity QED : fascinating but not easy experiment!! K. Vahala (Caltech) J.Kimble (Caltech) G.Rempe (MPQ) H.Walter (MPQ) Y.Yamamoto (Stanford)

8 -- M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84,, 5094 (2000 Atomic Ensembles-Light Interaction Interaction of light field and many atoms is strong (collective enhancement), but incoherent (spontaneous emission) Need : techniques for coherent control of resonant optical properties rties Idea : suppress the resonant absorption & coherent control light propagating in many atom system (atomic ensembles) Electromagnetically Induced Transparency (EIT) Coupled propagation of photonic and spin wave : dark-state polaritons

9 probe laser atoms probe laser atoms coupling laser

10 Electromagnetically Induced Transparency (EIT) χ (a) e Coupling Ω c ω ) = N g 2 3 3λ 2 4π p Probe g 1 Ω p Γ 4 ( ) Ω c iγ 4 p iγ EIT ( p 2 p Normalized Re[χ(ω p )] Normalized Im[χ(ω p )] (b) (c) Probe Detuning (Γ) without coupling with coupling -- S. E. Harris, J. E. Field, and A. Imamoğlu, Phys. Rev. Lett. 64,, 1107 (1990)

11 EIT : Quantum Interference e e e e Coupling g 2 Probe g 1 = g 2 path i g 1 g 2 path ii Transition Amplitudes : A i A ii g 1 g 2 g 1 path iii... A iii... Transition probability of g 1 e = A i + A ii + A iii EIT is the destructive interference between A i, A ii, A iii The probe absorption is suppressed. iii,...

12 EIT : dark-state picture Coherent Population Trapping (CPT) 3 H 3 + D = 0 probe H coupling 3 Ω c 2 1 Ωp D B = = Ω Ω Ω 2 c Ω 2 c c + Ω p + Ω 2 p 2 p Ω Ω Ω 2 c Ω 2 c p + Ω c + Ω 2 p 2 p 2 2 Ω 2 2 c Ω p D + B 3 3 Ω c Ω p EIT Condition : Ω p << Ω c Ω c Ωp 2 D B 1

13

14 EIT experiment in cold 87 Rb atoms 5P 3/2 F'=3 F'=2 F'=1 m = S 1/2 F=2 F=1 Trapping Repumping Coupling Probe C P P C P C Probe BK7 M Master DL M AOM M Block OSC ECDL DL Coupling BS BK7 EOM Block AOM M M M M M BS λ/4 M Atoms Aperture PD

15 EIT Spectrum Probe Transmission Probe Transmission 1 Experiment Theory Probe Detuning (Γ) 5 e p Coupling Probe g 2 g 1 Sweep rate = 2.5 /ms Ω c = 0.4, = = MHz V dω c = g dk dn n + ω dω -- Y. F. Chen, G. C. Pan, and I. A. Yu, Phys. Rev. A 69,, (2004).

16 Slow Light in cold Na atoms Hau group : Cover of Nature associated with

17 --Y. F. Chen, Y. M. Kao, W. H. Lin, and I. A. Yu, Phys. Rev. A 74,, (2006) Slow Light in cold 87 Rb atoms Probe Transmission Input light pulse Slow light pulse Fitting curve Delay time ~ 2 s V g ~ 500 m/s T D = ( Γ Ω 2 c ) nσl Time (µs)

18 Can we stop or trap light?

19 Dark-State Polaritons : Coupled propagation of photonic and spin wave Strong coupling field ( ( 0) : Polaritons : purely photonic wave Weak coupling field ( ( /2) : Polaritons : larger parts in spin wave

20 Light Storage and Retrieval (Experiment) Cold atoms Hot atoms C. Liu t al. Nature 409, 490 (2001) D. Phillips et al.. PRL 86, 783 (2001)

21 Experiment : Atomic ensembles Cold atoms Hot atoms Yu s s group U. Tsing Hua Kimble s s group Caltech Walsworth s group U. Harvard

22 Light Storage and Retrieval in cold 87 Rb atoms e Probe Transmittance 1 (a) 0 1 (b) Input probe pulse Slow light pulse Light storage Coupling pulse Probe Write g 1 e Coupling g 2 Read Time (µs) Storage time ~ 15 s Spin Coherence g 1 g 2

23 Recent Development : Extending storage time Solid material : Pr 3+ doped Y 2 SiO 5 Pr : Praseodymium ( ( ) Storage time ~ 1 s

24 Phase? & How to measure?

25 -- Y. F. Chen, Y. C. Liu, Z. H. Tsai, S. H. Wang, and I. A. Yu, Phys. Rev. A 72,, (2005 Beat-Note Interferometer From Laser ω a AOM E z Zeroth-Order Beam PD1 Reference Beat Note OSC Beam 1 Probe Beat Note BS Atoms PD2 Beam 2 First-Order Beam E f (t) M Reference Beat Note: E z2 + E f (t) 2 +2E z E f (t)cos(ω a t+ϕ r ) Probe Beat Note: E z2 + E f (t) 2 +2E z E f (t)cos(ω a t+ϕ p + ϕ) ϕ r and ϕ p are the phases that result from the optical paths, the AOM switching, or other factors. ϕ is the phase shift induced by the atoms. Although ϕ r and ϕ p vary from one pulse to another, their difference is always fixed.

26 Phase Coherence of Storage and Retrieval Probe Transmission (arb. units) (b) (a) Quantum Storage Beat Note (arb. units) (c) (d) (e) Time (µs)

27 Low-Light Light-Level Level Phase Measurement Phase Shift (radians) Probe Transmission (µv) (a) Probe Detuning (Γ) Time (µs) (b) Phase measurement of weak probe pulses with peak power ~ 400 pw Beat Note (mv) Time (µs)

28 Manipulating light via light-storage techniques

29 Width manipulation of stored light pulse e Probe Write g 1 e Coupling g 2 Spin Coherence Read Probe Transmission (a) (b) (c) (d) g 1 g Time (µs)

30 -- Y. F. Chen, S. H. Wang, C. Y. Wang, and I. A. Yu, Phys. Rev. A 72,, (2005 Width manipulation of stored light pulse τ' (µs) φ (radians) (1/Ω c R ) 2 (Γ -2 ) Ω c R (Γ)

31 Polarization manipulation of stored light pulse Idea! 87 Rb 5P 3/2 F'=2 m= m= (d) 0.3 5S 1/2 F=2 Probe F=1 AOM AOM Coupling 2 s-polarization AOM Coupling 1 p-polarization Coupling 1 Input Probe M PBS BS BS M P λ/4 Atoms Retrieved Probe PD1 PD4 M λ/4 Coupling 2 PD3 PBS PD2 Probe Transmission (e) (f) Time (µs) Ω c (Γ)

32 -- Y. F. Chen, P. C. Kuan,, S. H. Wang, C. Y. Wang, and I. A. Yu, Opt. Lett. 23,, 3511 (2006 Wavelength manipulation of stored light pulse 87 Rb 5P 3/2 F'=2 5S 1/2 F=2 Idea! Coupling Input Probe Coupling Retrieved Probe Probe Transmittance (a) Time (µs) (b) (c) F=1 Beat Note Time (µs) Time (µs)

33 Can we manipulate the phase of stored light pulse?

34 Cross-Phase Phase-Modulation (XPM) based on EIT Theory

35 Cross-Phase Phase-Modulation (XPM) based on EIT Experiment Phase shift ~ 7.5

36 Phase manipulation of stored light pulse Idea! 87 Rb 5P 3/2 F'=3 F'=2 F'=1 F'=0 Coupling Signal Ω c Probe Ω p Ω φ = 2 2 = Γ Ω + 4 α 2 2 Γ Ω 2 Γ + 4 τ τ 5S 1/2 F=2 F=1 (a) (b) 2 Ground-State Coherence 1 φ /α = Γ Interaction of photonic field and atomic spin state!!

37 Low-light light-level level cross-phase modulation based on stored light pulses Probe Transmission 1 0 (b) 1 (a) Time (µs)

38 -- Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, Phys. Rev. Lett. 96,, (2006 Low-light light-level level cross-phase modulation based on stored light pulses φ (radians) Energy Transmission (a) 1.0 (c) (Γ) φ (radians) Energy Transmission (b) (d) Ω (Γ) 6 photons per 2 /2π φ ~ /4 ~ ~ 0.43 φ / α = Γ ~ (Γ) Ω (Γ)

39 Cavity QED : Single-photon π-phase gate? Idea! T s : Spin coherence lifetime Cavity Atoms e phase shift Signal photon Probe photon g 1 g 2 Coupling Retrieved photon φ /α ~ 3.14 / φ / α = Γ 0.46 ~ 6.8 ~ 6. 8Γ φ = α = 2 Ω τ ~ 0.11 Γ Ω Γ τ ~ Γ Single-photon π-phase gate is possible! But still need more efforts!!!

40 Quantum applications with atomic ensemble (DLCZ scheme)

41 L.-M. Duan,, M. D. Lukin,, J. I. Cirac,, and P. Zoller,, Nature 414,, 413 (2001 DLCZ Scheme Write laser Stokes photon Click

42 Recent Development : Single-photon storage M. D. Eisaman et al., Nature (London) 438,, 837 (2005)

43 Summery and Outlook Storage and Retrieval of Photonic Information Phase coherent of light storage and retrieval Manipulating the Optical Properties of Stored Light Pulses Manipulating the retrieved width of stored light pulses Wavelength and Polarization manipulation of retrieved light pulses Light-Storage Cross-Phase Modulation (XPM) Demonstration of light-storage XPM scheme Outlook Storage & Manipulation of nonclassical photon pulse (Quantum Memory) Single-photon switching & Single-photon -phase gate (Cavity QED + Atomic Ensemble) Quantum networks and communications with atomic ensembles (DLCZ Scheme) Quantum memory and manipulation in a solid

44 Thanks to (NTHU) Collaborations : (NCUE) (IAMS) (NCKU)

45 Thank you for your attention : ; : : Group member 2 ; 2 Group meeting ) 2) 3)

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Storing and manipulating quantum information using atomic ensembles

Storing and manipulating quantum information using atomic ensembles Storing and manipulating quantum information using atomic ensembles Mikhail Lukin Physics Department, Harvard University Introduction: Rev. Mod. Phys. 75, 457 (2003) Plan: Basic concepts and ideas Application

More information

Quantum Information Storage with Slow and Stopped Light

Quantum Information Storage with Slow and Stopped Light Quantum Information Storage with Slow and Stopped Light Joseph A. Yasi Department of Physics, University of Illinois at Urbana-Champaign (Dated: December 14, 2006) Abstract This essay describes the phenomena

More information

Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid

Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid J.J Londell, E. Fravel, M.J. Sellars and N.B. Manson, Phys. Rev. Lett. 95 063601 (2005)

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

arxiv:quant-ph/ v3 17 Nov 2003

arxiv:quant-ph/ v3 17 Nov 2003 Stationary Pulses of Light in an Atomic Medium M. Bajcsy 1,2, A. S. Zibrov 1,3,4 and M. D. Lukin 1 1 Physics Department, Harvard University, Cambridge, MA 02138, USA 2 Division of Engineering and Applied

More information

Optimizing stored light efficiency in vapor cells

Optimizing stored light efficiency in vapor cells Invited Paper Optimizing stored light efficiency in vapor cells Irina Novikova a, Mason Klein a,b, David F. Phillips a, Ronald L. Walsworth a,b a Harvard-Smithsonian Center for Astrophysics, 6 Garden St.,

More information

Quantum Communication with Atomic Ensembles

Quantum Communication with Atomic Ensembles Quantum Communication with Atomic Ensembles Julien Laurat jlaurat@caltech.edu C.W. Chou, H. Deng, K.S. Choi, H. de Riedmatten, D. Felinto, H.J. Kimble Caltech Quantum Optics FRISNO 2007, February 12, 2007

More information

Cavity decay rate in presence of a Slow-Light medium

Cavity decay rate in presence of a Slow-Light medium Cavity decay rate in presence of a Slow-Light medium Laboratoire Aimé Cotton, Orsay, France Thomas Lauprêtre Fabienne Goldfarb Fabien Bretenaker School of Physical Sciences, Jawaharlal Nehru University,

More information

Slow and stored light using Rydberg atoms

Slow and stored light using Rydberg atoms Slow and stored light using Rydberg atoms Julius Ruseckas Institute of Theoretical Physics and Astronomy, Vilnius University, Lithuania April 28, 2016 Julius Ruseckas (Lithuania) Rydberg slow light April

More information

Ph.D. in Physics, Massachusetts Institute of Technology (1993). B.S. in Physics, National Tsing Hua University (1984).

Ph.D. in Physics, Massachusetts Institute of Technology (1993). B.S. in Physics, National Tsing Hua University (1984). Ite A. Yu Education Ph.D. in Physics, Massachusetts Institute of Technology (1993). B.S. in Physics, National Tsing Hua University (1984). Employment 2005-present Professor of Physics, National Tsing Hua

More information

Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms

Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms Jinghui Wu 1, Yang Liu 1, Dong-Sheng Ding 1, Zhi-Yuan Zhou, Bao-Sen Shi, and Guang-Can Guo Key Laboratory

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

Atomic vapor quantum memory for a photonic polarization qubit

Atomic vapor quantum memory for a photonic polarization qubit Atomic vapor quantum memory for a photonic polarization qubit Young-Wook Cho 1,2 and Yoon-Ho Kim 1,3 1 Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea

More information

Squeezing manipulation with atoms

Squeezing manipulation with atoms Squeezing manipulation with atoms Eugeniy E. Mikhailov The College of William & Mary March 21, 2012 Eugeniy E. Mikhailov (W&M) Squeezing manipulation LSC-Virgo (March 21, 2012) 1 / 17 About the college

More information

arxiv:quant-ph/ v1 24 Jun 2005

arxiv:quant-ph/ v1 24 Jun 2005 Electromagnetically induced transparency for Λ - like systems with a structured continuum A. Raczyński, M. Rzepecka, and J. Zaremba Instytut Fizyki, Uniwersytet Miko laja Kopernika, ulica Grudzi adzka

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Atomic Coherent Trapping and Properties of Trapped Atom

Atomic Coherent Trapping and Properties of Trapped Atom Commun. Theor. Phys. (Beijing, China 46 (006 pp. 556 560 c International Academic Publishers Vol. 46, No. 3, September 15, 006 Atomic Coherent Trapping and Properties of Trapped Atom YANG Guo-Jian, XIA

More information

Stored light and EIT at high optical depths

Stored light and EIT at high optical depths Stored light and EIT at high optical depths M. Klein a,b, Y. Xiao a, M. Hohensee a,b, D. F. Phillips a, and R. L. Walsworth a,b a Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, 02138 USA b

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

LETTERS. Electromagnetically induced transparency with tunable single-photon pulses

LETTERS. Electromagnetically induced transparency with tunable single-photon pulses Vol 438 8 December 2005 doi:10.1038/nature04327 Electromagnetically induced transparency with tunable single-photon pulses M. D. Eisaman 1, A. André 1, F. Massou 1, M. Fleischhauer 1,2,3, A. S. Zibrov

More information

Few photon switching with slow light in hollow fiber

Few photon switching with slow light in hollow fiber Few photon switching with slow light in hollow fiber The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher

More information

Storage and retrieval of single photons transmitted between remote quantum. memories

Storage and retrieval of single photons transmitted between remote quantum. memories Storage and retrieval of single photons transmitted between remote quantum memories T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T.A.B. Kennedy, and A. Kuzmich (Dated: February 1, 28 An

More information

Quantum enhanced magnetometer and squeezed state of light tunable filter

Quantum enhanced magnetometer and squeezed state of light tunable filter Quantum enhanced magnetometer and squeezed state of light tunable filter Eugeniy E. Mikhailov The College of William & Mary October 5, 22 Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 22 / 42 Transition

More information

Soliton-train storage and retrieval in Λ-type three-level atom systems

Soliton-train storage and retrieval in Λ-type three-level atom systems The 4th editi of the African school of physics fundamental physics N-linear Solit-train storage retrieval in Λ-type three-level atom systems Presented by Under the supervisi of Dr. Diké A. Moïse N-linear

More information

Quantum optics and squeezed states of light

Quantum optics and squeezed states of light Quantum optics and squeezed states of light Eugeniy E. Mikhailov The College of William & Mary June 15, 2012 Eugeniy E. Mikhailov (W&M) Quantum optics June 15, 2012 1 / 44 From ray optics to semiclassical

More information

JQI summer school. Aug 12, 2013 Mohammad Hafezi

JQI summer school. Aug 12, 2013 Mohammad Hafezi JQI summer school Aug 12, 2013 Mohammad Hafezi Electromagnetically induced transparency (EIT) (classical and quantum picture) Optomechanics: Optomechanically induced transparency (OMIT) Ask questions!

More information

Observation of the nonlinear phase shift due to single post-selected photons

Observation of the nonlinear phase shift due to single post-selected photons Observation of the nonlinear phase shift due to single post-selected photons Amir Feizpour, 1 Matin Hallaji, 1 Greg Dmochowski, 1 and Aephraim M. Steinberg 1, 2 1 Centre for Quantum Information and Quantum

More information

Slow and Fast Light in Room-Temperature Solids: Fundamental and Applications. Robert W. Boyd

Slow and Fast Light in Room-Temperature Solids: Fundamental and Applications. Robert W. Boyd Slow and Fast Light in Room-Temperature Solids: Fundamental and Applications Robert W. Boyd The Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY 14627

More information

EE-LE E OPTI T C A L S Y TE

EE-LE E OPTI T C A L S Y TE 1> p p γ 1 γ > 3 c 3> p p +> > 1> THREE-LEVEL OPTICAL SYSTEMS . THREE-LEVEL OPTICAL SYSTEMS () OUTLINE.1 BASIC THEORY.1 STIRAP: stimulated raman adiabatic passage. EIT: electromagnetically induced transparency.3

More information

Quantum control of light using electromagnetically induced transparency

Quantum control of light using electromagnetically induced transparency INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS J. Phys. B: At. Mol. Opt. Phys. 38 (2005) S589 S604 doi:10.1088/0953-4075/38/9/010 Quantum control of light using

More information

Cavity QED: Quantum Control with Single Atoms and Single Photons. Scott Parkins 17 April 2008

Cavity QED: Quantum Control with Single Atoms and Single Photons. Scott Parkins 17 April 2008 Cavity QED: Quantum Control with Single Atoms and Single Photons Scott Parkins 17 April 2008 Outline Quantum networks Cavity QED - Strong coupling cavity QED - Network operations enabled by cavity QED

More information

Inhibition of Two-Photon Absorption in a Four-Level Atomic System with Closed-Loop Configuration

Inhibition of Two-Photon Absorption in a Four-Level Atomic System with Closed-Loop Configuration Commun. Theor. Phys. Beijing, China) 47 007) pp. 916 90 c International Academic Publishers Vol. 47, No. 5, May 15, 007 Inhibition of Two-Photon Absorption in a Four-Level Atomic System with Closed-Loop

More information

THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES

THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES The purpose of this problem is to develop a simple theory to understand the so-called laser cooling and optical molasses phenomena. This

More information

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Cooperative atom-light interaction in a blockaded Rydberg ensemble Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation

More information

Large Cross-Phase Modulations at the Few-Photon Level

Large Cross-Phase Modulations at the Few-Photon Level Large Cross-Phase Modulations at the Few-Photon Level Zi-Yu Liu, 1 Yi-Hsin Chen, Yen-Chun Chen, 1 Hsiang-Yu Lo, 1 Pin-Ju Tsai, 1 Ite A. Yu, Ying-Cheng Chen, 3 and Yong-Fan Chen, 1 1 Department of Physics,

More information

Generation of squeezed vacuum with hot and ultra-cold Rb atoms

Generation of squeezed vacuum with hot and ultra-cold Rb atoms Generation of squeezed vacuum with hot and ultra-cold Rb atoms Eugeniy E. Mikhailov, Travis Horrom, Irina Novikova Salim Balik 2, Arturo Lezama 3, Mark Havey 2 The College of William & Mary, USA 2 Old

More information

Vacuum-Induced Transparency

Vacuum-Induced Transparency Vacuum-Induced Transparency The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Tanji-Suzuki, H., W. Chen,

More information

Quantum Networks with Atomic Ensembles

Quantum Networks with Atomic Ensembles Quantum Networks with Atomic Ensembles Daniel Felinto* dfelinto@df.ufpe.br C.W. Chou, H. Deng, K.S. Choi, H. de Riedmatten, J. Laurat, S. van Enk, H.J. Kimble Caltech Quantum Optics *Presently at Departamento

More information

arxiv:quant-ph/ v1 17 Aug 2000

arxiv:quant-ph/ v1 17 Aug 2000 Wave Packet Echoes in the Motion of Trapped Atoms F.B.J. Buchkremer, R. Dumke, H. Levsen, G. Birkl, and W. Ertmer Institut für Quantenoptik, Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany

More information

Laser-cooling and trapping (some history) Theory (neutral atoms) Hansch & Schawlow, 1975

Laser-cooling and trapping (some history) Theory (neutral atoms) Hansch & Schawlow, 1975 Laser-cooling and trapping (some history) Theory (neutral atoms) Hansch & Schawlow, 1975 Laser-cooling and trapping (some history) Theory (neutral atoms) Hansch & Schawlow, 1975 (trapped ions) Wineland

More information

Niels Bohr Institute Copenhagen University. Eugene Polzik

Niels Bohr Institute Copenhagen University. Eugene Polzik Niels Bohr Institute Copenhagen University Eugene Polzik Ensemble approach Cavity QED Our alternative program (997 - ): Propagating light pulses + atomic ensembles Energy levels with rf or microwave separation

More information

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22 Quantum Mechanica Peter van der Straten Universiteit Utrecht Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 1 / 22 Matrix methode Peter van der Straten (Atom Optics) Quantum Mechanica

More information

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky MEMORY FOR LIGHT as a quantum black box M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process tomography

More information

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85. Amrozia Shaheen

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85. Amrozia Shaheen ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85 Amrozia Shaheen Electromagnetically induced transparency The concept of EIT was first given by Harris et al in 1990. When a strong coupling laser

More information

Generation, Storage, and Retrieval of Nonclassical States of Light using Atomic Ensembles

Generation, Storage, and Retrieval of Nonclassical States of Light using Atomic Ensembles Generation, Storage, and Retrieval of Nonclassical States of Light using Atomic Ensembles A thesis presented by Matthew D. Eisaman to The Department of Physics in partial fulfillment of the requirements

More information

Functional quantum nodes for entanglement distribution

Functional quantum nodes for entanglement distribution 61 Chapter 4 Functional quantum nodes for entanglement distribution This chapter is largely based on ref. 36. Reference 36 refers to the then current literature in 2007 at the time of publication. 4.1

More information

Ultracold atoms and molecules

Ultracold atoms and molecules Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop s.knoop@vu.nl VU, June 014 1 Ultracold atoms laser cooling evaporative cooling BEC Bose-Einstein condensation atom trap: magnetic

More information

Supported by NSF and ARL

Supported by NSF and ARL Ultrafast Coherent Electron Spin Flip in a 2D Electron Gas Carey Phelps 1, Timothy Sweeney 1, Ronald T. Cox 2, Hailin Wang 1 1 Department of Physics, University of Oregon, Eugene, OR 97403 2 Nanophysics

More information

Quantum Simulation with Rydberg Atoms

Quantum Simulation with Rydberg Atoms Hendrik Weimer Institute for Theoretical Physics, Leibniz University Hannover Blaubeuren, 23 July 2014 Outline Dissipative quantum state engineering Rydberg atoms Mesoscopic Rydberg gates A Rydberg Quantum

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

The physics of cold atoms from fundamental problems to time measurement and quantum technologies. Michèle Leduc

The physics of cold atoms from fundamental problems to time measurement and quantum technologies. Michèle Leduc The physics of cold atoms from fundamental problems to time measurement and quantum technologies Michèle Leduc Lima, 20 October 2016 10 5 Kelvin 10 4 Kelvin Surface of the sun 10 3 Kelvin 10 2 Kelvin earth

More information

The amazing story of Laser Cooling and Trapping

The amazing story of Laser Cooling and Trapping The amazing story of Laser Cooling and Trapping following Bill Phillips Nobel Lecture http://www.nobelprize.org/nobel_prizes/physics/ laureates/1997/phillips-lecture.pdf Laser cooling of atomic beams 1

More information

A Review of Slow Light Physics and Its Applications

A Review of Slow Light Physics and Its Applications A Review of Slow Light Physics and Its Applications Stéphane Virally École Polytechnique de Montréal, 2500 chemin de Polytechnique, Montréal, QC H3T 1J4, Canada stephane.virally@polymtl.ca Abstract: An

More information

EIT and diffusion of atomic coherence

EIT and diffusion of atomic coherence Journal of Modern Optics Vol. 52, No. 16, 10 November 2005, 2381 2390 EIT and diffusion of atomic coherence I. NOVIKOVA*y, Y. XIAOy, D. F. PHILLIPSy and R. L. WALSWORTHyz yharvard-smithsonian Center for

More information

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 425 430 c International Academic Publishers Vol. 42, No. 3, September 15, 2004 Absorption-Amplification Response with or Without Spontaneously Generated

More information

VIC Effect and Phase-Dependent Optical Properties of Five-Level K-Type Atoms Interacting with Coherent Laser Fields

VIC Effect and Phase-Dependent Optical Properties of Five-Level K-Type Atoms Interacting with Coherent Laser Fields Commun. Theor. Phys. (Beijing China) 50 (2008) pp. 741 748 c Chinese Physical Society Vol. 50 No. 3 September 15 2008 VIC Effect and Phase-Dependent Optical Properties of Five-Level K-Type Atoms Interacting

More information

Applications of Atomic Ensembles In Distributed Quantum Computing

Applications of Atomic Ensembles In Distributed Quantum Computing Applications of Atomic Ensembles In Distributed Quantum Computing Author Zwierz, Marcin, Kok, Pieter Published 2010 Journal Title International Journal of Quantum Information DOI https://doi.org/10.1142/s0219749910006046

More information

Atom-light superposition oscillation and Ramsey-like atom-light interferometer

Atom-light superposition oscillation and Ramsey-like atom-light interferometer Atom-light superposition oscillation and Ramsey-like atom-light interferometer Cheng Qiu 1, Shuying Chen 1, L. Q. Chen 1,, Bing Chen 1, Jinxian Guo 1, Z. Y. Ou 1,2,, and Weiping Zhang 1, 1 Department of

More information

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Eugeniy E. Mikhailov The College of William & Mary, USA New Laser Scientists, 4 October 04 Eugeniy E. Mikhailov

More information

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK Table of contents 1. Motivation 2. Quantum memory 3. Implementations in general 4. Implementation based on EIT in detail QUBIT STORAGE IN ATOMIC ENSEMBLES

More information

A Stern-Gerlach experiment for slow light

A Stern-Gerlach experiment for slow light 1 A Stern-Gerlach experiment for slow light Leon Karpa and Martin Weitz* Physikalisches Institut der Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany * Present address: Center of

More information

A millisecond quantum memory for scalable quantum networks

A millisecond quantum memory for scalable quantum networks PUBLISHED ONLINE: 7 DECEMBER 28 DOI: 1.138/NPHYS113 A millisecond quantum memory for scalable quantum networks Bo Zhao 1 *, Yu-Ao Chen 1,2 *, Xiao-Hui Bao 1,2, Thorsten Strassel 1, Chih-Sung Chuu 1, Xian-Min

More information

[TO APPEAR IN LASER PHYSICS] Quantum interference and its potential applications in a spectral hole-burning solid

[TO APPEAR IN LASER PHYSICS] Quantum interference and its potential applications in a spectral hole-burning solid [TO APPEAR IN LASER PHYSICS] Quantum interference and its potential applications in a spectral hole-burning solid Byoung S. Ham, 1, Philip R. Hemmer, 2 Myung K. Kim, 3 and Selim M. Shahriar 1 1 Research

More information

Quantum networking with atomic ensembles. Dzmitry Matsukevich

Quantum networking with atomic ensembles. Dzmitry Matsukevich Quantum networking with atomic ensembles A Thesis Presented to The Academic Faculty by Dzmitry Matsukevich In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy School of Physics

More information

Limits of the separated-path Ramsey atom interferometer

Limits of the separated-path Ramsey atom interferometer J. Phys. B: At. Mol. Opt. Phys. 3 (1999) 5033 5045. Printed in the UK PII: S0953-4075(99)06844-3 Limits of the separated-path Ramsey atom interferometer R M Godun,CLWebb, P D Featonby, M B d Arcy, M K

More information

Roles of Atomic Injection Rate and External Magnetic Field on Optical Properties of Elliptical Polarized Probe Light

Roles of Atomic Injection Rate and External Magnetic Field on Optical Properties of Elliptical Polarized Probe Light Commun. Theor. Phys. 65 (2016) 57 65 Vol. 65, No. 1, January 1, 2016 Roles of Atomic Injection Rate and External Magnetic Field on Optical Properties of Elliptical Polarized Probe Light R. Karimi, S.H.

More information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan Coherence and optical electron spin rotation in a quantum dot Sophia Economou Collaborators: NRL L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan T. L. Reinecke, Naval Research Lab Outline

More information

SUB-NATURAL-WIDTH N-RESONANCES OBSERVED IN LARGE FREQUENCY INTERVAL

SUB-NATURAL-WIDTH N-RESONANCES OBSERVED IN LARGE FREQUENCY INTERVAL SUB-NATURAL-WIDTH N-RESONANCES OBSERVED IN LARGE FREQUENCY INTERVAL A. KRASTEVA 1, S. GATEVA 1, A. SARGSYAN 2, D. SARKISYAN 2 AND S. CARTALEVA 1 1 Institute of Electronics, Bulgarian Academy of Sciences,

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

IPT 5340 (PHYS 6840) Quantum Optics. Ray-Kuang Lee. Institute of Photonics Technologies Department of Electrical Engineering and Department of Physics

IPT 5340 (PHYS 6840) Quantum Optics. Ray-Kuang Lee. Institute of Photonics Technologies Department of Electrical Engineering and Department of Physics IPT5340, Spring 09 p. 1/35 IPT 5340 (PHYS 6840) Quantum Optics Ray-Kuang Lee Institute of Photonics Technologies Department of Electrical Engineering and Department of Physics National Tsing-Hua University,

More information

Laser system for EIT spectroscopy of cold Rb atoms

Laser system for EIT spectroscopy of cold Rb atoms Laser system for EIT spectroscopy of cold Rb atoms K. Kowalski a K. Vaseva b, S. Gateva b, M. Głódź a, L. Petrov b, J. Szonert a a Institute of Physics, PAS, Al. Lotników 32/46, 02-668 Warsaw, Poland b

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Introduction to Cavity QED

Introduction to Cavity QED Introduction to Cavity QED Fabian Grusdt March 9, 2011 Abstract This text arose in the course of the Hauptseminar Experimentelle Quantenoptik in WS 2010 at the TU Kaiserslautern, organized by Prof. Ott

More information

Theory of Light Atomic Ensemble Interactions: Entanglement, Storage, and Retrieval. Stewart D. Jenkins

Theory of Light Atomic Ensemble Interactions: Entanglement, Storage, and Retrieval. Stewart D. Jenkins Theory of Light Atomic Ensemble Interactions: Entanglement, Storage, and Retrieval A Thesis Presented to The Academic Faculty by Stewart D. Jenkins In Partial Fulfillment of the Requirements for the Degree

More information

Squeezed states of light - generation and applications

Squeezed states of light - generation and applications Squeezed states of light - generation and applications Eugeniy E. Mikhailov The College of William & Mary Fudan, December 24, 2013 Eugeniy E. Mikhailov (W&M) Squeezed light Fudan, December 24, 2013 1 /

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Single photon nonlinear optics in photonic crystals

Single photon nonlinear optics in photonic crystals Invited Paper Single photon nonlinear optics in photonic crystals Dirk Englund, Ilya Fushman, Andrei Faraon, and Jelena Vučković Ginzton Laboratory, Stanford University, Stanford, CA 94305 ABSTRACT We

More information

Generating Single Photons on Demand

Generating Single Photons on Demand Vladan Vuletic Generating Single Photons on Demand I n optical signal transmission, binary signals are encoded in pulses of light traveling along optical fibers. An undesirable consequence is that if somebody

More information

Laser cooling and trapping

Laser cooling and trapping Laser cooling and trapping William D. Phillips wdp@umd.edu Physics 623 14 April 2016 Why Cool and Trap Atoms? Original motivation and most practical current application: ATOMIC CLOCKS Current scientific

More information

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers Colloquium of the Research Training Group 1729, Leibniz University Hannover, Germany, November 8, 2012 Arno Rauschenbeutel Vienna Center

More information

Memory-built-in quantum teleportation with photonic and

Memory-built-in quantum teleportation with photonic and Memory-built-in quantum teleportation with photonic and atomic qubits Yu-Ao Chen,2, Shuai Chen, Zhen-Sheng Yuan,2, Bo Zhao, Chih-Sung Chuu, Jörg Schmiedmayer 3 & Jian-Wei Pan,2 Physikalisches Institut,

More information

Colloquium: Trapping and manipulating photon states in atomic ensembles

Colloquium: Trapping and manipulating photon states in atomic ensembles REVIEWS OF MODERN PHYSICS, VOLUME 75, APRIL 2003 Colloquium: Trapping and manipulating photon states in atomic ensembles M. D. Lukin Physics Department, Harvard University, Cambridge, Massachusetts 02138

More information

Zeno logic gates using micro-cavities

Zeno logic gates using micro-cavities Zeno logic gates using micro-cavities J.D. Franson, B.C. Jacobs, and T.B. Pittman Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 The linear optics approach to quantum computing

More information

Cavity QED in the Regime of Strong Coupling with Chip-Based Toroidal Microresonators

Cavity QED in the Regime of Strong Coupling with Chip-Based Toroidal Microresonators Cavity QED in the Reime of Stron Couplin with Chip-Based Toroidal Microresonators Barak Dayan, Takao oki, E. Wilcut,. S. Parkins, W. P. Bowen, T. J. Kippenber, K. J. Vahala, and H. J. Kimble California

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Laser History. In 1916, Albert Einstein predicted the existence of stimulated emission, based on statistical physics considerations.

Laser History. In 1916, Albert Einstein predicted the existence of stimulated emission, based on statistical physics considerations. Laser History In 1916, Albert Einstein predicted the existence of stimulated emission, based on statistical physics considerations. Einstein, A., Zur Quantentheorie der Strahlung, Physikalische Gesellschaft

More information

Pulse retrieval and soliton formation in a nonstandard scheme for dynamic electromagnetically induced transparency

Pulse retrieval and soliton formation in a nonstandard scheme for dynamic electromagnetically induced transparency Pulse retrieval and soliton formation in a nonstandard scheme for dynamic electromagnetically induced transparency Amy Peng, Mattias Johnsson, and Joseph J. Hope Centre for Quantum Atom Optics, Department

More information

Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light

Slowing Down the Speed of Light Applications of Slow and Fast Light Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester with Mathew Bigelow, Nick Lepeshkin,

More information

Dynamical Localization and Delocalization in a Quasiperiodic Driven System

Dynamical Localization and Delocalization in a Quasiperiodic Driven System Dynamical Localization and Delocalization in a Quasiperiodic Driven System Hans Lignier, Jean Claude Garreau, Pascal Szriftgiser Laboratoire de Physique des Lasers, Atomes et Molécules, PHLAM, Lille, France

More information

arxiv:quant-ph/ v1 2 Oct 2003

arxiv:quant-ph/ v1 2 Oct 2003 Slow Light in Doppler Broadened Two level Systems G. S. Agarwal and Tarak Nath Dey Physical Research Laboratory, Navrangpura, Ahmedabad-38 9, India (October 31, 218) We show that the propagation of light

More information

Investigation of two-color magneto-optical trap with cesium 6S 1/2-6P 3/2-7S 1/2 ladder-type system

Investigation of two-color magneto-optical trap with cesium 6S 1/2-6P 3/2-7S 1/2 ladder-type system Investigation of two-color magneto-optical trap with cesium 6S / -6P 3/ -7S / ladder-type system Jie Wang,, Guang Yang,, Baodong Yang,, Jun He,, 3,, 3,, and Junmin Wang. State Key Laboratory of Quantum

More information

Experimental constraints of using slow-light in sodium vapor for light-drag enhanced relative rotation sensing

Experimental constraints of using slow-light in sodium vapor for light-drag enhanced relative rotation sensing Optics Communications 66 (6) 64 68 www.elsevier.com/locate/optcom Experimental constraints of using slow-light in sodium vapor for light-drag enhanced relative rotation sensing Renu Tripathi *, G.S. Pati,

More information

Observation of laser-jitter-enhanced hyperfine spectroscopy and two-photon spectral hole-burning

Observation of laser-jitter-enhanced hyperfine spectroscopy and two-photon spectral hole-burning 1 June 1999 Ž. Optics Communications 164 1999 129 136 www.elsevier.comrlocateroptcom Full length article Observation of laser-jitter-enhanced hyperfine spectroscopy and two-photon spectral hole-burning

More information

Generation of nonclassical narrowband photon pairs from a cold Rubidium cloud

Generation of nonclassical narrowband photon pairs from a cold Rubidium cloud Generation of nonclassical narrowband photon pairs from a cold Rubidium cloud Young-Wook Cho, Kwang-Kyoon Park, Jong-Chan Lee, and Yoon-Ho Kim Department of Physics, Pohang University of Science and Technology

More information

Collisional Transfer of Atomic Coherence

Collisional Transfer of Atomic Coherence Collisional Transfer of Atomic Coherence Joseph Goldfrank College of William and Mary, Dept. of Physics 11 May 009 1 1 Introduction 1.1 Motivation Quantum information storage is one of the major requirements

More information

OIST, April 16, 2014

OIST, April 16, 2014 C3QS @ OIST, April 16, 2014 Brian Muenzenmeyer Dissipative preparation of squeezed states with ultracold atomic gases GW & Mäkelä, Phys. Rev. A 85, 023604 (2012) Caballar et al., Phys. Rev. A 89, 013620

More information