Electrical quantum engineering with superconducting circuits

Size: px
Start display at page:

Download "Electrical quantum engineering with superconducting circuits"

Transcription

1 switching probability P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group swap duration (ns) Electrical quantum engineering with superconducting circuits

2 Outline Lecture 1: Basics of superconducting qubits 1) Introduction: Hamiltonian of an electrical circuit 2) The Cooper-pair box 3) Decoherence of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) Readout using a resonator 2) Amplification & Feedback 3) Quantum state engineering Lecture 3: Multi-qubit gates and algorithms 1) Coupling schemes 2) Two-qubit gates and Grover algorithm 3) Elementary quantum error correction Lecture 4: Introduction to Hybrid Quantum Devices

3 Requirements for QC High-Fidelity Single Qubit Operations High-Fidelity Readout of Individual Qubits 0 1 Deterministic, On-Demand Entanglement between Qubits III.1) Two-qubit gates

4 Coupling strategies 1) Fixed coupling Φ H int Entanglement on-demand??? «Tune-and-go» strategy Coupling effectively OFF III.1) Two-qubit gates Coupling activated in resonance for τ Entangled qubits Interaction effectively OFF

5 2) Tunable coupling Coupling strategies λ () t = λ OFF ON H int (λ) λ Entanglement on-demand??? A) Tune ON/OFF the coupling with qubits on resonance Coupling OFF (λ OFF ) III.1) Two-qubit gates Coupling activated for τ by λ ON Entangled qubits Interaction OFF (λ OFF )

6 2) Tunable coupling Coupling strategies H int (λ) λ() t = λoff + δλ cos ω ± ω ( ) 1 2 t Entanglement on-demand??? B) Modulate coupling IN THIS LECTURE : ONLY FIXED COUPLING Coupling OFF (λ OFF ) III.1) Two-qubit gates Coupling ON by modulating λ Coupling OFF (λ OFF )

7 How to couple transmon qubits? 1) Direct capacitive coupling Φ I Φ II V g,i V g,ii coupling capacitor C c HH = EE cc,ii NN II NN gg,ii 2 EEJJ,II Φ II +EE cc,iiii NN IIII NN gg,iiii 2 EEJJ,IIII Φ IIII g cos θθ II cos θθ IIII +2 EE cc,iiee cc,iiii EE cccc (NN II NN gg,ii )(NN IIII NN gg,iiii ) C = (2e) c ˆ 1 0 ˆ I NI I II NII II CICII ω ( Φ ) = 2 II ω01 ( Φ II ) = σ 2 I 01 I H qi, σ zi, H q, II z, II H = gσ σ c xi, xii, g( σ + σ + σ σ + ) I II I II

8 How to couple transmon qubits? 2) Cavity mediated qubit-qubit coupling Q I R >>g J. Majer et al., Nature 449, 443 (2007) S. Osnaghi et al., PRL (2001) Q II g 1 g 2 Q I g eff =g 1 g 2 / Q II III.1) Two-qubit gates ( + + ) H = g σ σ + σ σ eff eff I II I II

9 iswap Gate H / H int ω ω = I II 01 I 01 II I II I II σz σz g σσ σσ ( ) + + «Natural» universal gate : iswap I ω = ω On resonance, ( ) II U int () t cos( gt) i sin( gt) 0 = 0 i sin( gt) cos( gt) U int π 0 1/ 2 i / 2 0 ( ) = iswap 2g 0 i / 2 1/ 2 0 = III.1) Two-qubit gates

10 Example : capacitively coupled transmons with individual readout fast flux line (Saclay, 2011) i e ϕ coupling capacitor λ/4 JJ λ/4 Readout Resonator Transmon qubit i(t) readout resonator qubits 1 mm coupling capacitor 50 µm Josephson frequency junction control 200 µm

11 Example : capacitively coupled transmons with individual readout 50 µm frequency control III.1) Two-qubit gates

12 Spectroscopy frequencies (GHz) ν 01 ΙΙ ν c Ι ν c ΙΙ ν 01 Ι 2g/π = 9 MHz ,0 0,2 0,4 0, φ I /φ 0 φ I,II /φ 0 A. Dewes et al., PRL (2011) III.1) Two-qubit gates

13 SWAP between two transmon qubits Drive QB I QB II X π 6.82 GHz 6.67 GHz 6.42 GHz f 01 QB II QB I 5.32GHz 5.13 GHz Swap Duration 6.03GHz 1,0 Pswitch (%) 0,8 0,6 0, Raw data 0,2 0,0 III.1) Two-qubit gates Swap duration (ns)

14 SWAP between two transmon qubits Drive QB I QB II X π 6.82 GHz 6.67 GHz 6.42 GHz f 01 QB II QB I 5.32GHz 5.13 GHz Swap Duration 6.03GHz Occupation proba 1,0 0,8 0,6 0,4 0, Data corrected from readout errors III.1) Two-qubit gates 0, swap duration (ns) iswap Swap duration (ns)

15 How to quantify entanglement?? Need to measure ρ exp Quantum state tomography 0> Z Y X P switch ( + σ ) 1 /2 z 1> III.1) Two-qubit gates

16 How to quantify entanglement?? Need to measure ρ exp Quantum state tomography 0> Z π/2(x) Y X P switch ( + σ ) y 1 /2 1> III.1) Two-qubit gates

17 How to quantify entanglement?? Need to measure ρ exp Quantum state tomography 0> Z π/2(y) Y X P switch ( + σ ) 1 /2 x 1> III.1) Two-qubit gates M. Steffen et al., Phys. Rev. Lett. 97, (2006)

18 How to quantify entanglement?? readouts I II X,Y iswap Z tomo. I,X,Y I II ns 3*3 rotations*3 independent probabilities (P 00,P 01,P 10 ) = 27 measured numbers III.1) Two-qubit gates Fit experimental density matrix ρ exp Compute fidelity ( 1/2 1/2 F = Tr ρ ) th ρexpρth

19 Occupation proba How to quantify entanglement?? 1,0 10> 01> 0,8 0,6 00> 0,4 0,2 0,0 11> swap duration (ns) F=98% 00> 01> 10> ideal measured F=94% 11> III.1) Two-qubit gates A. Dewes et al., PRL (2011)

20 SWAP gate of capacitively coupled phase qubits M. Steffen et al., Science 313, 1423 (2006) III.1) Two-qubit gates F=0.87

21 Other universal two-qubit gates The control-phase gate U = The controlled-not gate αα 0 + ββ 1 0 αα 00 + ββ 11 U CCCCCCCC =

22 One-qubit Hadamard gate Decomposition of CNOT gate

23 Control-Phase with two coupled transmons DiCarlo et al., Nature 460, (2009) ( 1 +. c) + ( h. ) H / = g 10 0 h g c III.1) Two-qubit gates int eff 1 L R L R eff 2 L R L R

24 Spectroscopy of two qubits + cavity right qubit Qubit-qubit swap interaction left qubit cavity Cavity-qubit interaction Vacuum Rabi splitting III.1) Two-qubit gates V R Flux bias on right transmon (a.u.) (Courtesy Leo DiCarlo)

25 One-qubit gates: X and Y rotations Preparation 1-qubit rotations Measurement f L z y x cavity I cos(2 π ft) L III.1) Two-qubit gates V R Flux bias on right transmon (a.u.) (Courtesy Leo DiCarlo)

26 One-qubit gates: X and Y rotations f R Preparation 1-qubit rotations Measurement z y x cavity I cos(2 π ft) R III.1) Two-qubit gates V R Flux bias on right transmon (a.u.) (Courtesy Leo DiCarlo)

27 One-qubit gates: X and Y rotations f R Preparation 1-qubit rotations Measurement z y x cavity Q sin(2 π ft) R III.1) Two-qubit gates V R Flux bias on right transmon (a.u.) Fidelity = 99% see J. Chow et al., PRL (2009)

28 Two-qubit gate: turn on interactions V R Conditional phase gate Use control lines to push qubits near a resonance cavity III.1) Two-qubit gates V R Flux bias on right transmon (a.u.) (Courtesy Leo DiCarlo)

29 Two-excitation manifold of system Two-excitation manifold Avoided crossing (160 MHz) Flux bias on right transmon (a.u.) III.1) Two-qubit gates (Courtesy Leo DiCarlo)

30 Adiabatic conditional-phase gate f + f t f ϕa = 2 π δ fa() t dt t excitation manifold 1-excitation manifold ζ iϕ 11 e t f ϕ11 = ϕ10 + ϕ01 2 π ζ() t dt e iϕ 01 iϕ 10 e t 0 Flux bias on right transmon (a.u.) (Courtesy Leo DiCarlo)

31 Implementing C-Phase U iϕ01 0 e 0 0 = iϕ e 0 iϕ e Adjust timing of flux pulse so that only quantum amplitude of 11 acquires a minus sign: U = C-Phase III.1) Two-qubit gates (Courtesy Leo DiCarlo)

32 The Grover Search Algorithm: A Benchmark for Quantum Speed-Up A search oracle marks a state i Four possible oracles. Which one have we got? i { } What is the probability to give correct answer after one call of the oracle? CLASSICALLY Try one state. Probability ¼ to be the state marked by oracle. If it is not marked, guess randomly amongst 3 remaining possible states. Total maximal classical probability of success = ¼ + ¾*1/3 = 1/2

33 The Grover Search Algorithm: A Benchmark for Quantum Speed-Up A search oracle marks a state i Four possible oracles. Which one have we got? i { } What is the probability to give correct answer after one call of the oracle? QUANTUM-MECHANICALLY Grover s search algorithm : probability can reach 1!

34 The Grover Search Algorithm: A Benchmark for Quantum Speed-Up A search oracle marks a state i Four possible oracles. Which one have we got? In one call : i { } In one call : prepare a test state call the quantum Oracle O analyze the result 0 0 Y π/2 Y π/2 x O x i=00? i=01 i=10 i=11 i iswap X π/2 X π/ i 2 Oi i i i 2 Grover, Proc. 28th Ann. ACM Sym. on the Theory of Computing (1996) i

35 Implementation of the Grover Algorithm preparation quantum oracle O 00 analysis readout 0 0 x Y π/2 Y π/2 x O00 x iswap Z π/2 Z π/2 iswap X π/2 X π/ after calling the oracle (i = 00) final result of algorithm single run probabilities 67 % 00> 01> 10> 11> <00 <01 <10 <11 π 0 fidelity F = 87 98% % fidelity F = 70 % Dewes et.al. PRB (2012)

36 Results for Different Oracle Functions π 0 67 % 55 % 62 % 52 % F i > 50 % for all four oracles Demonstration of quantum speed-up Dewes et.al. PRB (2012)

37 Steps towards quantum computer Quantum Error Correction R. Schoelkopf and M. Devoret, Science (2013)

38 Basics of Quantum Error Correction ψψ = αα 0 + ββ 1 Bit-flip errors Phase-flip errors αα 1 + ββ 0 αα 1 + ee iiii ββ 0 Detecting and correcting these errors? Difficulty : Quantum measurement!

39 Correcting bit-flip errors (1) : encoding «Physical» qubit «Logical» qubit D. Mermin, lecture notes on quantum computation, chap. 5

40 Correcting bit-flip errors (2) : detecting the error Key property of logical qubit state αα ββ 111 Each two-qubit pair is in an eigenstate of the parity operators PP 12, PP 23, PP 13 with value +1 : PP 12 = +1, PP 23 = +1, PP 13 = +1 In case of one bit-flip error, the occurrence and the position of the errors can be detected by measuring the parities of each pair. If there is no error, the parity measurements do not perturb the state But an error can be detected. For instance on qubit 2 would yield αα ββ 101 which would result in PP 12 = 1, PP 23 = 1, PP 13 = +1 The challenge of QEC is thus to repititvely and non-destructively measure parity operators of pairs of qubits

41 Correcting bit-flip errors (2) : detecting an error «Ancilla Qubits» useful for the parity measurements D. Mermin, lecture notes on quantum computation, chap. 5

42 Correcting bit-flip errors (2) : detecting an error with a 9-qubit chip (Nature, 2015) («Ancilla»)

43 Correcting bit-flip errors (2) : detecting an error with a 9-qubit chip

44 Correcting bit-flip errors (2) : implementation

45 Correcting bit-flip errors (2) : implementation CNOTs1 CNOTs2

46 Correcting bit-flip errors (2) : detecting an error with a 9-qubit chip

47 Correcting bit-flip errors (2) : detecting errors with a 9-qubit chip

48 Conclusions Multi-qubit operations possible thanks to improvements in coherence times and high-fidelity single-qubit gates and readout First implementations of algorithms, and even elementary Quantum Error Correction schemes (only bit-flip errors) Real quantum error correction still requires major improvements in gate fidelity, coherence times, control electronics, fabrication, But Still very far from a working quantum processor

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics Lecture 3: 2-qubit

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Routes towards quantum information processing with superconducting circuits

Routes towards quantum information processing with superconducting circuits Routes towards quantum information processing with superconducting circuits? 0 1 1 0 U 2 1 0? 0 1 U 1 U 1 Daniel Estève Quantronics SPEC CEA Saclay Quantum Mechanics: resources for information processing

More information

Let's Build a Quantum Computer!

Let's Build a Quantum Computer! Let's Build a Quantum Computer! 31C3 29/12/2014 Andreas Dewes Acknowledgements go to "Quantronics Group", CEA Saclay. R. Lauro, Y. Kubo, F. Ong, A. Palacios-Laloy, V. Schmitt PhD Advisors: Denis Vion,

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft.

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft. Introduction to quantum computing (with superconducting circuits) Lecture 2 Version: 14/89 Frontiers of Condensed Matter San Sebastian, Aug. 28-3, 214 Dr. Leo DiCarlo l.dicarlo@tudelft.nl dicarlolab.tudelft.nl

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

Electrical Quantum Engineering with Superconducting Circuits

Electrical Quantum Engineering with Superconducting Circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 Electrical Quantum Engineering with Superconducting Circuits R. Heeres & P. Bertet SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) 2) 3) Readout

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains .. Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains Vladimir M. Stojanović Condensed Matter Theory Group HARVARD UNIVERSITY September 16, 2014 V. M. Stojanović (Harvard)

More information

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Nathan K. Langford OVERVIEW Acknowledgements Ramiro Sagastizabal, Florian Luthi and the rest of the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTAR NFORMATON doi:10.1038/nature10786 FOUR QUBT DEVCE f 3 V 2 V 1 The cqed device used in this experiment couples four transmon qubits to a superconducting coplanar waveguide microwave cavity

More information

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Quantum Integrated Circuits Quantum currents & voltages Microfabricated atoms Digital to Analog Converter

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Lecture 6, March 30, 2017

Lecture 6, March 30, 2017 Lecture 6, March 30, 2017 Last week: This week: Brief revisit of the Transmon qubit Gate charge insensitivity Anharmonicity and driving of qubit Tuning by magnetic flux Qubit-Qubit coupling in circuit

More information

Quantum Computing with Superconducting Circuits

Quantum Computing with Superconducting Circuits Quantum Computing with Superconducting Circuits S. Filipp, A. Fuhrer, P. Müller, N. Moll, I. Tavernelli IBM Research Zurich, Switzerland J. Chow, M. Steffen, J. Gambetta, A. Corcoles, D. McKay et al. IBM

More information

VISIT THE WEBSITE OF THE CHAIR OF MESOSCOPIC PHYSICS

VISIT THE WEBSITE OF THE CHAIR OF MESOSCOPIC PHYSICS Chaire de Physique Mésoscopique Michel Devoret Année 00, mai - juin INTRODUCTION AU CALCUL QUANTIQUE INTRODUCTION TO QUANTUM COMPUTATION Quatrième Leçon / Fourth Lecture This College de France document

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University John Stewart Bell Prize Part 1: Michel Devoret, Yale University SUPERCONDUCTING ARTIFICIAL ATOMS: FROM TESTS OF QUANTUM MECHANICS TO QUANTUM COMPUTERS Part 2: Robert Schoelkopf, Yale University CIRCUIT

More information

Process Tomography of Quantum Memory in a Josephson Phase Qubit coupled to a Two-Level State

Process Tomography of Quantum Memory in a Josephson Phase Qubit coupled to a Two-Level State Process Tomography of Quantum Memory in a Josephson Phase Qubit coupled to a Two-Level State Matthew Neeley, M. Ansmann, Radoslaw C. Bialczak, M. Hofheinz, N. Katz, Erik Lucero, A. O Connell, H. Wang,

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Quantum simulation with superconducting circuits

Quantum simulation with superconducting circuits Quantum simulation with superconducting circuits Summary: introduction to quantum simulation with superconducting circuits: quantum metamaterials, qubits, resonators motional averaging/narrowing: theoretical

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Quantum computing : principles and practical implementations

Quantum computing : principles and practical implementations Quantum computing : principles and practical implementations D. Vion QUAN UM ELECT RONICS GROUP Scott Adams/Dilbert 4 st ORAP Forum, March 29 th 28, Paris, France Warning: several types of quantum processors

More information

Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED

Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED Commun. Theor. Phys. 56 (011 35 39 Vol. 56, No. 3, September 15, 011 Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED WU

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit with Ultracold Trapped Atoms at the Quantum Speed Limit Michael Goerz May 31, 2011 with Ultracold Trapped Atoms Prologue: with Ultracold Trapped Atoms Classical Computing: 4-Bit Full Adder Inside the CPU:

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Quantum Optics and Quantum Informatics FKA173

Quantum Optics and Quantum Informatics FKA173 Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:30-1:30. Examiners: Jonas Bylander (070-53 44 39) and Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.

More information

Advances in Josephson Quantum Circuits

Advances in Josephson Quantum Circuits APS 00 March Meeting, Tutorial #3 Advances in Josephson Quantum Circuits Instructors: Michel Devoret, Yale University "Introduction to superconducting quantum circuits" Yasunobu Nakamura, NEC Japan "Superconducting

More information

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France QUANTUM COMPUTING Part II Jean V. Bellissard Georgia Institute of Technology & Institut Universitaire de France QUANTUM GATES: a reminder Quantum gates: 1-qubit gates x> U U x> U is unitary in M 2 ( C

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

arxiv: v3 [quant-ph] 14 Feb 2013

arxiv: v3 [quant-ph] 14 Feb 2013 mplementation of a Toffoli Gate with Superconducting Circuits A. Fedorov, L. Steffen, M. Baur, M.P. da Silva, 2, 3 and A. Wallraff Department of Physics, ETH urich, CH-893 urich, Switzerland 2 Disruptive

More information

Synthesising arbitrary quantum states in a superconducting resonator

Synthesising arbitrary quantum states in a superconducting resonator Synthesising arbitrary quantum states in a superconducting resonator Max Hofheinz 1, H. Wang 1, M. Ansmann 1, Radoslaw C. Bialczak 1, Erik Lucero 1, M. Neeley 1, A. D. O Connell 1, D. Sank 1, J. Wenner

More information

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS Michel Devoret, Yale University Acknowledgements to Yale quantum information team members:

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Topologicaly protected abelian Josephson qubits: theory and experiment.

Topologicaly protected abelian Josephson qubits: theory and experiment. Topologicaly protected abelian Josephson qubits: theory and experiment. B. Doucot (Jussieu) M.V. Feigelman (Landau) L. Ioffe (Rutgers) M. Gershenson (Rutgers) Plan Honest (pessimistic) review of the state

More information

Quantum computation and quantum optics with circuit QED

Quantum computation and quantum optics with circuit QED Departments of Physics and Applied Physics, Yale University Quantum computation and quantum optics with circuit QED Jens Koch filling in for Steven M. Girvin Quick outline Superconducting qubits overview

More information

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Ĥ = Ĥ(p, q : Λ), Λ: control parameter { e.g. charge qubit Λ = V g gate voltage phase qubit Λ = I bias current

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007 Generating Single Microwave Photons in a Circuit arxiv:cond-mat/0702648v1 [cond-mat.mes-hall] 27 Feb 2007 A. A. Houck, 1 D. I. Schuster, 1 J. M. Gambetta, 1 J. A. Schreier, 1 B. R. Johnson, 1 J. M. Chow,

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Entanglement Control of Superconducting Qubit Single Photon System

Entanglement Control of Superconducting Qubit Single Photon System : Quantum omputing Entanglement ontrol of Superconducting Qubit Single Photon System Kouichi Semba Abstract If we could achieve full control of the entangled states of a quantum bit (qubit) interacting

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Controlled-NOT logic gate for phase qubits based on conditional spectroscopy

Controlled-NOT logic gate for phase qubits based on conditional spectroscopy Quantum Inf Process (2012) 11:1349 1357 DOI 10.1007/s11128-011-0274-6 Controlled-NOT logic gate for phase qubits based on conditional spectroscopy Joydip Ghosh Michael R. Geller Received: 19 May 2011 /

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Violation of Bell s inequality in Josephson phase qubits

Violation of Bell s inequality in Josephson phase qubits Violation of Bell s inequality in Josephson phase qubits Markus Ansmann, H. Wang, Radoslaw C. Bialczak, Max Hofheinz, Erik Lucero, M. Neeley, A. D. O Connell, D. Sank, M. Weides, J. Wenner, A. N. Cleland,

More information

Schrödinger Cats, Maxwell s Demon and Quantum Error Correction

Schrödinger Cats, Maxwell s Demon and Quantum Error Correction Schrödinger Cats, Maxwell s Demon and Quantum Error Correction Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Supplementary Information for Controlled catch and release of microwave photon states

Supplementary Information for Controlled catch and release of microwave photon states Supplementary Information for Controlled catch and release of microwave photon states Yi Yin, 1, Yu Chen, 1 Daniel Sank, 1 P. J. J. O Malley, 1 T. C. White, 1 R. Barends, 1 J. Kelly, 1 Erik Lucero, 1 Matteo

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

Autonomous Quantum Error Correction. Joachim Cohen QUANTIC

Autonomous Quantum Error Correction. Joachim Cohen QUANTIC Autonomous Quantum Error Correction Joachim Cohen QUANTIC Outline I. Why quantum information processing? II. Classical bits vs. Quantum bits III. Quantum Error Correction WHY QUANTUM INFORMATION PROCESSING?

More information

Superconducting qubits

Superconducting qubits Superconducting qubits Franco Nori Physics Dept., The University of Michigan, Ann Arbor, USA Group members: Frontier Research System, RIKEN, Japan Yu-xi Liu, L.F. Wei, S. Ashhab, J.R. Johansson Collaborators:

More information

Quantum-information processing with circuit quantum electrodynamics

Quantum-information processing with circuit quantum electrodynamics PHYSICAL REVIEW A 75, 339 7 Quantum-information processing with circuit quantum electrodynamics Alexandre Blais, 1, Jay Gambetta, 1 A Wallraff, 1,3 D I Schuster, 1 S M Girvin, 1 M H Devoret, 1 and R J

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Quantum Control of Qubits

Quantum Control of Qubits Quantum Control of Qubits K. Birgitta Whaley University of California, Berkeley J. Zhang J. Vala S. Sastry M. Mottonen R. desousa Quantum Circuit model input 1> 6> = 1> 0> H S T H S H x x 7 k = 0 e 3 π

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII Prospects for Superconducting ubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII uantum error correction and the future of solid state qubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

IBM Systems for Cognitive Solutions

IBM Systems for Cognitive Solutions IBM Q Quantum Computing IBM Systems for Cognitive Solutions Ehningen 12 th of July 2017 Albert Frisch, PhD - albert.frisch@de.ibm.com 2017 IBM 1 st wave of Quantum Revolution lasers atomic clocks GPS sensors

More information

SUPERCONDUCTING QUANTUM BITS

SUPERCONDUCTING QUANTUM BITS I0> SUPERCONDUCTING QUANTUM BITS I1> Hans Mooij Summer School on Condensed Matter Theory Windsor, August 18, 2004 quantum computer U quantum bits states l0>, l1> Ψ = αl0> + βl1> input - unitary transformations

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

Mechanical quantum resonators

Mechanical quantum resonators Mechanical quantum resonators A. N. Cleland and M. R. Geller Department of Physics, University of California, Santa Barbara CA 93106 USA Department of Physics and Astronomy, University of Georgia, Athens,

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

Quantum Error Detection by Stabiliser Measurements in a Logical Qubit

Quantum Error Detection by Stabiliser Measurements in a Logical Qubit Quantum Error Detection by Stabiliser Measurements in a Logical Qubit THESIS submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in EXPERIMENTAL PHYSICS Author : Mengzi

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

The Development of a Quantum Computer in Silicon

The Development of a Quantum Computer in Silicon The Development of a Quantum Computer in Silicon Professor Michelle Simmons Director, Centre of Excellence for Quantum Computation and Communication Technology, Sydney, Australia December 4th, 2013 Outline

More information

Introduction to Circuit QED Lecture 2

Introduction to Circuit QED Lecture 2 Departments of Physics and Applied Physics, Yale University Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation PHYSICAL REVIEW A 69, 062320 (2004) Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation Alexandre Blais, 1 Ren-Shou Huang, 1,2 Andreas Wallraff,

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

Lecture 2, March 2, 2017

Lecture 2, March 2, 2017 Lecture 2, March 2, 2017 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

nano Josephson junctions Quantum dynamics in

nano Josephson junctions Quantum dynamics in Permanent: Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Cécile Naud Bernard Pannetier Quantum dynamics in nano Josephson junctions CNRS Université Joseph Fourier Institut Néel- LP2MC GRENOBLE

More information

Physics ; CS 4812 Problem Set 4

Physics ; CS 4812 Problem Set 4 Physics 4481-7681; CS 4812 Problem Set 4 Six problems (six pages), all short, covers lectures 11 15, due in class 25 Oct 2018 Problem 1: 1-qubit state tomography Consider a 1-qubit state ψ cos θ 2 0 +

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates DÉPARTEMENT DE PHYSIQUE DE L ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL Cavity Quantum Electrodynamics Lecture : entanglement engineering with quantum gates Michel BRUNE Les Houches 003 1 CQED

More information