Quantum Spectrometers of Electrical Noise

Size: px
Start display at page:

Download "Quantum Spectrometers of Electrical Noise"

Transcription

1 Quantum Spectrometers of Electrical Noise Rob Schoelkopf Applied Physics Yale University Gurus: Michel Devoret, Steve Girvin, Aash Clerk And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven, B. Yurke, L. Levitov, K. Likharev, Thanks for slides: L. Kouwenhoven, K. Schwab, K. Lehnert, Noise and Quantum Measurement R. Schoelkopf

2 Overview of Lectures Lecture : Equilibrium and Non-equilibrium Quantum Noise in Circuits Reference: Quantum Fluctuations in Electrical Circuits, M. Devoret Les Houches notes Lecture : Quantum Spectrometers of Electrical Noise Reference: Qubits as Spectrometers of Quantum Noise, R. Schoelkopf et al., cond-mat/0047 Lecture 3: Quantum Limits on Measurement References: Amplifyin Quantum Sinals with the Sinle-Electron Transistor, M. Devoret and RS, Nature 000. Quantum-limited Measurement and Information in Mesoscopic Detectors, A.Clerk, S. Girvin, D. Stone PRB 003. And see also upcomin RMP by Clerk, Girvin, Devoret, & RS Noise and Quantum Measurement R. Schoelkopf

3 Outline of Lecture A spin or two-level system (TLS) as spectrometer The meanin of a two-sided spectral density The Cooper-pair box (CPB): an electrical TLS Usin the CPB to analyze quantum noise of an SET Majer and Turek, unpub. Other quantum analyzers: SIS junction: a continuum ede (DeBlock, Onac, & Kouwenhoven) Nanomechanical system: a harmonic oscillator (Schwab et al.; Lehnert et al.) Noise and Quantum Measurement R. Schoelkopf 3

4 The Electrical Enineer s Spectrum Analyzers Vt () FFT SV ( ω) ω = 0 ω Vt () tuned filter SV ( ω) ω = 0 ω Both measure only the symmetrized spectral density: S iωt SVV ( ω) = dt e V() t V(0) + V(0) V() t = S ( + ω) + S ( ω) VV VV Noise and Quantum Measurement R. Schoelkopf 4

5 The Quantum Mechanic s Analyzer a Spin Vt () B () x t B zˆ 0 = to manetometer Spins only absorb at ω = ω = µ B / 0 0 Larmor frequency Resolution = inverse of spin coherence time Able to measure both sides of a spectral density! Noise and Quantum Measurement R. Schoelkopf 5

6 Vt () Spin as Spectrum Analyzer - II B () x t B zˆ 0 H 0 H ω = 0 σ z = AV t σ () x ψ α () t = αe() t with initial condition: ψ (0) = i ψ() t = ψ(0) dτ H() t ψ(0) t 0 t ia ia αe = τ σ τ τ = τ τ iω0τ ( t) d e ( ) V( ) d e V( ) x 0 0 t t iω0( τ τ ) A τ τ τ τ V ω0 0 0 A A e = S ( ω ) Γ ( ) 0 e S + ω0 A pe() t = d d e V( ) V( ) = t S ( ) Γ V = t V Noise and Quantum Measurement R. Schoelkopf 6

7 Interpretation of Two-Sided Spectrum Γ e Γ ω 0 SV ω R e ω S V ω kt ω ( ) ( ) = / T 0 T = 0 absorption by spin emission by source Γ ω 0 SV ( ω ) 0 ω = kt emission by spin absorption by source 0 +ω 0 ω Γ S + V ( ω ) 0 Noise and Quantum Measurement R. Schoelkopf 7

8 Polarization of Spin and Noise Spectra Γ e Γ ω 0 Steady-state: dpe = pγ peγ dt dp = peγ p Γ dt p Γ = p Γ e Define polarization of spin: P = p p Thermal equilibrium: Requires particular asymmetry! e If noise is truly classical, p p p / p = e ω e V e and no polarization! 0 / kt S ω e S ω ω0 ( ) / kt + = ( ) 0 V 0 Noise and Quantum Measurement R. Schoelkopf 8

9 Polarization of Spin - II Define steady-state polarization: P SS d ( ω0) S( ω0) ( ω ) S( ω ) Γ Γ S + = = Γ +Γ S due to relative asymmetry of noise Define deviation from steady state: ( P() t ) dt ( ) Pt = Pt () Γ + Γ = () Γ A S 0 S 0 T ( ω ) ( ω ) [ ] Γ = = + + Pt () = Pt () PSS So relaxation rate (Γ ) due to total noise (and couplin) Noise and Quantum Measurement R. Schoelkopf 9

10 Ways to Characterize a Quantum Reservoir Fermi s Golden Rule Fluctuation- Dissipation Relation NMR Harmonic Oscillator Quantum Optics A Γ = S V ( ω ) E n Γ A Γ = S V ( + ω ) = Re ( Γ ) Γ [ Z( ω) ] A Γ Γ P ( Γ Γ ) = ω = = ( Γ +Γ ) Γ +Γ = ( Γ +Γ ) ω ( Γ Γ ) BEinstein = Γ T ω = = ( Γ Γ ) Q γ AEinstein = Γ Γ 0

11 V Cooper Pair Box as Two-Level System C C j q = enˆ ˆ ˆ Box H E = 4 E ( nˆ C V / e) el box = E el c σ x E c = e ( C + C ) j ~5 GHz n = V Enery n = 0 4E C (Buttiker 87; Bouchiat et al., 98) n = C V e /

12 V Cooper Pair Box as Two-Level System C C j q = enˆ J ˆ E E H ˆ ˆ box = el σ x σ z Box E = 4 E ( nˆ C V / e) el c E c = e ( C + C ) j ~5 GHz E J π = 5 GHz er 4 J 0 V Enery 0 + E J 4E C (Buttiker 87; Bouchiat et al., 98) n C V e = /

13 V Cooper Pair Box as Two-Level System C C j q = enˆ J ˆ E E H ˆ ˆ box = el σ x σ z Box E = 4 E ( nˆ C V / e) el c E c = e ( C + C ) j ~5 GHz E J π = 5 GHz er 4 J V Enery E J 4E C (Buttiker 87; Bouchiat et al., 98) n C V e = / 3

14 V Cooper Pair Box as Two-Level System C C j q = enˆ J ˆ E E H ˆ ˆ box = el σ x σ z Box E = 4 E ( nˆ C V / e) el c E c = e ( C + C ) j ~5 GHz E J π = 5 GHz er 4 J V Enery E J 4E C (Buttiker 87; Bouchiat et al., 98) n C V e = / 4

15 Cooper-pair Box Coupled to an SET Box SET Electrometer V C C c C e V ds Box V e SET Superconductin tunnel junction Cooper-pair Box Qubit Quantum spectrum analyzer or Noise and Quantum Measurement R. Schoelkopf SET Transistor Quantum state readout Nonequilibrium noise source 5

16 B eff a b c What Does SET Measure? ˆ el Measure box chare ˆ J H = E σ ˆ x E σ z n = ( σ / ) x + E el = 4 Ec( nˆ CV / e) Eel ẑ n a b c E J 0 CV ˆx 0 e B eff E J E J E el B eff E 0 a b c Ground state Excited state 0 C V e 6

17 Spectroscopy of Box Enery 0 with microwave 0Chare 0 Box Gate Chare (e) SV ( ω) peaks saturate ω to q=e Spectrum of oscillator Noise and Quantum Measurement R. Schoelkopf 7

18 Effects of Voltae Noise on Pseudo-Spin E J ẑ B eff θ E el ω = µb 0 eff ˆx δµ B = δe el cosθ δ E el = eδ V θ slow fluctuations of B T ϕ box e =Γ ϕ = SV box ω δµ B = δe el sinθ ( ) dephasin 0cos θ EJ sinθ = ω 0 resonant fluctuations of B T mix e =Γ = Noise and Quantum Measurement R. Schoelkopf S mix V box ω ( ) 0 transitions sin θ 8

19 Spontaneous Emission of Cooper-pair Box T = 0 R 50 Ω env V C Excited-state Box SV env H = AVσ x C H = E sinθδv e C x ( ) Σ σ = ec / C sinθ δv ( ω ) = 0 0 σ x S ( + ω ) = ω (50 Ω) V env 0 0 =Γ = S ( ) V 0 lifetime, T env + κ T = C / C % estimate: Σ e sin κ ω θ T 0. µ s Polarization = 00% Noise and Quantum Measurement R. Schoelkopf 9

20 Cooper-pair Box at Finite Temperature T > 0 R 50 Ω env V C Box ( ) ( ) ( ω ) ( ω ) 0 0 SV env 0 0 ( ) S ( + ω ) = ω R n + V env ( ω ) = ω Rn 0 0 P S + ω0 S ω0 n + n 0 tanh ω = = = S + + S n + kt T e ( n ) + κ 0 + =Γ Γ = ω R sin θ Noise and Quantum Measurement R. Schoelkopf 0

21 Excited-state Lifetime Measurement of Box follow peak heiht after turnin off microwaves Peak heiht (e) 0.3e S S n n n T =.3 µ s P~ with continuous measurement 0 time 0 µs 9 ( + ω0) 5 0 pairs/ Hz ( ω ) ~0 (@ 76 GHz) box box 0 C V e K. Lehnert et al., PRL 90, 0700 (003).

22 Couplin of SET Backaction to Box R env Box e - C C c SET V e e Environment relaxes box SET couples backaction to box Chare fluctuations on SET island with S Q ( ± ω ) 0 Noise and Quantum Measurement R. Schoelkopf

23 Double JQP Process in the SSET 0 JQP DJQP Ec / e Reflected power from RF-SET ~ Conductance of SSET 0 Γ qp 3

24 Quantum Shot Noise of DJQP* Process *Double Josephson-quasiparticle cycle: (A. Clerk et al. PRL (00)) lo S V SET noise spectrum ω ( ) on resonance off resonance Predicted box chare ω = 0 n ω = Excitation of box ω = + Relaxation of box 0 C V e 4

25 SET Determines Relaxation Time (T ) H. Majer and B. Turek, unpublished Calculated symmetric noise at 30 GHz T ~ µs low hih T < 00 ns Theory of quantum noise for DJQP A. Clerk et al., PRL (00) 5

26 What About Asymmetry in SET Noise? Measured reflected power Calculated 5 GHz asymmetric noise S Q ( + ω) S ( ω) Q Red: excites Blue: relaxes Γ qp Below resonance SET relaxes box 0 above resonance SET excites 6

27 Population Inversion Calculated asymmetric noise at 5 GHz Measured box chare neative SET excites Qubit positive SET Gate Chare (e) SET relaxes Qubit SET creates an neative effective spin temperature 7

28 Inversion: Theory and Experiment Numerical calculation includin stron couplin to SET + environmental relaxation (A. Clerk) 8

29 Other Quantum Spectrometers Delft Group Equivalent AC circuit Deblock, Onac, Gurevich, and Kouwenhoven, Science 30, 03 (003) 9

30 SIS detection principle Voltae biased SIS junction V SIS Hih-frequency detection based on Photon Assisted Tunnelin superconductor hν superconductor insulator Numerical simulations Density of States 30

31 Quasi-particle shot noise White noise fit S I as fit parameter Only emission part: S I (ω)=ei Resolution: 80 fa /Hz (3mK on a kω resistor) 3

32 Summary of Lecture Positive frequency noise = reservoir absorbs Neative frequency noise = reservoir emits A quantum system can act as a quantum spectrometer, able to measure both positive and neative frequency components of a non-classical noise source. Usin CPB (= electrical TLS) as quantum spectrometer Observed quantum noise (at > GHz) of SET backaction - SET controllin relaxation time of box - SET can create population inversion in box due to asymmetry of noise Noise and Quantum Measurement R. Schoelkopf 3

33 33

34 Sinle Quantum Dot as Noise Detector Device picture Quantum Dot in CB reime: noise detector Quantum Point Contact: noise source Inverse picture: QPC as a chare detector Detector back-action on the studied quantum system 34 J.M.Elzerman et.al, Nature 430, 43 (004)

35 Sinle Quantum Dot as Noise Detector Transport throuh orbital states QPC transmission dependence κ δ δ κ ev dot V QPC =.7 mev V dot = 30 µev Temperature=00 mk δ = 45 mev ~ 60 GHz δ = 580 mev ~ 40 GHz Γ s = GHz Set of fittin parameters Γ es = 5.75 GHz Γ es = 4.05 GHz κ = κ = κ = κ =

36 Double Quantum Dot Detection Non-coherent limit ε»t C ; Γ i «Γ L, Γ R I inel = e/ħ (Γ L - + Γ i - + Γ R - ) - e/ħ Γ i - P(ε) probability for enery exchane with the enviroment Circuit transimpedance S V (ω) = Z(ω) S I (ω) Z(ω) = κ R K R. Auado and L.P. Kouwenhoven, PRL 84, 986 (000) 36

Shot Noise and the Non-Equilibrium FDT

Shot Noise and the Non-Equilibrium FDT Shot Noise and the Non-Equilibrium FDT Rob Schoelkopf Applied Physics Yale University Gurus: Michel Devoret, Steve Girvin, Aash Clerk And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven,

More information

Quantum Limits on Measurement

Quantum Limits on Measurement Quantum Limits on Measurement Rob Schoelkopf Applied Physics Yale University Gurus: Michel Devoret, Steve Girvin, Aash Clerk And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven,

More information

Quantum Noise and Quantum Measurement

Quantum Noise and Quantum Measurement Quantum Noise and Quantum Measurement (APS Tutorial on Quantum Measurement)!F(t) Aashish Clerk McGill University (With thanks to S. Girvin, F. Marquardt, M. Devoret) t Use quantum noise to understand quantum

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Introduction to Quantum Mechanics of Superconducting Electrical Circuits

Introduction to Quantum Mechanics of Superconducting Electrical Circuits Introduction to Quantum Mechanics of Superconducting lectrical Circuits What is superconductivity? What is a osephson junction? What is a Cooper Pair Box Qubit? Quantum Modes of Superconducting Transmission

More information

arxiv:cond-mat/ v1 10 Oct 2002

arxiv:cond-mat/ v1 10 Oct 2002 QUBITS AS SPECTROMETERS OF QUANTUM NOISE arxiv:cond-mat/0210247 v1 10 Oct 2002 1. Introduction R.J. SCHOELKOPF, A.A. CLERK, S.M. GIRVIN, K.W. LEHN- ERT and M.H. DEVORET Departments of Applied Physics and

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

RÉSONATEURS NANOMÉCANIQUES DANS LE RÉGIME QUANTIQUE NANOMECHANICAL RESONATORS IN QUANTUM REGIME

RÉSONATEURS NANOMÉCANIQUES DANS LE RÉGIME QUANTIQUE NANOMECHANICAL RESONATORS IN QUANTUM REGIME Chaire de Physique Mésoscopique Michel Devoret Année 1, 15 mai - 19 juin RÉSONATEURS NANOMÉCANIQUES DANS LE RÉGIME QUANTIQUE NANOMECHANICAL RESONATORS IN QUANTUM REGIME Troisième leçon / Third lecture

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Mesoscopic quantum measurements

Mesoscopic quantum measurements Mesoscopic quantum measurements D.V. Averin Department of Physics and Astronomy SUNY Stony Brook A. Di Lorentzo K. Rabenstein V.K. Semenov D. Shepelyanskii E.V. Sukhorukov Summary α β Example of the trivial

More information

Theory for investigating the dynamical Casimir effect in superconducting circuits

Theory for investigating the dynamical Casimir effect in superconducting circuits Theory for investigating the dynamical Casimir effect in superconducting circuits Göran Johansson Chalmers University of Technology Gothenburg, Sweden International Workshop on Dynamical Casimir Effect

More information

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime J. Basset, 1 A.Yu. Kasumov, 1 C.P. Moca, G. Zarand,, 3 P. Simon, 1 H. Bouchiat, 1 and R. Deblock 1 1 Laboratoire de Physique

More information

arxiv:cond-mat/ v4 [cond-mat.supr-con] 13 Jun 2005

arxiv:cond-mat/ v4 [cond-mat.supr-con] 13 Jun 2005 Observation of quantum capacitance in the Cooper-pair transistor arxiv:cond-mat/0503531v4 [cond-mat.supr-con] 13 Jun 2005 T. Duty, G. Johansson, K. Bladh, D. Gunnarsson, C. Wilson, and P. Delsing Microtechnology

More information

Quantum computation and quantum optics with circuit QED

Quantum computation and quantum optics with circuit QED Departments of Physics and Applied Physics, Yale University Quantum computation and quantum optics with circuit QED Jens Koch filling in for Steven M. Girvin Quick outline Superconducting qubits overview

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS

REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS IRFAN SIDDIQI YALE UNIVERSITY R. Vijay P. Hyafil E. Boaknin M. Metcalfe F. Pierre L. Frunzio C.M. Wilson C. Rigetti V. Manucharyan J. Gambetta

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS Chaire de Physique Mésoscopique Michel Devoret Année 2007, Cours des 7 et 14 juin INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) 2) 3) Readout

More information

Precision Measurements with the Single Electron Transistor: Noise and Backaction in the Normal and Superconducting state

Precision Measurements with the Single Electron Transistor: Noise and Backaction in the Normal and Superconducting state Abstract Precision Measurements with the Single Electron Transistor: Noise and Backaction in the Normal and Superconducting state Benjamin Anthony Turek 2007 This thesis presents measurements of noise

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Josephson junction team Olivier Buisson, Bernard Pannetier,

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

C c V Det. V Emi. C Self R S,E

C c V Det. V Emi. C Self R S,E Z( ) ( ) S I,Em (A /Hz) S V,Det (V /Hz) SUPPLEMENTARY INFORMATION: DETECTING NOISE WITH SHOT NOISE USING ON-CHIP PHOTON DETECTOR SUPPLEMENTARY FIGURES (a) V Emi C c V Det S I,Emi R E S I,SE C Self R S,E

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Advances in Josephson Quantum Circuits

Advances in Josephson Quantum Circuits APS 00 March Meeting, Tutorial #3 Advances in Josephson Quantum Circuits Instructors: Michel Devoret, Yale University "Introduction to superconducting quantum circuits" Yasunobu Nakamura, NEC Japan "Superconducting

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Strong-coupling Circuit QED

Strong-coupling Circuit QED Departments of Physics and Applied Physics, Yale University Quantum Optics with Electrical Circuits: Strong-coupling Circuit QED Jens Koch Departments of Physics and Applied Physics, Yale University Circuit

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Introduction to Quantum Noise, Measurement and Amplification: Online Appendices

Introduction to Quantum Noise, Measurement and Amplification: Online Appendices Introduction to Quantum Noise, Measurement and Amplification: Online Appendices A.A. Clerk, M.H. Devoret, 2 S.M. Girvin, 3 Florian Marquardt, 4 and R.J. Schoelkopf 2 Department of Physics, McGill University,

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 1 Apr 1999

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 1 Apr 1999 Coherent control of macroscopic quantum states in a single-cooper-pair box arxiv:cond-mat/9904003v1 [cond-mat.mes-hall] 1 Apr 1999 Y. Nakamura, Yu. A. Pashkin & J. S. Tsai NEC Fundamental Research Laboratories,

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS Chaire de Physique Mésoscopique Michel Devoret Année 2007, Cours des 7 et 14 juin INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

Quantum Transport through Coulomb-Blockade Systems

Quantum Transport through Coulomb-Blockade Systems Quantum Transport through Coulomb-Blockade Systems Björn Kubala Institut für Theoretische Physik III Ruhr-Universität Bochum COQUSY6 p.1 Overview Motivation Single-electron box/transistor Coupled single-electron

More information

Quantize electrical circuits

Quantize electrical circuits Quantize electrical circuits a lecture in Quantum Informatics the 4th and 7th of September 017 Thilo Bauch and Göran Johansson In this lecture we will discuss how to derive the quantum mechanical hamiltonian

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

Topologicaly protected abelian Josephson qubits: theory and experiment.

Topologicaly protected abelian Josephson qubits: theory and experiment. Topologicaly protected abelian Josephson qubits: theory and experiment. B. Doucot (Jussieu) M.V. Feigelman (Landau) L. Ioffe (Rutgers) M. Gershenson (Rutgers) Plan Honest (pessimistic) review of the state

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung Braunschweiger Supraleiter-Seminar Seminar Qubits: Supraleitende Quantenschaltungen (i) Grundlagen und Messung Jens Könemann, Bundesallee 100, 38116 Braunschweig Q Φ 26. Mai 0/ 16 Braunschweiger Supraleiter-Seminar

More information

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Ĥ = Ĥ(p, q : Λ), Λ: control parameter { e.g. charge qubit Λ = V g gate voltage phase qubit Λ = I bias current

More information

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985 Paper Review IEEE Journal of Quantum Electronics, Feb 1985 Contents Semiconductor laser review High speed semiconductor laser Parasitic elements limitations Intermodulation products Intensity noise Large

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Josephson-Junction Qubits

Josephson-Junction Qubits Josephson-Junction Qubits John Martinis Kristine Lang, Ray Simmonds, Robert McDermott, Sae Woo Nam, Jose Aumentado, Dustin Hite, Dave Pappas, NST Boulder Cristian Urbina, (CNRS/CEA Saclay) Qubit 8µm Atom

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Time-resolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy

More information

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin Time-dependent single-electron transport: irreversibility and out-of-equilibrium Klaus Ensslin Solid State Physics Zürich 1. quantum dots 2. electron counting 3. counting and irreversibility 4. Microwave

More information

Quantum optics and optomechanics

Quantum optics and optomechanics Quantum optics and optomechanics 740nm optomechanical crystals LIGO mirror AMO: Alligator nanophotonic waveguide quantum electro-mechanics Oskar Painter, Jeff Kimble, Keith Schwab, Rana Adhikari, Yanbei

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

Josephson charge qubits: a brief review

Josephson charge qubits: a brief review Quantum Inf Process (2009) 8:55 80 DOI 10.1007/s11128-009-0101-5 Josephson charge qubits: a brief review Yu. A. Pashkin O. Astafiev T. Yamamoto Y. Nakamura J. S. Tsai Published online: 13 February 2009

More information

Charge spectrometry with a strongly coupled superconducting single-electron transistor

Charge spectrometry with a strongly coupled superconducting single-electron transistor PHYSICAL REVIEW B, VOLUME 64, 245116 Charge spectrometry with a strongly coupled superconducting single-electron transistor C. P. Heij, P. Hadley, and J. E. Mooij Applied Physics and Delft Institute of

More information

LECTURE 2: Thermometry

LECTURE 2: Thermometry LECTURE 2: Thermometry Tunnel barrier Examples of aluminium-oxide tunnel barriers Basics of tunnel junctions E 1 2 Tunneling from occupied states to empty states V Metal Insulator Metal (NIN) tunnel junction

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Measurement theory for phase qubits

Measurement theory for phase qubits Measurement theory for phase qubits Co-P.I. Alexander Korotkov, UC Riverside The team: 1) Qin Zhang, graduate student ) Dr. Abraham Kofman, researcher (started in June 005) 3) Alexander Korotkov, associate

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007 Generating Single Microwave Photons in a Circuit arxiv:cond-mat/0702648v1 [cond-mat.mes-hall] 27 Feb 2007 A. A. Houck, 1 D. I. Schuster, 1 J. M. Gambetta, 1 J. A. Schreier, 1 B. R. Johnson, 1 J. M. Chow,

More information

INTRIQ. Coherent Manipulation of single nuclear spin

INTRIQ. Coherent Manipulation of single nuclear spin INTRIQ Coherent Manipulation of single nuclear spin Clément Godfrin Eva Dupont Ferrier Michel Pioro-Ladrière K. Ferhat (Inst. Néel) R. Ballou (Inst. Néel) M. Ruben (KIT) W. Wernsdorfer (KIT) F. Balestro

More information

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University John Stewart Bell Prize Part 1: Michel Devoret, Yale University SUPERCONDUCTING ARTIFICIAL ATOMS: FROM TESTS OF QUANTUM MECHANICS TO QUANTUM COMPUTERS Part 2: Robert Schoelkopf, Yale University CIRCUIT

More information

Single Electron Tunneling Examples

Single Electron Tunneling Examples Single Electron Tunneling Examples Danny Porath 2002 (Schönenberger et. al.) It has long been an axiom of mine that the little things are infinitely the most important Sir Arthur Conan Doyle Books and

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Electrical Quantum Engineering with Superconducting Circuits

Electrical Quantum Engineering with Superconducting Circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 Electrical Quantum Engineering with Superconducting Circuits R. Heeres & P. Bertet SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400

More information