Mesoscopic quantum measurements

Size: px
Start display at page:

Download "Mesoscopic quantum measurements"

Transcription

1 Mesoscopic quantum measurements D.V. Averin Department of Physics and Astronomy SUNY Stony Brook A. Di Lorentzo K. Rabenstein V.K. Semenov D. Shepelyanskii E.V. Sukhorukov

2 Summary α β Example of the trivial wavefunction reduction: Basic understanding of quantum measurements: the measurement process is ``decoherence with an output ; reduction of the wave-function is a classically trivial act of picking one random outcome out of several possibilities. ``Quantum measurement problem : wave function is typically reduced in an unusual way not compatible with the Schrödinger equation.

3 Outline. Basics - superconductor and semiconductor single-charge qubits - QPC as a quantum detector - ideal quantum detectors: trade-off between information gain and back-action dephasing in quantum measurements. Dynamics of quantum measurements - linear - quadratic

4 R.A. Millikan Phys. Rev. (Ser. ) (9).

5 Quantum dynamics of Josephson junctions Superconductor can be thought of as a BEC of Cooper pairs: one single-particle state Ψ = iϕ ne occupied with macroscopic number of particles. The phase φ and the number of particles n are conjugate quantum variables (Anderson 64; vanchenko Zil berman 65): [nϕ] =i. This relation describes dynamics of addition or removal of particles to/from the condensate.

6 f quantum fluctuations of phase φ become large junction behavior can be described as a semiclassical dynamics of charge that leads to controlled transfer of individual Cooper pairs (D.V. Averin A.B. Zorin and K.K. Likharev 985): H = E / ϕ E cosϕ = = E C C ( n q) E J J ( n n ± n ± n ) E C (e) C.. (a) E C /E J = (b) ε /E J 6 3 <n> q=v g C/e q

7 Cooper-pair box as charge qubit f a small Josephson junction is biased through a capacitor not resistor one obtains configuration of a ``Cooper-pair box (M. Buttiker 987 H. Pothier et al. 989) which avoids the problem of electromagnetic environment. For E J <<E C and q / the charge tunneling dynamics in the junction is directly reduced to the two-state form: H = E C ( q ) σ ( E ) σ z J x

8 a (pa) Coherent oscillations in two coupled charge qubits a reservoir reservoir probe coupling island probe (pa) GHz box box dc gate pulse gate dc gate µ m b V b E J CJ E C C b C g V g C p C m V p C p V g J J C b Cg V b b c (pa) d (pa) t(ns) Yu. A. Pashkin et al. Nature 4 83 (3). 9. GHz 3 f(ghz)

9 Oscillations of probability p j to have a Cooper on the box j=: E 4 J EJ Em p () = cos( Ωt)cos( εt) sin( Ωt)sin( εt) 4Ωε Ω = ( ) / E m ( ) / δ = ( E E ). ε = δ E m = ( EJ EJ). J J Entanglement between the qubits in the process of oscillations E = p± log p± p± = ± r ± E.5 r = 4 Em Em Em [ sin ( Ωt) sin ( εt) sin ( Ωt)sin ( εt) Ω ε Ω ε Ω m 4 E sin 4 δ ( Ωt) ε Em 4 sin 4 ( εt) m E sin(ωt)sin(εt Ωε. )]. 5.. t /π /.

10 Quantum-dot qubits J.M. Elzerman et al. PRB (3).

11 Quantum antidot qubits G j - control gates Ω- inter-qad tunnel amplitude ε - quasiparticle "localization" energy nformation encoded in the position of a quasiparticle in the system of two antidots. Adiabatic level-crossing dynamics can be used to transfer quasiparticles between the antidots. Conditions of operation: T << Ω ε << E E quasiparticle excitation gap (Averin and Goldman )

12 Fractional Charge of Laughlin Quasiparticles V.J. Goldman and B. Su 995

13 nvariance of the quasiparticle charge V.J. Goldman et al. PRB ().

14 Antidot transport of the FQHE quasiparticles Antidot ``molecule demonstrates coherent quasiparticle transport in the double-antidot system.j.maasilta and V.J. Goldman PRL ().

15 Quantum point contacts (QPC) M. Field et al. PRL 7 3 (993). E. Buks et al. Nature (999).

16 Mesoscopic quantum measurements D.V. Averin Department of Physics and Astronomy SUNY Stony Brook A. Di Lorentzo K. Rabenstein V.K. Semenov D. Shepelyanskii E.V. Sukhorukov

17 Summary α β Example of the trivial wavefunction reduction: Basic understanding of quantum measurements: the measurement process is ``decoherence with an output ; reduction of the wave-function is a classically trivial act of picking one random outcome out of several possibilities. ``Quantum measurement problem : wave function is typically reduced in an unusual way not compatible with the Schrödinger equation.

18 Outline. Basics - superconductor and semiconductor single-charge qubits - QPC as a quantum detector - ideal quantum detectors: trade-off between information gain and back-action dephasing in quantum measurements. Dynamics of quantum measurements - linear - quadratic

19 Counting statistics in mesoscopic electron transport (a) j V (b) ε U (x) j εev Average current: Current noise: = ( ev / πh). k D k S ( ) = ( ev / πh ) Dk ( Dk ). k Full counting statistics: (one mode) P ( N ) n = C n N D n ( D) N n N = ( ev L.S. Levitov and G.B. Lesovik 993 / πh) t.

20 Counting statistics and detector properties of a QPC ( α Detector-induced ``back-action dephasing of the qubit α β ) in ( t R r L ) β ( t R r L ) ( qubit) ρ out Tr{ R L} ρout ρin ρ out ( qubit) ( r = ρ = α β α β t t r ) α β Finally summing scattering processes of different electrons we obtain back-action dephasing rate by the QPC detector at T=: Γ d = ( ev πh)ln t t r r. The dephasing rate at finite temperature: [ Γ = dε πh)ln det( f ( ε) f ( ε) S S )]. d (

21 nformation acquisition rate is determined by distinguishability of the distributions P j (n) of the transferred charge in different qubit states: W / (/ )ln [ ( ) ( )] = t P n P n n The usual counting statistics result for the QPC gives and W n / ( ) N D D R R [ P ( n) P ( n)] = )ln( ) = ev πh D D R R Γ. ( d We see that the QPC is an ideal quantum detector with W=Γ d if no information is contained in the phases of the scattering amplitudes: φ = φ φ j = arg( t j / rj ). D.V.A. and E.V. Sukhorukov 5

22 An electronic Mach-Zehnder interferometer Y. Ji et al. Nature 4 45 (3).

23 Phase information can be utilized for measurement if the QPC is included in the electronic Mach-Zender interferometer: V j r j t j χ r j iχ = i Rm Dm e Sm iχ Dm i Rm e t j The QPC can always be turned into an ideal detector by adjusting the scattering matrix S m of the second QPC of the interferometer. f all measurement information is in the phases of the scattering amplitudes: φ = φ φ D = this happens if D χ = ( φ φ) / D m = Rm = /.

24 Conditional qubit evolution Since transmission and reflection of an electron are classical alternatives evolution of the qubit density matrix can be conditioned on the particular outcome of scattering (following ``quantum-trajectories approach in quantum optics; or A.N. Korotkov 999 in solid-state context). Depending on whether electron is transmitted or reflected ] [ ] [ / * * * / D D t t D D D β α αβ αβ β α α α. ] [ ] [ / * * * / R R r r R R R β α αβ αβ β α α α or mportant points: the qubit does not decohere; probabilities to be in the states and change.

25 Bell-type relation for mesoscopic tunneling One can devise a simple sequence of qubit transformations demonstrating that charge is indeed being transferred between the qubit states even if the tunneling amplitude is vanishing. Start with the state σ x =. After transmission of an electron ψ = D D [ D D The sequence of two pulses one creating tunneling for a period of time and another changing the phase between the states : ] / ( t) dt / h = π / 4 ε( t) dt / h = tan D / D. π / returns the qubit to the initial σ x = state i.e. we have a closed cycle which involves tunneling and transfer of charge at =. For any classical charge state there is a probability p to find the state σ x =- p = min{ D D} [ D D ] /.

26 Ballistic Read-out for Flux Qubits (flux analog of the QPC detector) f = T Qubit SFQ pulses Distributed Josephson Junction Voltmeter mv H = H σ z δu ( x) U ( x) t is convenient to characterize the qubit-detector interaction by the scattering parameters t t r r.

27 Quantum dynamics of a single fluxon A. Wallraff et al. Nature (3).

28 Generic model of a mesoscopic detector Detector dynamics should exhibit macroscopically different trajectories (see e.g. J.W. Lee et al. 5) most of the actual mesoscopic detectors are based on tunneling. qubit detector Detector Hamiltonian H = ( t[ Mˆ ] ξ h. c.) Hex > > t where ξ creates excitations in the process of particle transfer between the detector reservoirs. ( n) & kl ρ ( n) * ( n) * ( n )( ) ) Γ tk tl ρkl Γ tktl ρij Γt ktl ρkl = ( Γ Γ = dt ξ( t) ξ Γ = dt ξ ( t) ξ. Ensemble-averaged evolution Conditional evolution ρ& γ kl kl = γ kl = ( Γ ρ kl Γ i[ H ρ] ) t k t j kl. ρ ( n) kl ( τ ) = ρ ()( Γ kl exp{ (/ )( Γ / Γ Γ ) n/ )( t k n (t t k l t l Γ Γ ) inϕ ) kl }.

29 Linear quantum measurements Linear-response theory enables one to develop quantitative description of the quantum measurement process with an arbitrary detector provided that it satisfies some general conditions: the detector/system coupling is weak so that the detector s response is linear; the detector is in the stationary state; the response is instantaneous. H = H S H D xf D.V.A. cond-mat/44364 cond-mat/354. S.Pilgram and M. Büttiker PRL 89 4 (). A.A. Clerk S.M. Girvin and A.D.Stone PRB (3).

30 nformation/back-action trade-off in linear measurements Dynamics of the measurement process consists of information acquisition by the detector and back-action dephasing of the measured system. The trade-off between them has the simplest form for measurements of the static system with H S =. f xj>=x j j> we have for the back-action dephasing: ρ jj' ( t) = ρ jj' () e Γ d t Γ d = π ( x x nformation acquisition by the detector is the process of distinguishing different levels of the output signal <o>=λx j in the presence of output noise S q. The signal level (and the corresponding eigenstates of x) can be distinguished on the time scale given by the by the measurement time τ m : τ m = 8πS [ λ( x q j x j' )] τ m Γ d j j' = 8( π hλ) ) S S q f S f h..

31 FDT analog for linear quantum measurements h λ 4π [ S f S q (Re S fq ) ] / where λ is the linear response coefficient of the detector S f and S q are the low-frequency spectral densities of the respectively backaction and output noise ReS fq is the classical part of their crosscorrelator. As one can see this inequality characterizes the efficiency of the trade-off between the information acquisition by the detector and back-action dephasing of the measured system. The detector that satisfies this inequality as equality is ``ideal or ``quantumlimited.

32 Continuous monitoring of the MQC oscillations The trade-off between the information acquisition by the detector and back-action dephasing manifests itself in the directly measurable quantity in the case of measurement of coherent quantum oscillations in a qubit. H = σ σ f x z H D Spectral density S o (ω) of the detector output reflects coherent quantum oscillations of the measured qubit: S o ( ω) = S q Γ d λ 4π ( ω The height of the oscillation peak in the output spectrum is limited by the link between the information and dephasing: Smax S q 4. ) Γ d ω.

33 ε=.7 S o /S q 8 Γ=. S o /S q 8 Γ/ = Ω/ = ω/..3 ω/ A.N.Korotkov and D.V.A. Phys. Rev. B ().

34 Experimental continuous monitoring of the Rabi oscillations M L L T C T S Vmax /S.5 (a) a b c ω R /ω T. (b) a b c E.l ichev et al.prl (3) (P/P ) / (P/P ) /

35 Quadratic measurements t [ Mˆ ] = t c Mˆ c ˆ M Example: DC SQUD Mˆ () z = λ σ λ σ () z t( Mˆ ) = t () () () () δ σ z δ σ z λσ z σ z Purely quadratic measurements δ j =. H =. Quadratic measurement distinguishes ``parallel from the ``antiparallel qubit state i.e. is the measurement of the product operator of the two qubits σ z () σ z (). The measurement time is τ S m a = S = ( Γ = ( / a Γ )( t λ ) / = ( Γ ) * * Γ )( t λ t λ). t( Φ) = E J ( π Φ Φ << Φ. / Φ )

36 ) 4 ( 8 ) ( ω γ ω γ ω = a S S. ) ( λ γ Γ Γ = = j j x H ) ( σ n this case quadratic measurements can entangle two non-interacting symmetric qubits. ndeed there are three possible measurement outcomes. n the first two the qubits are entangled: { } ). )( ( λ ψ ψ ψ λ λ Γ Γ = = = = = = t n the third outcome the qubits perform coherent qubit oscillations at frequency that is twice the oscillation frequency of individual qubits. W. Mao et al. PRL (4)

37 w γ Continuously-measured spectroscopy of two qubits Non-linear measurements δ j λ. H t j = ( Γ = ( = t δs z λ(sz Γ S ( ω) = S )( δ ) / λ 3 = ( ). ( ω / ) ( j) σ x ( ν ) σ z j ) () () = σ z j j γ = ( ) / 3 γ j γ. j S /S = γ ) /. S /S ν/ =.... W. Mao et al. PRB (5) ω/ (a) (b)

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements.

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements. Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements Stony Brook University, SUNY Dmitri V Averin and iang Deng Low-Temperature Lab, Aalto University Jukka

More information

Simple quantum feedback. of a solid-state qubit

Simple quantum feedback. of a solid-state qubit e Vg qubit (SCPB) V Outline: detector (SET) Simple quantum feedback of a solid-state qubit Alexander Korotkov Goal: keep coherent oscillations forever qubit detector controller fidelity APS 5, LA, 3//5.....3.4

More information

Noisy quantum measurement of solid-state qubits: Bayesian approach

Noisy quantum measurement of solid-state qubits: Bayesian approach Noisy quantum measurement of solid-state qubits: Bayesian approach Outline: Bayesian formalism Continuous measurement of a single qubit deal and nonideal solid-state detectors Bayesian formalism for entangled

More information

Quantum feedback control of solid-state qubits and their entanglement by measurement

Quantum feedback control of solid-state qubits and their entanglement by measurement NANO 4, St. Petersburg, June 4 Quantum feedback control of solid-state qubits and their entanglement by measurement Rusko Ruskov and Outline: Continuous measurement of a single qubit Bayesian formalism

More information

Quantum Spectrometers of Electrical Noise

Quantum Spectrometers of Electrical Noise Quantum Spectrometers of Electrical Noise Rob Schoelkopf Applied Physics Yale University Gurus: Michel Devoret, Steve Girvin, Aash Clerk And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven,

More information

Introduction to Quantum Mechanics of Superconducting Electrical Circuits

Introduction to Quantum Mechanics of Superconducting Electrical Circuits Introduction to Quantum Mechanics of Superconducting lectrical Circuits What is superconductivity? What is a osephson junction? What is a Cooper Pair Box Qubit? Quantum Modes of Superconducting Transmission

More information

Simple quantum feedback of a solid-state qubit

Simple quantum feedback of a solid-state qubit Simple quantum feedback of a solid-state qubit Alexander Korotkov H =H [ F φ m (t)] control qubit CÜ detector I(t) cos(ω t), τ-average sin(ω t), τ-average X Y phase φ m Feedback loop maintains Rabi oscillations

More information

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island PHYSICAL REVIEW B, VOLUME 63, 054514 Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island Florian Marquardt* and C. Bruder Departement

More information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan Coherence and optical electron spin rotation in a quantum dot Sophia Economou Collaborators: NRL L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan T. L. Reinecke, Naval Research Lab Outline

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Measurement theory for phase qubits

Measurement theory for phase qubits Measurement theory for phase qubits Co-P.I. Alexander Korotkov, UC Riverside The team: 1) Qin Zhang, graduate student ) Dr. Abraham Kofman, researcher (started in June 005) 3) Alexander Korotkov, associate

More information

Mesoscopic field state superpositions in Cavity QED: present status and perspectives

Mesoscopic field state superpositions in Cavity QED: present status and perspectives Mesoscopic field state superpositions in Cavity QED: present status and perspectives Serge Haroche, Ein Bokek, February 21 st 2005 Entangling single atoms with larger and larger fields: an exploration

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Semiclassical formulation

Semiclassical formulation The story so far: Transport coefficients relate current densities and electric fields (currents and voltages). Can define differential transport coefficients + mobility. Drude picture: treat electrons

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Suppression of the low-frequency decoherence by motion of the Bell-type states Andrey Vasenko

Suppression of the low-frequency decoherence by motion of the Bell-type states Andrey Vasenko Suppression of the low-frequency decoherence by motion of the Bell-type states Andrey Vasenko School of Electronic Engineering, Moscow Institute of Electronics and Mathematics, Higher School of Economics

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Quantum feedback control of solid-state qubits

Quantum feedback control of solid-state qubits Quantum feedback control of solid-state qubits The system we consider: qubit + detector qubit H e Vg V I(t) detector I(t) I(t) Double-quantum-qot (DQD) and quantum point contact (QPC) e Cooper-pair box

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

QUANTUM ELECTRONICS ON THE TRAY* *Sur le plateau (de Saclay)

QUANTUM ELECTRONICS ON THE TRAY* *Sur le plateau (de Saclay) QUANTUM ELECTRONIC ON THE TRAY* *ur le plateau (de aclay) Goal: Reveal the quantum behavior of electrons everal ways of revealing the quantum behavior of electrons 1 Interference experiments of coherent

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Charge carrier statistics/shot Noise

Charge carrier statistics/shot Noise Charge carrier statistics/shot Noise Sebastian Waltz Department of Physics 16. Juni 2010 S.Waltz (Biomolecular Dynamics) Charge carrier statistics/shot Noise 16. Juni 2010 1 / 36 Outline 1 Charge carrier

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Quantum Optics and Quantum Informatics FKA173

Quantum Optics and Quantum Informatics FKA173 Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:30-1:30. Examiners: Jonas Bylander (070-53 44 39) and Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Quantum Noise and Quantum Measurement

Quantum Noise and Quantum Measurement Quantum Noise and Quantum Measurement (APS Tutorial on Quantum Measurement)!F(t) Aashish Clerk McGill University (With thanks to S. Girvin, F. Marquardt, M. Devoret) t Use quantum noise to understand quantum

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

Splitting of a Cooper pair by a pair of Majorana bound states

Splitting of a Cooper pair by a pair of Majorana bound states Chapter 7 Splitting of a Cooper pair by a pair of Majorana bound states 7.1 Introduction Majorana bound states are coherent superpositions of electron and hole excitations of zero energy, trapped in the

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Quantum measurement and control of solid-state qubits and nanoresonators

Quantum measurement and control of solid-state qubits and nanoresonators Quantum measurement and control of solid-state qubits and nanoresonators QUEST 4, Santa Fe, August 4 Outline: Introduction (Bayesian approach) Simple quantum feedback of a solid-state qubit (Korotkov,

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Ultrafast Universal Quantum Control of a Quantum Dot Charge Qubit Using Landau-Zener-Stückelberg Interference Gang Cao, Hai-Ou Li, Tao Tu, Li Wang, Cheng Zhou, Ming Xiao,

More information

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino New schemes for manipulating quantum states using a Kerr cell Marco Genovese and C.Novero Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I-10135 Torino Recently, Quantum Non Demolition

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

Topologicaly protected abelian Josephson qubits: theory and experiment.

Topologicaly protected abelian Josephson qubits: theory and experiment. Topologicaly protected abelian Josephson qubits: theory and experiment. B. Doucot (Jussieu) M.V. Feigelman (Landau) L. Ioffe (Rutgers) M. Gershenson (Rutgers) Plan Honest (pessimistic) review of the state

More information

Edge Transport in Quantum Hall Systems

Edge Transport in Quantum Hall Systems Lectures on Mesoscopic Physics and Quantum Transport, June 15, 018 Edge Transport in Quantum Hall Systems Xin Wan Zhejiang University xinwan@zju.edu.cn Outline Theory of edge states in IQHE Edge excitations

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

Josephson charge qubits: a brief review

Josephson charge qubits: a brief review Quantum Inf Process (2009) 8:55 80 DOI 10.1007/s11128-009-0101-5 Josephson charge qubits: a brief review Yu. A. Pashkin O. Astafiev T. Yamamoto Y. Nakamura J. S. Tsai Published online: 13 February 2009

More information

The Two Level Atom. E e. E g. { } + r. H A { e e # g g. cos"t{ e g + g e } " = q e r g

The Two Level Atom. E e. E g. { } + r. H A { e e # g g. cost{ e g + g e }  = q e r g E e = h" 0 The Two Level Atom h" e h" h" 0 E g = " h# 0 g H A = h" 0 { e e # g g } r " = q e r g { } + r $ E r cos"t{ e g + g e } The Two Level Atom E e = µ bb 0 h" h" " r B = B 0ˆ z r B = B " cos#t x

More information

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin Time-dependent single-electron transport: irreversibility and out-of-equilibrium Klaus Ensslin Solid State Physics Zürich 1. quantum dots 2. electron counting 3. counting and irreversibility 4. Microwave

More information

Noise and measurement efficiency of a partially coherent mesoscopic detector

Noise and measurement efficiency of a partially coherent mesoscopic detector PHYSICAL REVIEW B 69, 4533 4 Noise and measurement efficiency of a partially coherent mesoscopic detector A. A. Clerk and A. D. Stone Departments of Applied Physics and Physics, Yale University, New Haven,

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments

Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments Maximilian Schlosshauer Department of Physics University of Washington Seattle, Washington Very short biography Born in

More information

Laughlin quasiparticle interferometer: Observation of Aharonov-Bohm superperiod and fractional statistics

Laughlin quasiparticle interferometer: Observation of Aharonov-Bohm superperiod and fractional statistics Laughlin quasiparticle interferometer: Observation of Aharonov-Bohm superperiod and fractional statistics F.E. Camino, W. Zhou and V.J. Goldman Stony Brook University Outline Exchange statistics in 2D,

More information

SMR/ JOINT ICTP-INFM SCHOOL/WORKSHOP ON "ENTANGLEMENT AT THE NANOSCALE" (28 October - 8 November 2002)

SMR/ JOINT ICTP-INFM SCHOOL/WORKSHOP ON ENTANGLEMENT AT THE NANOSCALE (28 October - 8 November 2002) ii-i ii \,s:s: ^"n the abdus salam international centre for theoretical physics SMR/1438-10 JOINT ICTP-INFM SCHOOL/WORKSHOP ON "ENTANGLEMENT AT THE NANOSCALE" (28 October - 8 November 2002) "Adiabatic

More information

Quantum dots and Majorana Fermions Karsten Flensberg

Quantum dots and Majorana Fermions Karsten Flensberg Quantum dots and Majorana Fermions Karsten Flensberg Center for Quantum Devices University of Copenhagen Collaborator: Martin Leijnse and R. Egger M. Kjærgaard K. Wölms Outline: - Introduction to Majorana

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII Prospects for Superconducting ubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII uantum error correction and the future of solid state qubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Demonstration of conditional gate operation using superconducting charge qubits

Demonstration of conditional gate operation using superconducting charge qubits Demonstration of conditional gate operation using superconducting charge qubits T. Yamamoto, Yu. A. Pashkin, * O. Astafiev, Y. Nakamura, & J. S. Tsai NEC Fundamental Research Laboratories, Tsukuba, Ibaraki

More information

2 Introduction The quantum measurement is an essential ingredient of investigations of quantum coherent eects. In particular, it is needed to probe ma

2 Introduction The quantum measurement is an essential ingredient of investigations of quantum coherent eects. In particular, it is needed to probe ma READING-OUT A QUANTUM STATE: AN ANALYSIS OF THE QUANTUM MEASUREMENT PROCESS Yu. Makhlin Institut fur Theoretische Festkorperphysik, Universitat Karlsruhe, D-76128 Karlsruhe Landau Institute for Theoretical

More information

Use of dynamical coupling for improved quantum state transfer

Use of dynamical coupling for improved quantum state transfer Use of dynamical coupling for improved quantum state transfer A. O. Lyakhov and C. Bruder Department of Physics and Astronomy, University of Basel, Klingelbergstr. 82, 45 Basel, Switzerland We propose

More information

What is Quantum Transport?

What is Quantum Transport? What is Quantum Transport? Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Semiclassical Transport (is boring!) Bloch-Boltzmann

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Decoherence in Josephson and Spin Qubits. Lecture 3: 1/f noise, two-level systems

Decoherence in Josephson and Spin Qubits. Lecture 3: 1/f noise, two-level systems Decoherence in Josephson and Spin Qubits Alexander Shnirman University of Innsbruck Lecture 3: 1/f noise, two-level systems 1. Phenomenology of 1/f noise 2. Microscopic models 3. Relation between T1 relaxation

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology Towards quantum metrology with N00N states enabled by ensemble-cavity interaction Hao Zhang Monika Schleier-Smith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MIT-Harvard

More information

Superconductivity at nanoscale

Superconductivity at nanoscale Superconductivity at nanoscale Superconductivity is the result of the formation of a quantum condensate of paired electrons (Cooper pairs). In small particles, the allowed energy levels are quantized and

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

arxiv: v1 [quant-ph] 3 Nov 2015

arxiv: v1 [quant-ph] 3 Nov 2015 Nonadiabatic holonomic single-qubit gates in off-resonant Λ systems Erik Sjöqvist a arxiv:1511.00911v1 [quant-ph] 3 Nov 015 a Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 0

More information

MESOSCOPIC QUANTUM OPTICS

MESOSCOPIC QUANTUM OPTICS MESOSCOPIC QUANTUM OPTICS by Yoshihisa Yamamoto Ata Imamoglu A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Toronto Singapore Preface xi 1 Basic Concepts

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

PHY305: Notes on Entanglement and the Density Matrix

PHY305: Notes on Entanglement and the Density Matrix PHY305: Notes on Entanglement and the Density Matrix Here follows a short summary of the definitions of qubits, EPR states, entanglement, the density matrix, pure states, mixed states, measurement, and

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Matter wave interferometry beyond classical limits

Matter wave interferometry beyond classical limits Max-Planck-Institut für Quantenoptik Varenna school on Atom Interferometry, 15.07.2013-20.07.2013 The Plan Lecture 1 (Wednesday): Quantum noise in interferometry and Spin Squeezing Lecture 2 (Friday):

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

PHYS 508 (2015-1) Final Exam January 27, Wednesday.

PHYS 508 (2015-1) Final Exam January 27, Wednesday. PHYS 508 (2015-1) Final Exam January 27, Wednesday. Q1. Scattering with identical particles The quantum statistics have some interesting consequences for the scattering of identical particles. This is

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

Quantum Processes in Josephson Junctions & Weak Links. J. A. Sauls

Quantum Processes in Josephson Junctions & Weak Links. J. A. Sauls CMS Colloquium, Los Alamos National Laboratory, December 9, 2015 Quantum Processes in Josephson Junctions & Weak Links J. A. Sauls Northwestern University e +iφ 2 e +iφ 1 111000 00000000 111111110000000

More information

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Douglas Natelson Department of Physics and Astronomy Department of Electrical and Computer Engineering Rice Quantum Institute

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

Open quantum systems

Open quantum systems Open quantum systems Wikipedia: An open quantum system is a quantum system which is found to be in interaction with an external quantum system, the environment. The open quantum system can be viewed as

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Lecture 3. Shot noise correlations: The two-particle Aharonv-Bohm effect. Markus Buttiker University of Geneva

Lecture 3. Shot noise correlations: The two-particle Aharonv-Bohm effect. Markus Buttiker University of Geneva Lecture 3 Shot noise correlations: The two-particle haronv-bohm effect 1 6 1 C 3 B 8 5 4 D 3 4 7 Markus Buttiker University of Geneva IV-th Windsor Summer School on Condensed Matter Theory, organized by

More information

Relational time and intrinsic decoherence

Relational time and intrinsic decoherence Relational time and intrinsic decoherence G. J. Milburn David Poulin Department of Physics, The University of Queensland, QLD 4072 Australia. 1 Quantum state of the universe. Page & Wooters,Phys. Rev 1983.

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS

REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS IRFAN SIDDIQI YALE UNIVERSITY R. Vijay P. Hyafil E. Boaknin M. Metcalfe F. Pierre L. Frunzio C.M. Wilson C. Rigetti V. Manucharyan J. Gambetta

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Scattering theory of current-induced forces Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Overview Current-induced forces in mesoscopic systems: In molecule/dot with slow mechanical

More information

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime J. Basset, 1 A.Yu. Kasumov, 1 C.P. Moca, G. Zarand,, 3 P. Simon, 1 H. Bouchiat, 1 and R. Deblock 1 1 Laboratoire de Physique

More information

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Large radius theory of optical transitions in semiconducting nanotubes derived from low energy theory of graphene Phys.

More information

Optomechanics and spin dynamics of cold atoms in a cavity

Optomechanics and spin dynamics of cold atoms in a cavity Optomechanics and spin dynamics of cold atoms in a cavity Thierry Botter, Nathaniel Brahms, Daniel Brooks, Tom Purdy Dan Stamper-Kurn UC Berkeley Lawrence Berkeley National Laboratory Ultracold atomic

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit with Ultracold Trapped Atoms at the Quantum Speed Limit Michael Goerz May 31, 2011 with Ultracold Trapped Atoms Prologue: with Ultracold Trapped Atoms Classical Computing: 4-Bit Full Adder Inside the CPU:

More information