Mesoscopic field state superpositions in Cavity QED: present status and perspectives

Size: px
Start display at page:

Download "Mesoscopic field state superpositions in Cavity QED: present status and perspectives"

Transcription

1 Mesoscopic field state superpositions in Cavity QED: present status and perspectives Serge Haroche, Ein Bokek, February 21 st 2005 Entangling single atoms with larger and larger fields: an exploration of the quantum classical boundary

2 1. A reminder about Cavity QED: a story about springs and spins 2. Microscopic atom-field entanglement in Cavity QED 3. Mesoscopic atom field entanglement in dispersive regime 4. Mesoscopic atom field entanglement in resonant regime 5. Probing decoherence of mesoscopic superpositions 6. Perspectives: non-local mesoscopic entanglement

3 1. A story about springs and spins

4 Cavity QED: a story about springs and spins Towards Classical e g The spin: 2-level atom Mesoscopic field (n~10-100) 2 Microscopic 1 field n=0 The spring: Cavity mode Standard Hamiltonian H = hω at σ z 2 + hω ca a + hω σ + a + σ a Strong coupling 1 1 Ω >>, T c T a 50kHz : 1kHz : 30Hz

5 Coherent field state n Produced by coupling for a short time cavity to a classical source Superposition of photon number state with Poissonian distribution: α = C n n, C n = e α 2 /2 α n, n n! n = α 2, P(n) = C n 2 = e n n n n! Phase space representation Im(α) n=0 Amplitude α ϕ=ϕ 0 - ω c t Re(α)

6 Cavity QED set up Rev. Mod. Phys. 73, 565 (2001) Oven Source for photon injection in cavity High Q Cavity Circular Rydberg atom preparation (principal quantum number 51 or 50) Ramsey pulses source Field ionization detector

7 2. Microscopic atom-field entanglement in Cavity QED (atom and field behave as qubits)

8 Non resonant atom-field coupling: atomic light shift Non-resonant atom-field coupling e, n Ω 2 (n + 1) 4δ n? Vacuum Rabi frequency Ω Atom-field detuning δ g, n Ω2 n 4δ Measuring the atomic frequency inside box yields photon number Detecting these shifts without «looking» inside the box: Measure atomic coherence phase shift during the atom box crossing time by Ramsey interferometry! Amounts to non-destructive (QND) detection of single photon

9 How to realize a π atomic phase shift per photon? Dispersive and resonant methods e, n g, n Ramsey e g i Ω 2 (n + 1) Φ = Ω2 (2n + 1) 4δ t Φ = π per photon if Ω2 t δ Dispersive coupling = 2π Resonant atom-cavity interaction on e-g transition g,1 i,1 4δ Ω2 n 4δ ( i + g ) 1 i + e iπ g Ωt =2π e iπ g,1 Ωt =2π i,1 ( ) 1 ( i + g ) 0 i + g ( ) 0 2π Rabi rotation in 1 photon induces π phase shift of atom state (like spin 1/2) Works only in the 0-1 photon subspace

10 Quantum Non Demolition measurement of a photon G.Nogues et al, Nature, 400, 239 (1999) Single photon in C dephases fringes 0 photon 0 photon R 1 R 2 1 photon 1 photon R 1 R 2 Phases adjusted so that atom exits in one state if there is 0 photon in C, in the other if there is 1 photon (π phase shift in a one photon field) QND method with atom acting as a meter measuring the field: quantum gate operation If field is in a superposition of photon states, entanglement created: e c c 1 1 c 0 e,0 + c 1 g,1

11 3. Mesoscopic atom field entanglement in dispersive regime

12 Exchanging the roles of matter and field: Use mesoscopic coherent field for a QND measurement of atoms with 100% efficiency Im(α) An atom in level e or g dephases coherent field by Φ -Φ Φ = ± Ω2 4δ t g e g e Re(α) (single atom index) Measuring the phase of the field after the atom has crossed the cavity reveals the state of the atom (or the absence of atom) in a non-destructive way. In order to measure the field phase distribution, use an homodyne method: mix field with a reference with variable phase and measure resulting field intensity

13 Field phase distribution measurement How to measure a coherent field phase-shift? Cavity QED Homodyne method Injection of a coherent field i S Second injection αe φ > α > S Atom detector (field ionization) Resulting field i α(1 e φs ) > Back to the vacuum state φ S = 0 A probe atom is sent in g> -Field in the vacuum state P g 1 -Field in an excited state P g 1 / 2 φ S P ( φ ) g S = a signal to measure the field phase distribution Field phase-shifted by φ Maximum displaced by φ

14 Phase-shifting by single index atom Probe atom Coherent field source (used twice) Index atom Atom detector 0,70 0,65 0,60 0,55 0,50 P.Maioli et al, PRL to be published index atom in g v = 200 m/s δ = 50 khz n=29 photons φ 0 = 39 φ = φ 0 Signals conditioned to detection of index atom in e or g 0,45 0,75 0,70 0,65 0,60 0, No index atom φ = 0 0,50 0,45 Macroscopic single atom effect Phase-shifts with opposite signs for -150 index atom in e and g ,70 0,65 0,60 0,55 0,50 0,45 Index atom in e φ = + φ 0

15 Coupling the field to atom in state superposition: dispersive atom-field entanglement Classical π/2 pulse mixing e and g (R 1 ) S Classical source (initial injection of coherent field α>) Atom prepared in symmetric superposition of e and g before crossing the cavity storing α >. The two components of the atomic state rotate the phase of the field by two opposite angles: e e>+ g> χ = 1 4δ t f t i dt Ω 2 (t) The final atom-cavity state is entangled: the system evolves towards two states with different phases, correlated to the two atomic states. Ideal example of pre-masurement: the field is a meter whose state «points towards» the atomic energy: a Schrödinger cat state situation. e α R e + g ( ) α C e iχ 2 e α e iχ g α eiχ +

16 4. Mesoscopic atom field entanglement in resonant regime

17 Resonant atom-field coupling: atomic eigenstates at classical limit Two-level system { e>; g>} interacting with a resonant field Rotating frame Rotating wave approximation Eigenstates of the hamiltonian + > = > = <σ z > P e ( e > + g >) 2 1 ( e > + g >) 2 e> g> Field in rotating frame ( Ω cl ) hω hω cos( ωt) X Z g> e> cl - > +> Y 1 Rabi oscillation at frequency Ω cl Time (a.u.)

18 Evolution Classical Rabi oscillation: an interference effect e > ψ (t) >= 1 2 e iω cl t / 2 + > +e iω cl t / 2 > Detection in { e>, g>} basis ( ) e> Evolution Change of basis +> - > Detection Change of basis e> Classical Rabi oscillation: a quantum interference between two indistinguishable paths P 1 e P e 1 Time (a.u.) time

19 Coupling atomic eigenstates to mesoscopic coherent field (1 st order in n-n) e + 2 g e g 2 1 α e 2inϕ (t ) ψ at + (t) > α + (t) > 1 ( ) : αe iϕ (t ) > 2 e iϕ (t ) e > + g > α e 2inϕ (t ) ψ at (t) > α (t) > ( ) : αeiϕ (t ) > 2 eiϕ (t ) e > g > As in dispersive case, the atomic eigenstates induce opposite phase rotations on coherent fields. Field reacts back on atom and induces a correlated atomic dipole phase shift. Effect vanishes at classical limit (n ) P(n) n n ϕ(t) = Ω t 4 n Resonant phase shift

20 Representation in phase space Atomic state in the equatorial Representation plane in the same plane of the Bloch sphere ZY Coherent field in the Fresnel plane X +> +> Y X α > Equatorial plane Phase correlation of the Bloch sphere Atomic dipole and field «aligned»

21 e,α = 1 2 Evolution of atom-field system +,α +,α ( ) Single atom-mesoscopic field ( at ( t), ( t) > ) 1 Initial state +,α > ψ α e 2inϕ (t ) ψ at + (t) > α + (t) > +e 2inϕ (t ) ψ at (t) > α (t) > at,α > ψ ( t), α ( t) > Fast quantum phase responsible for Rabi oscillation α + ( t) > entanglement A microscopic object leaves its imprint on a mesoscopic one Schrödinger-cat situation -> ϕ ϕ D α > +> "Size" of the cat=d D = 2 n sin Ω t 0 4 n α ( t) > The field acts as a Which-Path detector Contrast of the Rabi oscillation C(t) = < α + (t) α (t) > = e D2 (t )

22 Rabi oscillation in mesoscopic field collapses and revives as field components separate and recombine Atom and field disentangle: Rabi oscillation revives 1 P e (t) Atom and field entangled: Rabi oscillation collapses 0.2 Complementarity in action! _ 0 t/2_ At classical limit, collapse and revival times rejected to t =

23 Evidence of phase splitting v=335m/s n = 36 t int = 32µs Measured phase ϕ = 23 Expected value ϕ = Ω t Experiment and theory in 0 int 4 n = 23 very good agreement

24 5. Probing decoherence of mesoscopic superpositions

25 Fast decoherence of Schrödinger cat state Entanglement with environment: complementarity again αe iχ ± αe iχ E 0 αe iχ E χ ± αe iχ E χ en tan glement with environment Very quickly state superposition is turned into statistical mixture: αe iχ ± αe iχ ρ = αe iχ αe iχ + αe iχ αe iχ tracing over environment Interference terms in photon probability distribution P ± coh (n) = 1 2 n αe iχ ± n αe iχ 2 are washed out by decoherence P ± Dec (n) = 1 2 n αe iχ 2 + n αe iχ 2 = e n n n ( ) n! 1 ± cos2nχ P coh + (n) even cat (χ = π / 2) Loss of single photon in time ~T c /n = e n n n n! P + Decoh (n) Experiment: Brune et al, P.R.L77, 4887 (1996) Mixture of even and odd cats

26 Demonstrating the cat state coherence with a single atom by observing Rabi oscillation revival Observing the revival of Rabi oscillation would prove that the cat state produced during the collapse time was coherent but the revival time is, at present time, too long compared to the cavity damping time Solution: induce revival at earlier time by echo technique

27 Test of coherence: quantum revivals induced by time reversal Initial Rabi rotation, Apply short Stark pulse equivalent Reverse to π rotation phase Collapse around rotation Oz (transforms And slow +> phase into ->) Recombination of field rotation components induces revival of Rabi oscillation A spin echo experiment Time reversal experiments in Cavity QED to study decoherence proposed by G.Morigi, E.Solano, B.G.Englert and H.Walther, Phys.Rev.A 65, (R),2002.

28 Observation of induced Rabi revival signals Stark pulse Revivals up to 2T= 50 µs with n=13 photons Stark pulse Evidence of «long lived» coherent mesoscopic superpositions of field states T.Meunier et al, PRL, December 2004

29 How big a Schrödinger cat? Competition between preparation time t int (time of flight of atom across cavity) and decoherence time T c /n: In early work (1996), T c ~150µs restricted n to ~3-5 (dispersive experiment) In more recent work ( ), T c ~1ms and n~30 t int ~30µs n T c t int n = 36 Cat state prepared by resonant atom-field coupling Very recently (December 2004), we have obtained T c ~14ms, opening the possibility to realize cat states with n~

30 Conclusions and perspectives Larger and longer lived cats (n in the hundreds) with better cavities Non local field states in two cavities Prepare and detect α, 0> + 0, α > (similar to n,0> + 0,n >) Marry the strangeness of Schrödinger cats with non locality: an exploration of the quantum-classical boundary Similar cat experiments with matter waves (BEC) instead of fields?

31 Support:JST (ICORP, Japan), EC, CNRS, UMPC, IUF, CdF S.Gleyzes P.Maioli T.Meunier G.Nogues M.Brune Alexia Auffeves J.M.Raimond

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004 Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004 A very active research field: Code information in simple systems (atoms, photons..) and use

More information

Lecture 3 Quantum non-demolition photon counting and quantum jumps of light

Lecture 3 Quantum non-demolition photon counting and quantum jumps of light Lecture 3 Quantum non-demolition photon counting and quantum jumps of light A stream of atoms extracts information continuously and non-destructively from a trapped quantum field Fundamental test of measurement

More information

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris www.college-de-france.fr A

More information

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates DÉPARTEMENT DE PHYSIQUE DE L ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL Cavity Quantum Electrodynamics Lecture : entanglement engineering with quantum gates Michel BRUNE Les Houches 003 1 CQED

More information

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris A three lecture course Goal of lectures Manipulating states of simple quantum systems has become an important

More information

Lecture 2: Quantum measurement, Schrödinger cat and decoherence

Lecture 2: Quantum measurement, Schrödinger cat and decoherence Lecture 2: Quantum measurement, Schrödinger cat and decoherence 5 1. The Schrödinger cat 6 Quantum description of a meter: the "Schrödinger cat" problem One encloses in a box a cat whose fate is linked

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

8 Quantized Interaction of Light and Matter

8 Quantized Interaction of Light and Matter 8 Quantized Interaction of Light and Matter 8.1 Dressed States Before we start with a fully quantized description of matter and light we would like to discuss the evolution of a two-level atom interacting

More information

Cavity Quantum Electrodynamics Lecture 1

Cavity Quantum Electrodynamics Lecture 1 DÉPARTEMENT DE PHYSIQUE DE L ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL Cavity Quantum Electrodynamics Lecture 1 Michel BRUNE Les Houches 2003 1 Quantum information and Cavity QED Principle of

More information

Counting non-destructively photons in a cavity, reconstructing Schrödinger cat states of light & realizing movies of their decoherence

Counting non-destructively photons in a cavity, reconstructing Schrödinger cat states of light & realizing movies of their decoherence Counting non-destructively photons in a cavity, reconstructing Schrödinger cat states of light & realizing movies of their decoherence Serge Haroche, ENS and Collège de France, Paris International Workshop

More information

Preparation of a GHZ state

Preparation of a GHZ state Preparation of a GHZ state Cavity QED Gilles Nogues Experimental realization A first atom in e 1 performs a π/2 pulse ψ 1 = 1 2 ( e 1, 0 + g 1, 1 ) A second atom in 1/ 2( i 2 + g 2 ) performs a QPG gate

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Chapter 6. Exploring Decoherence in Cavity QED

Chapter 6. Exploring Decoherence in Cavity QED Chapter 6 Exploring Decoherence in Cavity QED Serge Haroche, Igor Dotsenko, Sébastien Gleyzes, Michel Brune, and Jean-Michel Raimond Laboratoire Kastler Brossel de l Ecole Normale Supérieure, 24 rue Lhomond

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Homework 3. 1 Coherent Control [22 pts.] 1.1 State vector vs Bloch vector [8 pts.]

Homework 3. 1 Coherent Control [22 pts.] 1.1 State vector vs Bloch vector [8 pts.] Homework 3 Contact: jangi@ethz.ch Due date: December 5, 2014 Nano Optics, Fall Semester 2014 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch 1 Coherent Control [22 pts.] In the first part of this

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology Towards quantum metrology with N00N states enabled by ensemble-cavity interaction Hao Zhang Monika Schleier-Smith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MIT-Harvard

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Control of quantum two-level systems

Control of quantum two-level systems Control of quantum two-level sstems R. Gross, A. Mar & F. Deppe, Walther-Meißner-Institut (00-03) 0.3 Control of quantum two-level sstems.. General concept AS-Chap. 0 - How to control a qubit? Does the

More information

Cavity QED in Atomic Physics

Cavity QED in Atomic Physics Chapter 1 Cavity QED in Atomic Physics Serge Haroche, and Jean-Michel Raimond, Laboratoire Kastler-Brossel, ENS, UPMC-Paris 6, CNRS, 24 rue Lhomond 75005 Paris, France Collège de France, 11 place Marcelin

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

arxiv: v1 [quant-ph] 11 Nov 2014

arxiv: v1 [quant-ph] 11 Nov 2014 Electric dipoles on the Bloch sphere arxiv:1411.5381v1 [quant-ph] 11 Nov 014 Amar C. Vutha Dept. of Physics & Astronomy, York Univerity, Toronto ON M3J 1P3, Canada email: avutha@yorku.ca Abstract The time

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Niels Bohr Institute Copenhagen University. Eugene Polzik

Niels Bohr Institute Copenhagen University. Eugene Polzik Niels Bohr Institute Copenhagen University Eugene Polzik Ensemble approach Cavity QED Our alternative program (997 - ): Propagating light pulses + atomic ensembles Energy levels with rf or microwave separation

More information

NANOSCALE SCIENCE & TECHNOLOGY

NANOSCALE SCIENCE & TECHNOLOGY . NANOSCALE SCIENCE & TECHNOLOGY V Two-Level Quantum Systems (Qubits) Lecture notes 5 5. Qubit description Quantum bit (qubit) is an elementary unit of a quantum computer. Similar to classical computers,

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Single-Mode Displacement Sensor

Single-Mode Displacement Sensor Single-Mode Displacement Sensor Barbara Terhal JARA Institute for Quantum Information RWTH Aachen University B.M. Terhal and D. Weigand Encoding a Qubit into a Cavity Mode in Circuit-QED using Phase Estimation,

More information

MESOSCOPIC QUANTUM OPTICS

MESOSCOPIC QUANTUM OPTICS MESOSCOPIC QUANTUM OPTICS by Yoshihisa Yamamoto Ata Imamoglu A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Toronto Singapore Preface xi 1 Basic Concepts

More information

Cavity QED with Rydberg Atoms

Cavity QED with Rydberg Atoms Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris Lecture 3: Quantum feedback and field state reconstruction in Cavity QED experiments. Introduction to Circuit

More information

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Ceren Burçak Dağ Supervisors: Dr. Pol Forn-Díaz and Assoc. Prof. Christopher Wilson Institute

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

S.K. Saikin May 22, Lecture 13

S.K. Saikin May 22, Lecture 13 S.K. Saikin May, 007 13 Decoherence I Lecture 13 A physical qubit is never isolated from its environment completely. As a trivial example, as in the case of a solid state qubit implementation, the physical

More information

Feedback control of atomic coherent spin states

Feedback control of atomic coherent spin states Feedback control of atomic coherent spin states Andrea Bertoldi Institut d Optique, France RG Colloquium Hannover 13/12/2012 Feedback control h(t) Constant flow is required to keep time P = r H2O g h(t)

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Quantum Optics and Quantum Informatics FKA173

Quantum Optics and Quantum Informatics FKA173 Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:30-1:30. Examiners: Jonas Bylander (070-53 44 39) and Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.

More information

Introduction to Circuit QED Lecture 2

Introduction to Circuit QED Lecture 2 Departments of Physics and Applied Physics, Yale University Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

Likewise, any operator, including the most generic Hamiltonian, can be written in this basis as H11 H

Likewise, any operator, including the most generic Hamiltonian, can be written in this basis as H11 H Finite Dimensional systems/ilbert space Finite dimensional systems form an important sub-class of degrees of freedom in the physical world To begin with, they describe angular momenta with fixed modulus

More information

Molecular alignment, wavepacket interference and Isotope separation

Molecular alignment, wavepacket interference and Isotope separation Molecular alignment, wavepacket interference and Isotope separation Sharly Fleischer, Ilya Averbukh and Yehiam Prior Chemical Physics, Weizmann Institute Yehiam.prior@weizmann.ac.il Frisno-8, Ein Bokek,

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Dynamically protected cat-qubits: a new paradigm for universal quantum computation

Dynamically protected cat-qubits: a new paradigm for universal quantum computation Home Search Collections Journals About Contact us My IOPscience Dynamically protected cat-qubits: a new paradigm for universal quantum computation This content has been downloaded from IOPscience. Please

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

arxiv: v1 [quant-ph] 6 Dec 2013

arxiv: v1 [quant-ph] 6 Dec 2013 Dynamically protected cat-qubits: a new paradigm for universal quantum computation arxiv:32.207v [quant-ph] 6 Dec 203 Mazyar Mirrahimi,2, Zaki Leghtas 2, Victor V. Albert 2,3, Steven Touzard 2, Robert

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Control of quantum two-level systems

Control of quantum two-level systems R. Gross, A. Mar, F. Deppe, and K. Fedorov Walther-Meißner-Institut (00-08) AS-Chap. 6.3 - Control of quantum two-level sstems R. Gross, A. Mar, F. Deppe, and K. Fedorov Walther-Meißner-Institut (00-08)

More information

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino New schemes for manipulating quantum states using a Kerr cell Marco Genovese and C.Novero Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I-10135 Torino Recently, Quantum Non Demolition

More information

Diffraction effects in entanglement of two distant atoms

Diffraction effects in entanglement of two distant atoms Journal of Physics: Conference Series Diffraction effects in entanglement of two distant atoms To cite this article: Z Ficek and S Natali 007 J. Phys.: Conf. Ser. 84 0007 View the article online for updates

More information

Quantum Light-Matter Interactions

Quantum Light-Matter Interactions Quantum Light-Matter Interactions QIC 895: Theory of Quantum Optics David Layden June 8, 2015 Outline Background Review Jaynes-Cummings Model Vacuum Rabi Oscillations, Collapse & Revival Spontaneous Emission

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Mesoscopic Shelving Readout of Superconducting Qubits in Circuit Quantum Electrodynamics

Mesoscopic Shelving Readout of Superconducting Qubits in Circuit Quantum Electrodynamics Mesoscopic Shelving Readout of Superconducting Qubits in Circuit Quantum Electrodynamics Diploma Thesis by Barbara Gabriele Ursula Englert October 008 Supervised by Prof. Dr. Rudolf Gross and Prof. Dr.

More information

Felix Kleißler 1,*, Andrii Lazariev 1, and Silvia Arroyo-Camejo 1,** 1 Accelerated driving field frames

Felix Kleißler 1,*, Andrii Lazariev 1, and Silvia Arroyo-Camejo 1,** 1 Accelerated driving field frames Supplementary Information: Universal, high-fidelity quantum gates based on superadiabatic, geometric phases on a solid-state spin-qubit at room temperature Felix Kleißler 1,*, Andrii Lazariev 1, and Silvia

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

B2.III Revision notes: quantum physics

B2.III Revision notes: quantum physics B.III Revision notes: quantum physics Dr D.M.Lucas, TT 0 These notes give a summary of most of the Quantum part of this course, to complement Prof. Ewart s notes on Atomic Structure, and Prof. Hooker s

More information

Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments

Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments Maximilian Schlosshauer Department of Physics University of Washington Seattle, Washington Very short biography Born in

More information

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Cooperative atom-light interaction in a blockaded Rydberg ensemble Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation

More information

Multiparticle Entanglement and Interference in Cavity Quantum Electrodynamics

Multiparticle Entanglement and Interference in Cavity Quantum Electrodynamics Multiparticle Entanglement and Interference in Cavity Quantum Electrodynamics A THESIS SUBMITTED TO GUJARAT UNIVERSITY for the degree of Doctor of Philosophy in Physics BY Pradyumna Kumar Pathak Quantum

More information

Quantum Information & Quantum Computing. (Experimental Part) Oliver Benson SoSe, 2016

Quantum Information & Quantum Computing. (Experimental Part) Oliver Benson SoSe, 2016 Quantum Information & Quantum Computing (Experimental Part) Oliver Benson SoSe, 2016 Contents 1 Introduction 5 2 Optical and Cavity QED Implementations 7 2.1 Properties of an optical quantum computer............

More information

Quantum simulation with superconducting circuits

Quantum simulation with superconducting circuits Quantum simulation with superconducting circuits Summary: introduction to quantum simulation with superconducting circuits: quantum metamaterials, qubits, resonators motional averaging/narrowing: theoretical

More information

arxiv: v1 [quant-ph] 24 Aug 2007

arxiv: v1 [quant-ph] 24 Aug 2007 1 arxiv:0708.395v1 [quant-ph] 4 Aug 007 Recent progress on the manipulation of single atoms in optical tweezers for quantum computing A. Browaeys, J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko,

More information

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island PHYSICAL REVIEW B, VOLUME 63, 054514 Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island Florian Marquardt* and C. Bruder Departement

More information

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting Jay Gambetta, 1 Alexandre Blais, 1,2 D. I. Schuster, 1 A. Wallraff, 1,3 L. Frunzio, 1 J. Majer, 1 M. H. Devoret,

More information

Exploring the quantum nature of light in a cavity

Exploring the quantum nature of light in a cavity Exploring the quantum nature of light in a cavity Serge Haroche, ENS and Collège de France, Paris Trapped quantum field probed by single atoms A «photon box» as an ideal laboratory to demonstrate effects

More information

synthetic condensed matter systems

synthetic condensed matter systems Ramsey interference as a probe of synthetic condensed matter systems Takuya Kitagawa (Harvard) DimaAbanin i (Harvard) Mikhael Knap (TU Graz/Harvard) Eugene Demler (Harvard) Supported by NSF, DARPA OLE,

More information

Quantum non-demolition measurements: a new resource for making linear logic scalable

Quantum non-demolition measurements: a new resource for making linear logic scalable Quantum non-demolition measurements: a new resource for making linear logic scalable Kae Nemoto 1, William J. Munro, Timothy P. Spiller, R.G. Beausoleil Trusted Systems Laboratory HP Laboratories Bristol

More information

Mesoscopic quantum measurements

Mesoscopic quantum measurements Mesoscopic quantum measurements D.V. Averin Department of Physics and Astronomy SUNY Stony Brook A. Di Lorentzo K. Rabenstein V.K. Semenov D. Shepelyanskii E.V. Sukhorukov Summary α β Example of the trivial

More information

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles Quantum Computation 650 Spring 2009 Lectures 1-21 The World of Quantum Information Marianna Safronova Department of Physics and Astronomy February 10, 2009 Outline Quantum Information: fundamental principles

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

PHY305: Notes on Entanglement and the Density Matrix

PHY305: Notes on Entanglement and the Density Matrix PHY305: Notes on Entanglement and the Density Matrix Here follows a short summary of the definitions of qubits, EPR states, entanglement, the density matrix, pure states, mixed states, measurement, and

More information

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities Lecture 6: Circuit QED experiments synthesing arbitrary states of quantum oscillators. Introduction

More information

From trapped ions to macroscopic quantum systems

From trapped ions to macroscopic quantum systems 7th International Summer School of the SFB/TRR21 "Control of Quantum Correlations in Tailored Matter 21-13 July 2014 From trapped ions to macroscopic quantum systems Peter Rabl Yesterday... Trapped ions:

More information

QUANTUM THEORY OF LIGHT EECS 638/PHYS 542/AP609 FINAL EXAMINATION

QUANTUM THEORY OF LIGHT EECS 638/PHYS 542/AP609 FINAL EXAMINATION Instructor: Professor S.C. Rand Date: April 5 001 Duration:.5 hours QUANTUM THEORY OF LIGHT EECS 638/PHYS 54/AP609 FINAL EXAMINATION PLEASE read over the entire examination before you start. DO ALL QUESTIONS

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Introduction to Cavity QED

Introduction to Cavity QED Introduction to Cavity QED Fabian Grusdt March 9, 2011 Abstract This text arose in the course of the Hauptseminar Experimentelle Quantenoptik in WS 2010 at the TU Kaiserslautern, organized by Prof. Ott

More information

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University Quantum optics Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik M. Suhail Zubairy Quaid-i-Azam University 1 CAMBRIDGE UNIVERSITY PRESS Preface xix 1 Quantum theory of radiation

More information

Nonlinear optics with single quanta

Nonlinear optics with single quanta Nonlinear optics with single quanta A brief excursion into cavity quantum electrodynamics Kevin Moore Physics 208 Fall 2004 What characterizes linear systems? X stuff Y 1. Start with input X 2. X impinges

More information

TELEPORTATION OF ATOMIC STATES VIA CAVITY QUANTUM ELECTRODYNAMICS

TELEPORTATION OF ATOMIC STATES VIA CAVITY QUANTUM ELECTRODYNAMICS TELEPORTATION OF ATOMIC STATES VIA CAVITY QUANTUM ELECTRODYNAMICS arxiv:quant-ph/0409194v1 7 Sep 004 E. S. Guerra Departamento de Física Universidade Federal Rural do Rio de Janeiro Cx. Postal 3851, 3890-000

More information

Quantum Simulation with Rydberg Atoms

Quantum Simulation with Rydberg Atoms Hendrik Weimer Institute for Theoretical Physics, Leibniz University Hannover Blaubeuren, 23 July 2014 Outline Dissipative quantum state engineering Rydberg atoms Mesoscopic Rydberg gates A Rydberg Quantum

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Ultrafast Universal Quantum Control of a Quantum Dot Charge Qubit Using Landau-Zener-Stückelberg Interference Gang Cao, Hai-Ou Li, Tao Tu, Li Wang, Cheng Zhou, Ming Xiao,

More information

Bohr s Legacy in Cavity QED

Bohr s Legacy in Cavity QED Bohr, 1913-2013, Séminaire Poincaré XVII (2013) 59 97 Séminaire Poincaré Bohr s Legacy in Cavity QED Serge Haroche, Jean-Michel Raimond LKB, ENS, 24 rue Lhomond, 75005, Paris, France Collège de France,

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Matter wave interferometry beyond classical limits

Matter wave interferometry beyond classical limits Max-Planck-Institut für Quantenoptik Varenna school on Atom Interferometry, 15.07.2013-20.07.2013 The Plan Lecture 1 (Wednesday): Quantum noise in interferometry and Spin Squeezing Lecture 2 (Friday):

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena Solid State Physics IV -Part II : Macroscopic Quantum Phenomena Koji Usami (Dated: January 6, 015) In this final lecture we study the Jaynes-Cummings model in which an atom (a two level system) is coupled

More information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan Coherence and optical electron spin rotation in a quantum dot Sophia Economou Collaborators: NRL L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan T. L. Reinecke, Naval Research Lab Outline

More information

arxiv: v1 [quant-ph] 3 Nov 2015

arxiv: v1 [quant-ph] 3 Nov 2015 Nonadiabatic holonomic single-qubit gates in off-resonant Λ systems Erik Sjöqvist a arxiv:1511.00911v1 [quant-ph] 3 Nov 015 a Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 0

More information

Quantum Optics Project I

Quantum Optics Project I Quantum Optics Project I Carey Phelps, Tim Sweeney, Jun Yin Department of Physics and Oregon Center for Optics 5 April 7 Problem I The Bloch equations for the two-level atom were integrated using numerical

More information