Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Size: px
Start display at page:

Download "Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group"

Transcription

1 Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group

2 Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) 2) 3) Readout by a linear resonator Nonlinear resonators for high-fidelity readout Resonant qubit-resonator coupling: quantum state engineering and tomography Lecture 3: 2-qubit gates and quantum processor architectures

3 Fabrication techniques small junctions 1) e-beam patterning 2) development 3) first evaporation 4) oxidation 5) second evap. 6) lift-off 7) electrical test e-beam lithography e- Al/Al2O3/Al junctions O2 PMMA PMMA-MAA SiO2 I.3) Decoherence small junctions Multi angle shadow evaporation

4 QUANTRONIUM (Saclay group) gate I.3) Decoherence 160 x160 nm

5 FLUX-QUBIT (Delft group) I.3) Decoherence

6 TRANSMON QUBIT (Saclay group) 40µm 2µµ I.3) Decoherence

7 The ideal qubit readout relax. 2 β = p α 0>+β 1> 1 0 a + b 0? a + b 0? 1 a + b 0? tmeas << T1 p= α Hi-Fi Quantum Non Demolishing (QND) BUT.HOW??? SURPRISING DIFFICULT AND INTERESTING QUESTION FOR SUPERCONDUCTING QUBITS

8 The readout problem 1) Readout should be FAST : t meas << T1 : 1µ s for high fidelity ( F ᆪ 1 t meas / T1 ) Ideally, t meas : 10ns 2) Readout should be NON-INVASIVE Unwanted transition caused by readout process (but full dephasing can t be avoided!!!) errors 3) Readout should be COMPLETELY OFF during quantum state preparation (avoid backaction)

9 Readout by a linear resonator 1D CPW resonator Superconducting artificial atom R. Schoelkopf, 2004 A. Blais et al., Phys. Rev. A 69, (2004) A. Walraff et al., Nature 431, 162 (2004) I. Chiorescu et al., Nature 431, 159 (2004) Modern readout methods by coupling to a resonator (CIRCUIT QUANTUM ELECTRODYNAMICS)

10 Physical realization L=3.2cm, fn=n 1.8GHz 3mm 50µm Coupling capacitor Cc 10mm 20µm Typical lateral dimensions : 10µm - 1-dimensional mode - Very confined : Vcav ᆪ 10 5 λ3 - Large voltage quantum fluctuations δ V0 : µv - Quality factor easily tuned by designing Cc

11 CPB coupled to a CPW resonator A. Blais et al., PRA 69, (2004) ( ) Vˆg = δv0 aˆ + aˆ + + Vgext Cg Vext ωc θˆ n 2 ˆ ˆ ˆ ˆ Htot = EJ cosθ + 4EC ( n ng ) + hωc aˆ + aˆ 2 ˆ ˆ Htot = EJ cos θ + 4EC ( nˆ ngext ) + hωc aˆ +aˆ + 8(Cg δv0ec / 2e )nˆ(a + a + ) Hˆ q Hˆ cav H int 2-level approximation + Rotating Wave Approximation Htot ωge ; σ z + ωc (a + a + 1/ 2) + g (σ + a + σ a + ) 2 Jaynes-Cummings Hamiltonian g = 2eδV0 (Cg / C ) 0 nˆ 1

12 Strong coupling regime with superconducting qubits g = 2eδV0 (Cg / C ) 0 nˆ 1 GEOMETRICAL dependence of g Easily tuned by circuit design Can be made very large! (Typically : 0 200MHz) g ᆪ 200MHz >> γ,κ ᆪ kHz Strong coupling condition naturally fulfilled with superconducting circuits (Q=100 enough for strong coupling!!)

13 The Jaynes-Cummings model g,3> d e,3> d e,2> g,2> e,1> g,1> e,0> HJ C = HJ C ωge σ z + ωc (a + a + 1/ 2) + g (σ + a + σ a + ) 2 couples only level doublets g,n+1>, e,n> Exact diagonalization possible g,0> Restriction of HJ-C to g,n+1>, e,n> g, n + 1 g, n + 1 e, n e, n (δ =ω (n + 1)ωc δ / 2 g n +1 g n +1 ( n + 1) ω + δ / 2 c Note : g,0> state is left unchanged by HJ-C with Eg,0=-δ/2 ge ωc )

14 The Jaynes-Cummings model g,3> d e,3> d e,2> g,2> e,1> g,1> e,0> HJ C = ωge σ z + ωc (a + a + 1/ 2) + g (σ + a + σ a + ) 2 HJ C couples only level doublets g,n+1>, e,n> Exact diagonalization possible g,0> Coupled states +, n = cos θ n e, n + sinθ n g, n + 1 E +,n, n = sinθ n e, n + cosθ n g, n + 1 E,n θn = h = (n + 1)hωc + 4g 2 ( n + 1) + δ 2 2 h = (n + 1)hωc 4g 2 (n + 1) + δ 2 2 2g n tan 1 2 δ

15 The Jaynes-Cummings model 1.08 e, n E/(hν c) g, n + 1 g, n + 1 e, n -5 0 δ/g 5

16 The Jaynes-Cummings model ,n e, n E/(hν c) 1.04 g, n g, n + 1 2g n + 1,n 0.96 e, n δ/g 5

17 Two interesting limits ,n e, n E/(hν c) 1.04 g, n g, n + 1 2g n + 1,n 0.96 RESONANT REGIME (δ=0) e, n δ/g 5

18 Two interesting limits ,n e, n E/(hν c) 1.04 g, n g, n + 1 2g n + 1,n 0.96 RESONANT REGIME (δ=0) e, n DISPERSIVE REGIME ( δ >>g) 0 δ/g 5 DISPERSIVE REGIME ( δ >>g)

19 Two interesting limits ,n e, n E/(hν c) 1.04 g, n + 1 QUANTUM STATE ENGINEERING g n + 1 g, n + 1,n 0.96 QUBIT STATE e,readout n DISPERSIVE REGIME ( δ >>g) RESONANT REGIME (δ=0) 0 δ/g QUBIT STATE READOUT 5 DISPERSIVE REGIME ( δ >>g)

20 The Jaynes-Cummings model : dispersive interaction δ >> g + ωge + χ ω + 2 χ ( a a + 1/ 2) ge + H J C / h ᆪ σ z + (ωc + χσ z )a a = σ z + ωc a +a 2 2 g2 with χ = the dispersive coupling constant δ 1) Qubit state-dependent shift of the cavity frequency ω% c = ωc + χσ z Cavity can probe the qubit state non-destructively 2) Light shift of the qubit transition in the presence of n photons δωge = 2 χ n Field in the resonator causes qubit frequency shift and decoherence

21 Dispersive readout of a transmon: principle ωc + χσ z 0> or 1>??

22 Dispersive readout of a transmon: principle Veiωc t Veiωc t ωc + χσ z 0> or 1>?? ω=ωc

23 Dispersive readout of a transmon: principle Veiωc t Veiωc t ωc + χσ z α1> α0> ω=ωc 0> or 1>??

24 Dispersive readout of a transmon: principle Veiωc t Veiωc t Ve iωc t + ωc + χσ z φ α1> α0> ω=ωc π 2χ 0> φ π 1> 0,96 1,00 ωd/ωc 1,04 0> or 1>??

25 Dispersive readout of a transmon: principle Veiωc t Veiωc t Ve iωc t + ωc + χσ z φ α1> α0> L.O ω=ωc φ0 π or φ1??? 2χ 0> φ π 1> 0,96 1,00 ωd/ωc 1,04 0> or 1>??

26 Typical implementation (Saclay) 5 mm (f0=6.5ghz) Q=700 80µµ g = 45MHz 40µµ 2µµ (optical+e-beam lithography)

27 Typical setup (Saclay) MW meas MW drive COIL Vc LO db 20dB 20dB 50MHz I Fast Digitizer Q G=56dB A(t) φ(t) 300K G=40dB TN=2.5K 50Ω 4K DC-8 GHz 30dB 600mK GHz 20dB 4-8 GHz 50Ω 18mK

28 Observation of the vacuum Rabi splitting with electrical circuits (courtesy of S. Girvin) Signature for strong coupling: Placing a single resonant atom inside the cavity leads to splitting of transmission peak 2008 vacuum Rabi splitting atom off-resonance observed in: cavity QED R.J. Thompson et al., PRL 68, 1132 (1992) I. Schuster et al. Nature Physics 4, (2008) on resonance circuit QED A. Wallraff et al., Nature 431, 162 (2004) quantum dot systems J.P. Reithmaier et al., Nature 432, 197 (2004) T. Yoshie et al., Nature 432, 200 (2004) 28 A. Wallraff et al., Nature 431, 162 (2004)

29 Qubit spectroscopy with dispersive readout -120 Probe resonator phase MW meas g Pump TLS -122 φ ( ) MW drv Some e 5,25 Drive freq (GHz) π e ϕ g π ω/ωc 5,30 5,35

30 Typical spectroscopy of a transmon + cavity circuit ν01 ν12 νχ

31 Rabi oscillations measured with dispersive readout Δt MW drv Variable-length drive MW meas Projective measurement x Ensemble averaging X ϕ ( ) Y T2R=316 ns t (ns)

32 Dispersive readout : the signal-to-noise issue Veiωc t Veiωc t Ve iωc t + ωc + χσ z φ α1> α0> Ideal amplifier L.O ω=ωc φ0 π or φ1??? 2χ 0> φ π 1> 0,96 1,00 ωd/ωc 1,04 0> or 1>??

33 Dispersive readout : the signal-to-noise issue Veiωc t Veiωc t Ve iωc t + Real amplifier TN=5K ωc + χσ z φ L.O ω=ωc φ0 π or α0> φ1??? 2χ 1> 0,96 No discrimination in 1 shot 0> φ π α1> 0> or 1>?? 1,00 ωd/ωc 1,04

34 Dispersive readout : the signal-to-noise issue Veiωc t Veiωc t QUANTUMLIMITED AMPLIFIER?? Ve iωc t + ωc + χσ z φ α1> 0> or 1>?? α0> Real amplifier TN=5K L.O ω=ωc φ0 π or φ1 2χ 0> φ π 1> 0,96 in one single-shot?? 1,00 ωd/ωc 1,04

35 How to build an amplifier with minimal noise??? pump signal in signal out Nonlinear resonator λ/4 λ/4 Junction causes Kerr non-linearity K Hc =ω h ac a + h (a ) a 2 + Resonator can behave as parametric amplifier K. Lehnert group M. Devoret group I. Siddiqi group II.2) Nonlinear resonator

36 A nonlinear resonator as quantum-limited amplifier δmax II.2) Nonlinear resonator M. J. Hatridge, R. Vijay, D. H. Slichter, J. Clarke and I. Siddiqi, Phys. Rev. B 83, (2011) (courtesy I. Siddiqi)

37 A nonlinear resonator as quantum-limited amplifier Small Saturated signal II.2) Nonlinear resonator (courtesy I. Siddiqi)

38 Signal-to-noise enhancement by a paramp M. Castellanos-Beltran, K. Lehnert, APL (2007) (quantum limit on how good an amplifier can be : Caves theorem) Actually reached in several experiments : quantum limited measurement II.2) Nonlinear resonator

39 Qubit and amplifier at 30 mk OUTPUT INPUT II.2) Nonlinear resonator DRIVE (courtesy I. Siddiqi)

40 Individual measurement traces readout off readout on R. Vijay, D.H. Slichter, and I. Siddiqi, PRL 106, (2011) II.2) Nonlinear resonator (courtesy I. Siddiqi)

41 Bivalued histograms Single-shot discrimination of qubit state II.2) Nonlinear resonator (courtesy I. Siddiqi)

42 Other strategy : sample-and-hold detector integrated with qubit pump λ/4 λ/4 Nonlinear resonator used as threshold detector II.2) Nonlinear resonator

43 Other strategy : sample-and-hold detector integrated with qubit Kerr-nonlinear resonator λ/4 λ/4 pump H Pd /Pc = I Ic L 2 0 II.2) Nonlinear resonator 2 - BISTABILITY FOR Ω > Ωc = 3 Ω

44 The Cavity Josephson Bifurcation Amplifier (CJBA) M. Devoret group, Yale MW drive : Pd(t), ω d ϕ in JBA: I. Siddiqi et al., PRL (2004) CJBA: M. Metcalfe et al, PRB (2007) Non linear resonator ϕout H Pd Pd H state Bistable region L Switching from L to H : BIFURCATION ωd L state ωc II.2) Nonlinear resonator Stochastic process governed by thermal or quantum noise. M.I. Dykman and M.A. Krivoglaz, JETP 77, 60 (1979) M.I. Dykman and V.N. Smelyanskiy, JETP 67, 1769 (1988)

45 The Cavity Josephson Bifurcation Amplifier (CJBA) M. Devoret group, Yale MW drive : Pd(t), ω d ϕ in JBA: I. Siddiqi et al., PRL (2004) CJBA: M. Metcalfe et al, PRB (2007) Non linear resonator ϕout H Pd Pd H state Bistable region ωd L state ωc II.2) Nonlinear resonator Switching probability L 1,0 0,8 0,6 0,4 0,2 0, Power Pd (db) -33

46 Readout of transmon with CJBA MW drive : Pd(t), ω d ϕ in Non linear resonator ϕout qubit in 0> or 1> Pd H state L state 2χ ω c 1>ω c 0> II.2) Nonlinear resonator ωd Switching Porbability Pd 1,0 0,8 1> 0,6 0,4 0,2 0,0 0> SINGLE-SHOT QUBIT READOUT Power Pd (db)

47 Rabi oscillations visibility hν12 0 t tπ,12 250ns 400ns Pswitch (%) hν01 2 TRabi=500ns Mallet et al., Nature Physics (2009) t (µs) Single-shot 93% contrast Rabi oscillations II.2) Nonlinear resonator See also A. Lupascu et al., Nature Phys. (2007)

Electrical Quantum Engineering with Superconducting Circuits

Electrical Quantum Engineering with Superconducting Circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 Electrical Quantum Engineering with Superconducting Circuits R. Heeres & P. Bertet SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010 High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity arxiv:4.4323v2 [cond-mat.mes-hall] 9 Oct 2 M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster,

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

More information

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

arxiv: v1 [quant-ph] 31 May 2010

arxiv: v1 [quant-ph] 31 May 2010 Single-shot qubit readout in circuit Quantum Electrodynamics François 1 Mallet, Florian R. 1 Ong, Agustin 1 Palacios-Laloy, François 1 Nguyen, Patrice 1 Bertet, Denis 1 Vion * and Daniel 1 Esteve 1 Quantronics

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Quantum computation and quantum optics with circuit QED

Quantum computation and quantum optics with circuit QED Departments of Physics and Applied Physics, Yale University Quantum computation and quantum optics with circuit QED Jens Koch filling in for Steven M. Girvin Quick outline Superconducting qubits overview

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011 Observation of quantum jumps in a superconducting artificial atom R. Vijay, D. H. Slichter, and I. Siddiqi Quantum Nanoelectronics Laboratory, Department of Physics, University of California, Berkeley

More information

Condensed Matter Without Matter Quantum Simulation with Photons

Condensed Matter Without Matter Quantum Simulation with Photons Condensed Matter Without Matter Quantum Simulation with Photons Andrew Houck Princeton University Work supported by Packard Foundation, NSF, DARPA, ARO, IARPA Condensed Matter Without Matter Princeton

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Introduction to Circuit QED

Introduction to Circuit QED Introduction to Circuit QED Michael Goerz ARL Quantum Seminar November 10, 2015 Michael Goerz Intro to cqed 1 / 20 Jaynes-Cummings model g κ γ [from Schuster. Phd Thesis. Yale (2007)] Jaynes-Cumming Hamiltonian

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics Lecture 3: 2-qubit

More information

Quantum non-demolition measurement of a superconducting two-level system

Quantum non-demolition measurement of a superconducting two-level system 1 Quantum non-demolition measurement of a superconducting two-level system A. Lupaşcu 1*, S. Saito 1,2, T. Picot 1, P. C. de Groot 1, C. J. P. M. Harmans 1 & J. E. Mooij 1 1 Quantum Transport Group, Kavli

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Nonlinear Oscillators and Vacuum Squeezing

Nonlinear Oscillators and Vacuum Squeezing Nonlinear Oscillators and Vacuum Squeezing David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS

REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS IRFAN SIDDIQI YALE UNIVERSITY R. Vijay P. Hyafil E. Boaknin M. Metcalfe F. Pierre L. Frunzio C.M. Wilson C. Rigetti V. Manucharyan J. Gambetta

More information

Circuit quantum electrodynamics : beyond the linear dispersive regime

Circuit quantum electrodynamics : beyond the linear dispersive regime Circuit quantum electrodynamics : beyond the linear dispersive regime 1 Jay Gambetta 2 Alexandre Blais 1 1 Département de Physique et Regroupement Québécois sur les matériaux de pointe, 2 Institute for

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Advances in Josephson Quantum Circuits

Advances in Josephson Quantum Circuits APS 00 March Meeting, Tutorial #3 Advances in Josephson Quantum Circuits Instructors: Michel Devoret, Yale University "Introduction to superconducting quantum circuits" Yasunobu Nakamura, NEC Japan "Superconducting

More information

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments 1 Instructor: Daryoush Shiri Postdoctoral fellow, IQC IQC, June 2015, WEEK-2 2 Parametric Amplifiers

More information

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University John Stewart Bell Prize Part 1: Michel Devoret, Yale University SUPERCONDUCTING ARTIFICIAL ATOMS: FROM TESTS OF QUANTUM MECHANICS TO QUANTUM COMPUTERS Part 2: Robert Schoelkopf, Yale University CIRCUIT

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Routes towards quantum information processing with superconducting circuits

Routes towards quantum information processing with superconducting circuits Routes towards quantum information processing with superconducting circuits? 0 1 1 0 U 2 1 0? 0 1 U 1 U 1 Daniel Estève Quantronics SPEC CEA Saclay Quantum Mechanics: resources for information processing

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11505 I. DEVICE PARAMETERS The Josephson (E J and charging energy (E C of the transmon qubit were determined by qubit spectroscopy which yielded transition frequencies ω 01 /π =5.4853

More information

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting Jay Gambetta, 1 Alexandre Blais, 1,2 D. I. Schuster, 1 A. Wallraff, 1,3 L. Frunzio, 1 J. Majer, 1 M. H. Devoret,

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

Single Microwave-Photon Detector based on Superconducting Quantum Circuits 17 th International Workshop on Low Temperature Detectors 19/July/2017 Single Microwave-Photon Detector based on Superconducting Quantum Circuits Kunihiro Inomata Advanced Industrial Science and Technology

More information

Topologicaly protected abelian Josephson qubits: theory and experiment.

Topologicaly protected abelian Josephson qubits: theory and experiment. Topologicaly protected abelian Josephson qubits: theory and experiment. B. Doucot (Jussieu) M.V. Feigelman (Landau) L. Ioffe (Rutgers) M. Gershenson (Rutgers) Plan Honest (pessimistic) review of the state

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Nathan K. Langford OVERVIEW Acknowledgements Ramiro Sagastizabal, Florian Luthi and the rest of the

More information

Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier

Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier PHYSICAL REVIEW B 76, 174516 27 Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier M. Metcalfe, E. Boaknin, V. Manucharyan, R. Vijay, I. Siddiqi, C. Rigetti, L. Frunzio,

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS Michel Devoret, Yale University Acknowledgements to Yale quantum information team members:

More information

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Christopher Eichler - 29.01. 2016 ScaleQIT Conference, Delft In collaboration with: C. Lang, J. Mlynek, Y. Salathe,

More information

Entanglement Control of Superconducting Qubit Single Photon System

Entanglement Control of Superconducting Qubit Single Photon System : Quantum omputing Entanglement ontrol of Superconducting Qubit Single Photon System Kouichi Semba Abstract If we could achieve full control of the entangled states of a quantum bit (qubit) interacting

More information

SUPERCONDUCTING QUBITS

SUPERCONDUCTING QUBITS SUPERCONDUCTING QUBITS Theory Collaborators Prof. A. Blais (UdS) Prof. A. Clerk (McGill) Prof. L. Friedland (HUJI) Prof. A.N. Korotkov (UCR) Prof. S.M. Girvin (Yale) Prof. L. Glazman (Yale) Prof. A. Jordan

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007 Generating Single Microwave Photons in a Circuit arxiv:cond-mat/0702648v1 [cond-mat.mes-hall] 27 Feb 2007 A. A. Houck, 1 D. I. Schuster, 1 J. M. Gambetta, 1 J. A. Schreier, 1 B. R. Johnson, 1 J. M. Chow,

More information

Quantum-information processing with circuit quantum electrodynamics

Quantum-information processing with circuit quantum electrodynamics PHYSICAL REVIEW A 75, 339 7 Quantum-information processing with circuit quantum electrodynamics Alexandre Blais, 1, Jay Gambetta, 1 A Wallraff, 1,3 D I Schuster, 1 S M Girvin, 1 M H Devoret, 1 and R J

More information

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation PHYSICAL REVIEW A 69, 062320 (2004) Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation Alexandre Blais, 1 Ren-Shou Huang, 1,2 Andreas Wallraff,

More information

Tunable Resonators for Quantum Circuits

Tunable Resonators for Quantum Circuits J Low Temp Phys (2008) 151: 1034 1042 DOI 10.1007/s10909-008-9774-x Tunable Resonators for Quantum Circuits A. Palacios-Laloy F. Nguyen F. Mallet P. Bertet D. Vion D. Esteve Received: 26 November 2007

More information

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft.

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft. Introduction to quantum computing (with superconducting circuits) Lecture 2 Version: 14/89 Frontiers of Condensed Matter San Sebastian, Aug. 28-3, 214 Dr. Leo DiCarlo l.dicarlo@tudelft.nl dicarlolab.tudelft.nl

More information

Quantum simulation with superconducting circuits

Quantum simulation with superconducting circuits Quantum simulation with superconducting circuits Summary: introduction to quantum simulation with superconducting circuits: quantum metamaterials, qubits, resonators motional averaging/narrowing: theoretical

More information

QUANTUM COHERENCE OF JOSEPHSON RADIO-FREQUENCY CIRCUITS OUTLINE

QUANTUM COHERENCE OF JOSEPHSON RADIO-FREQUENCY CIRCUITS OUTLINE INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" QUANTUM COHERENCE IN SOLID STATE SYSTEMS QUANTUM COHERENCE OF JOSEPHSON RADIO-FREQUENCY CIRCUITS Michel Devoret, Applied Physics, Yale University, USA and

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Quantum Limits on Measurement

Quantum Limits on Measurement Quantum Limits on Measurement Rob Schoelkopf Applied Physics Yale University Gurus: Michel Devoret, Steve Girvin, Aash Clerk And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven,

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Optomechanics and spin dynamics of cold atoms in a cavity

Optomechanics and spin dynamics of cold atoms in a cavity Optomechanics and spin dynamics of cold atoms in a cavity Thierry Botter, Nathaniel Brahms, Daniel Brooks, Tom Purdy Dan Stamper-Kurn UC Berkeley Lawrence Berkeley National Laboratory Ultracold atomic

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Quantum Spectrometers of Electrical Noise

Quantum Spectrometers of Electrical Noise Quantum Spectrometers of Electrical Noise Rob Schoelkopf Applied Physics Yale University Gurus: Michel Devoret, Steve Girvin, Aash Clerk And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven,

More information

Theory for investigating the dynamical Casimir effect in superconducting circuits

Theory for investigating the dynamical Casimir effect in superconducting circuits Theory for investigating the dynamical Casimir effect in superconducting circuits Göran Johansson Chalmers University of Technology Gothenburg, Sweden International Workshop on Dynamical Casimir Effect

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Let's Build a Quantum Computer!

Let's Build a Quantum Computer! Let's Build a Quantum Computer! 31C3 29/12/2014 Andreas Dewes Acknowledgements go to "Quantronics Group", CEA Saclay. R. Lauro, Y. Kubo, F. Ong, A. Palacios-Laloy, V. Schmitt PhD Advisors: Denis Vion,

More information

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Ĥ = Ĥ(p, q : Λ), Λ: control parameter { e.g. charge qubit Λ = V g gate voltage phase qubit Λ = I bias current

More information

Lecture 2, March 2, 2017

Lecture 2, March 2, 2017 Lecture 2, March 2, 2017 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Ultrafast quantum nondemolition measurements based on a diamond-shaped artificial atom

Ultrafast quantum nondemolition measurements based on a diamond-shaped artificial atom Ultrafast quantum nondemolition measurements based on a diamond-shaped artificial atom Igor Diniz, Etienne Dumur, Olivier Buisson, Alexia Auffèves To cite this version: Igor Diniz, Etienne Dumur, Olivier

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

Lecture 2, March 1, 2018

Lecture 2, March 1, 2018 Lecture 2, March 1, 2018 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena Solid State Physics IV -Part II : Macroscopic Quantum Phenomena Koji Usami (Dated: January 6, 015) In this final lecture we study the Jaynes-Cummings model in which an atom (a two level system) is coupled

More information

Quantum optics and quantum information processing with superconducting circuits

Quantum optics and quantum information processing with superconducting circuits Quantum optics and quantum information processing with superconducting circuits Alexandre Blais Université de Sherbrooke, Canada Sherbrooke s circuit QED theory group Félix Beaudoin, Adam B. Bolduc, Maxime

More information

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator : A New Era in Quantum Information Processing Technologies Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator Yuichiro Matsuzaki, Kosuke Kakuyanagi, Hiraku Toida, Hiroshi

More information

State tomography of capacitively shunted phase qubits with high fidelity. Abstract

State tomography of capacitively shunted phase qubits with high fidelity. Abstract State tomography of capacitively shunted phase qubits with high fidelity Matthias Steffen, M. Ansmann, R. McDermott, N. Katz, Radoslaw C. Bialczak, Erik Lucero, Matthew Neeley, E.M. Weig, A.N. Cleland,

More information

Introduction to Quantum Mechanics of Superconducting Electrical Circuits

Introduction to Quantum Mechanics of Superconducting Electrical Circuits Introduction to Quantum Mechanics of Superconducting lectrical Circuits What is superconductivity? What is a osephson junction? What is a Cooper Pair Box Qubit? Quantum Modes of Superconducting Transmission

More information

Microwave Photon Counter Based on Josephson Junctions

Microwave Photon Counter Based on Josephson Junctions Microwave Photon Counter Based on Josephson Junctions pendence of tunneling on barrier height, Γ 1 is 2-3 orders of magnitude larger than Γ 0. Our experimental protocol involves pulsing the junction bias

More information

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University Strongly Driven Semiconductor Double Quantum Dots Jason Petta Physics Department, Princeton University Lecture 3: Cavity-Coupled Double Quantum Dots Circuit QED Charge-Cavity Coupling Towards Spin-Cavity

More information

Quantum computing : principles and practical implementations

Quantum computing : principles and practical implementations Quantum computing : principles and practical implementations D. Vion QUAN UM ELECT RONICS GROUP Scott Adams/Dilbert 4 st ORAP Forum, March 29 th 28, Paris, France Warning: several types of quantum processors

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

SUPERCONDUCTING QUANTUM BITS

SUPERCONDUCTING QUANTUM BITS I0> SUPERCONDUCTING QUANTUM BITS I1> Hans Mooij Summer School on Condensed Matter Theory Windsor, August 18, 2004 quantum computer U quantum bits states l0>, l1> Ψ = αl0> + βl1> input - unitary transformations

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab Martin Weides, Karlsruhe Institute of Technology July 2 nd, 2014 100 mm Basic potentials

More information

The SQUID-tunable resonator as a microwave parametric oscillator

The SQUID-tunable resonator as a microwave parametric oscillator The SQUID-tunable resonator as a microwave parametric oscillator Tim Duty Yarema Reshitnyk Charles Meaney Gerard Milburn University of Queensland Brisbane, Australia Chris Wilson Martin Sandberg Per Delsing

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information