PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS

Size: px
Start display at page:

Download "PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS"

Transcription

1 PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS

2 PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS Michel Devoret, Yale University Acknowledgements to Yale quantum information team members: M. Hays C. Axline R. Heeres d G. de Lange S. Mundhada J. Blumoff Y. Liu A. Grimm L. Frunzio A. Narla K. Chou W. Pfaff A. Kou S. Girvin K. Serniak Y. Gao N. Ofek Z. Leghtas b L. Glazman V. Sivak A. Petrenko c U. Vool M. Hatridge a L. Jiang K. Sliwa c P. Rheinhold C. Wang f S. Shankar M. Mirrahimi S. Touzard A. Roy f Z. Wang R. Schoelkopf Now at: a U. Pittsburgh, b ENS Paris, c QCI, d CEA Saclay, f U. M. Amherst, f U. Aachen Sponsors: Capri Spring School 27

3 PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS LECTURE I: INTRODUCTION AND OVERVIEW LECTURE II: CAT CODES LECTURE III: PARITY MONITORING AND CORRECTION

4 PROTECTING CLASSICAL INFORMATION ONE BIT OF INFORMATION ENCODED IN A SWITCH energy of switch ENERGY BARRIER PROTECTS INFORMATION error exp U kt B U k T B switch position

5 ELEMENT OF QUANTUM INFORMATION: QUBIT Two basis quantum states: Z Generic superposition: cos exp i sin 2 2 X Y Bloch sphere MUST PRESERVE ALL SUPERPOSITIONS, I.E. THE ENTIRE SPHERE

6 CARDINAL POINTS OF THE BLOCH SPHERE Z Z Z X X Y Y X Y

7 DECOHERENCE: LOSS OF INFORMATION Z Y X "T " "T f "

8 BY CAREFUL ENCODING IN A LARGE ENOUGH SPACE, QUANTUM INFORMATION CAN BE PROTECTED SIMPLE EXAMPLE: IN GENERAL: i cos e sin 2 2 X AND Y COMPONENTS IN M = MANIFOLD ARE PROTECTED FROM NOISE IN COMMON MODE MAGNETIC FIELD B X Z Y E ELEMENTARY ERRORS E ONLY MOVE OCTAHEDRON ALONG A 3+n th DIMENSION, WITHOUT CHANGING ITS VOLUME

9 3 STRATEGIES FOR PROTECTING QUANTUM INFORMATION - Encode using defects in topological quantum matter Example: Majorana fermions - Encode into a register of qubits, monitor multi-qubit parities Examples: Steane & surface codes - Encode into a quantum cavity resonator and monitor photon number parity Example: cat codes

10 L L REGISTER ERROR CORRECTION: STEANE CODE

11 STEANE CODE ERROR CORRECTION PROTOCOL i = Z Z Z X X X X ee e2 Z e3e4e5 Z Z X X X ee e2 e3e4e5 Z Z Z X X X ee e2 e3e4e 5 Z q i Z Z X X X ee e2 e3e4e 5 Z Z X X ee e2 e3e4e 5 Z Z X X ee e2 e3e4e 5 Z i = 6 Z X X ee e2 e3e4e 5 Z j = j = 5 e j

12 SUPERCONDUCTING QUBIT PARADIGM: CONSIDER A SINGLE, DRIVEN ELECTROMAGNETIC MODE... DRIVE SIGNAL in cos A t A t REFLECTED SIGNAL out cos f A t A t MICROWAVE FREQUENCIES kt B

13 ATOM vs CIRCUIT Hydrogen atom Superconducting LC oscillator L C electron condensate metallic lattice positive ions

14 ATOM vs CIRCUIT Hydrogen atom Superconducting LC oscillator L C electron condensate metallic lattice positive ions

15 ATOM vs CIRCUIT Hydrogen atom Superconducting LC oscillator L C unique electron whole superconducting condensate velocity of electron current through inductor force on electron voltage across capacitor

16 ATOM vs CIRCUIT Hydrogen atom Superconducting LC oscillator.nm mm L C unique electron whole superconducting condensate velocity of electron current through inductor force on electron voltage across capacitor

17 LC CIRCUIT AS A QUANTUM HARMONIC OSCILLATOR F L +Q -Q C E F = LI Q = CV r F F ˆ,Qˆ i

18 F WAVEFUNCTIONS OF LC CIRCUIT E I r In every energy eigenstate, (microwave photon state) current flows in opposite directions simultaneously! Y F Y Y F F

19 EFFECT OF DAMPING E F important: as little resistance as possible E n F dissipation broadens energy levels i r n 2 2 RC r

20 CAN PLACE CIRCUIT IN ITS GROUND STATE F E I r F some cold dissipation is actually needed: provides reset of circuit! r kt -5 GHz mk B

21 UNLIKE ATOMS IN VACUUM, TWO CIRCUITS EASILY COUPLE THROUGH THEIR WIRES: COUPLING CAN BE ARBITRARILY STRONG! HAMILTONIAN BY DESIGN!

22 CAVEAT: THE QUANTUM STATES OF A PURELY LINEAR CIRCUIT CANNOT BE FULLY CONTROLLED! F E NO STEERING TO AN ARBITRARY STATE IF SYSTEM PERFECTLY LINEAR r F

23 NEED NON-LINEARITY TO FULLY REVEAL QUANTUM MECHANICS Potential energy Position coordinate

24 NEED NON-LINEARITY TO FULLY REVEAL QUANTUM MECHANICS Potential energy Position coordinate Emission high T frequency

25 NEED NON-LINEARITY TO FULLY REVEAL QUANTUM MECHANICS Potential energy Position coordinate absolute non-linearity is ratio of peak distance to peak width Emission spectrum frequency

26 JOSEPHSON TUNNEL JUNCTION: A NON-LINEAR INDUCTOR WITH NO DISSIPATION nm S I S superconductorinsulatorsuperconductor tunnel junction L J C J - nm MIGHT BE SUPERSEDED SOME DAY BY ANOTHER DEVICE (BASED ON ATOMIC POINT CONTACTS, NANOWIRES,???)

27 JOSEPHSON TUNNEL JUNCTION: A NON-LINEAR INDUCTOR WITH NO DISSIPATION nm S I S superconductorinsulatorsuperconductor tunnel junction L J C J I f t ' V t dt ' I I I f / L J L J f I f I I sin f/ f f 2e

28 PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS LECTURE I: INTRODUCTION AND OVERVIEW LECTURE II: CAT CODES LECTURE III: PARITY MONITORING AND CORRECTION

29 JOSEPHSON TUNNEL JUNCTION: A NON-LINEAR INDUCTOR WITH NO DISSIPATION nm S I S superconductorinsulatorsuperconductor tunnel junction L J C J I U E cos f/ f J L J f E 2 J f t ' V t dt ' 2E J f bare Josephson potential f 2e

30 ELECTROMAGNETIC OSCILLATOR ENDOWED WITH JOSEPHSON NON-LINEARITY Potential energy Position coordinate Emission high T Kerr frequency frequency

31 QUANTUM STATES OF A HARMONIC OSCILLATOR REPRESENTED BY THEIR QUASI-PROBABILITY WIGNER FUNCTION IN PHASE SPACE vacuum: n=> I iq W D PD ; P aa photon: n=> Q Q I coherent state squeezed vacuum I cat state Q Q Q I 2 I I 2

32 QUANTUM STATES OF A HARMONIC OSCILLATOR REPRESENTED BY THEIR QUASI-PROBABILITY WIGNER FUNCTION IN PHASE SPACE vacuum: n=> I iq W D PD ; P aa photon: n=> Q Q I coherent state squeezed vacuum I cat state Q Q Q I 2 I I 2

33 CAT ENCODING, AND INFORMATION DECAY 3 even odd L ' ' even â typical time evolution t odd L i i i i ' i '

34 BLOCH SPHERE OF 4-LEG CAT CODE +Z +Y +X Leghtas et al. PRL (23) Vlastakis et al. Science (23) Mirrahimi et al. NJP (24) Sun et al. Nature (24)

35 TWO TYPES OF CAT ERROR MUST BE ADDRESSED: - COHERENT STATE SHRINKING, DEPHASING & DEFORMING - PHOTON NUMBER PARITY JUMPING HOW DO WE FULLY CONTROL THE RESONATOR?

36 .2 cm DEVICES 3.4 cm 9 μm Josephson Ring Modulator Al Si 2.5 mm N. Bergeal et al. Nature (28) H. Paik et. al. PRL (2) G. Kirchmair et. al. Nature (23)

37 EXPERIMENTAL SETUP.5 m 77 K 4 K K mk 2 mk quantum circuits microwave generators arbitrary waveform generator atomic clock amplifier electronics acquisition card dilution refrigerator instrument rack

38 junction 2 OSCILLATORS COUPLED THROUGH A TUNNEL JOSEPHSON JUNCTION storage dump & readout H SIMPLIFIED MODEL TE modes Qs Fs Qr Fr EJ cos Fr Fs / f 2C 2L 2C 2L s s r s E L C rs, r, s r, s L s Cs C r Lr

39 A POWERFUL DETERMINISTIC GATE COMBINING MICROWAVE LIGHT AND A QUBIT cavity oscillator superconducting qubit H a a z c q T 2 strong dispersive regime: Stark shift per photon > linewidths Can combine two cavities, a qubit and a quantum limited Josephson amplifier: storage cavity superconducting qubit S S readout cavity Leghtas et al., Phys. Rev. A87, 4235 (23) R amplification chain

40 junction 2 OSCILLATORS COUPLED THROUGH A TUNNEL JOSEPHSON JUNCTION storage dump & readout E TE modes s q r

41 junction 2 OSCILLATORS COUPLED THROUGH A TUNNEL JOSEPHSON JUNCTION storage dump & readout E TE modes H / sas as rar ar qaq a - c qq q 2 a q ( ) 2 a q ( ) 2 - c qs a q a q a s a s - c qr a q a q a r a r c rs ( 4 a ) 2 ( s a ) 2 r + h.c.+...

42 NON-DEMOLITION MEASUREMENT OF SUPERCONDUCTING ATOM Cavity QED: Pioneering expts in Haroche's and Kimble's groups HEMT-amp Q I ref JPC Circuit QED: Wallraff et al. (24), Houck et al., (27), Gambetta et al. (28), Vijay et al., (22). qubit + resonator Josephson pre-amp Readout amplitude I Q 2 2 e f c dispersive shift c g f readout frequency 9º Readout phase Q I -9º tan / e q ~ p /2 resonator linewidth ~ c g f f c

43 5 I m /σ 7.5 σ QUANTUM JUMPS OF QUBIT STATE Time (ms) ~ 9% of fluctuations of signal at 3K are quantum noise! ~2 bits per qubit lifetime

44 TWO TYPES OF CAT ERRORS MUST BE ADDRESSED: - COHERENT STATE SHRINKING, DEPHASING & DEFORMING - PHOTON NUMBER PARITY JUMPING

45 REVIEW THE USUAL DRIVEN-DAMPED HARMONIC OSCILLATOR

46 REVIEW THE USUAL DRIVEN-DAMPED HARMONIC OSCILLATOR

47 REVIEW THE USUAL DRIVEN-DAMPED HARMONIC OSCILLATOR p x

48 REVIEW THE USUAL DRIVEN-DAMPED HARMONIC OSCILLATOR p x

49 REVIEW THE USUAL DRIVEN-DAMPED HARMONIC OSCILLATOR Wigner function W(β) Im(β) Re(β) Hamiltonian : loss operator : H = e * a + e a k a a = -2ie /k

50 AVERAGE EVOLUTION OF DENSITY MATRIX FOR AN OPEN SYSTEM d dt, c i H c c c c c c c loss operator 2

51 A SPECIAL DRIVEN-DAMPED OSCILLATOR

52 A SPECIAL DRIVEN-DAMPED OSCILLATOR Force ~ X 2

53 A SPECIAL DRIVEN-DAMPED OSCILLATOR Force ~ X 2 Damping ~ V 2

54 A SPECIAL DRIVEN-DAMPED OSCILLATOR Im(β) Re(β) Wigner function W(β)

55 A SPECIAL DRIVEN-DAMPED OSCILLATOR Im(β) Re(β) Wigner function W(β) Hamiltonian : loss operator : H = e 2 * a 2 + e(a ) 2 k 2 a 2 a = ± -2ie 2 /k 2

56 PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS LECTURE I: INTRODUCTION AND OVERVIEW LECTURE II: CAT CODES LECTURE III: PARITY MONITORING AND CORRECTION

57 A SPECIAL DRIVEN-DAMPED OSCILLATOR Force X 2 Im(β) Damping X 2 Re(β) Wigner function W(β) Hamiltonian : loss operator : H = e 2 * a 2 + e(a ) 2 k 2 a 2 Mirrahimi et al., New J. Phys. 6, 454 (24) a = ± -2ie 2 /k 2

58 junction 2 OSCILLATORS COUPLED THROUGH A TUNNEL JOSEPHSON JUNCTION storage dump & readout E TE modes s q r

59 junction 2 OSCILLATORS COUPLED THROUGH A TUNNEL JOSEPHSON JUNCTION storage dump & readout E TE modes H / sas as rar ar qaq a - c qq q 2 a q ( ) 2 a q ( ) 2 - c qs a q a q a s a s - c qr a q a q a r a r c rs ( 4 a ) 2 ( s a ) 2 r + h.c.+...

60 TWO-PHOTON EXCHANGE BETWEEN THE 2 CAVITIES density of states dump storage p 2 s d drive pump ω ω d ω p ω s ω s ω s ω s ω p ω d effective drive Hamiltonian: e ( 2 a ) 2 s + h.c. effective loss operator: k 2 a s 2

61 CAVITY BI-STABLE BEHAVIOR (SEMI-CLASSICAL) Im(β) = Q Re(β) = I

62 CAVITY BI-STABLE BEHAVIOR (SEMI-CLASSICAL) Im(β) π/2 W(β) Re(β)

63 CAVITY BI-STABLE BEHAVIOR (SEMI-CLASSICAL) Im(β) π/2 W(β) Re(β)

64 CAVITY BI-STABLE BEHAVIOR (SEMI-CLASSICAL) Im(β) π/2 W(β) Re(β)

65 CAVITY BI-STABLE BEHAVIOR (SEMI-CLASSICAL) Im(β) π/2 W(β) Re(β)

66 CAVITY BI-STABLE BEHAVIOR (SEMI-CLASSICAL) Im(β) π/2 W(β) Re(β)

67 Im(β) CAVITY BI-STABLE BEHAVIOR (SEMI-CLASSICAL) Im(β) π/2 W(β) Re(β) Re(β)

68 Im(β) CAVITY BI-STABLE BEHAVIOR (SEMI-CLASSICAL) Im(β) π/2 W(β) Re(β) Re(β)

69 Im(β) CAVITY BI-STABLE BEHAVIOR (SEMI-CLASSICAL) Im(β) π/2 W(β) Re(β) Re(β)

70 Im(β) CAVITY BI-STABLE BEHAVIOR (SEMI-CLASSICAL) π/2 W(β) Re(β)

71 Im(β) CAVITY BI-STABLE BEHAVIOR (SEMI-CLASSICAL) π/2 W(β) Re(β) see also Puri and Blais arxiv:65.948

72 Im(β) CAT SQUEEZES OUT OF VACUUM! pumping time raw data μs 2 μs 7 μs 9 μs quantum interference! W(β) reconstruction numerical simulation Re(β)

73 Im(β) CAT SQUEEZES OUT OF VACUUM! Data of two years ago pumping time raw data μs 2 μs 7 μs 9 μs quantum interference! W(β) reconstruction numerical simulation Re(β) Leghtas et. al. Science (25)

74 Im(β) PRESENT CAT-PUMPING COHERENCE NOW: κ 2 κ = with /κ = 92 μs M. Reagor et al., APL (23), C. Axline et al. APL (26) Wigner qubit separate from storage ancilla W Re(β) Touzard, Grimm, et al. arxiv:75.24

75 Im(β) PRESENT CAT-PUMPING COHERENCE NOW: κ 2 κ = with /κ = 92 μs M. Reagor et al., APL (23), C. Axline et al. APL (26) Wigner qubit separate from storage ancilla W Re(β) Touzard, Grimm, et al. arxiv:75.24

76 Im(β) RABI OSCILLATIONS OF CAT WHILE PUMPING L = α + α 2.5 Movie slowed down by -6 W.6.3 α + α L = α α Re(β) observation of quantum Zeno dynamics of protected information! Misra & Sudarshan (977); Itano et al., (99); Fisher, Gutierrez-Medina & Raizen (2); Facchi & Pascazio (22); Raimond et al., (22)

77 Im(β) MEASUREMENT OF THE 4 PAULI OPERATORS OF THE PROTECTED QUBIT MANIFOLD - W Re(β)

78 Encode +Z +X +X L log +Z L PROCESS TOMOGRAPHY OF QUANTUM ZENO RABI ROTATION / : N( α ± α ) +Y L / : N( α ± i α ) +Y log X π/2 +Z L / : ±α +X L +Y L

79 Identity +X +Z +Y

80 +X +Z DURATION OF LOGICAL GATES:.8 ms +Y X π/2 Zeno π/2 rotation around X GATE DONE WHILE CORRECTING!

81 TWO TYPES OF CAT ERRORS MUST BE ADDRESSED: - COHERENT STATE SHRINKING, DEPHASING & DEFORMING - PHOTON NUMBER PARITY JUMPING

82 SYNDROME MEASUREMENT cavity transmon transmon cavity

83 SYNDROME MEASUREMENT cavity transmon transmon cavity

84 SYNDROME MEASUREMENT cavity transmon n even n odd transmon cavity

85 SYNDROME MEASUREMENT cavity transmon n even n odd transmon cavity

86 SYNDROME MEASUREMENT cavity transmon n even n odd transmon cavity

87 SYNDROME MEASUREMENT cavity transmon n even transmon cavity

88 REAL-TIME QUANTUM CONTROLLER FOR FEEDFORWARD CORRECTION FPGA ADCs DACs Analog Inputs Analog Outputs

89 4-CAT ENCODING SLOWS DOWN QUANTUM INFORMATION DECAY slide courtesy of R. Schoelkopf and A. Petrenko Ofek & Petrenko et al., Nature (26) Bare Transmon Qubit after Fidelity =.26 4Cat Code NO QEC Qubit after Fidelity =.58 4Cat Code W/ QEC Qubit after Fidelity =.72 QEC = Quantum Error Correction from Parity Monitoring using Field Programmable Gate Array

90 MULTI-CAVITY ARCHITECTURES M. Reagor et al., APL (23), C. Axline et al. (in preparation) Wang and Gao et al., Science (26) other experiments currently underway in the lab with 5 to qubits and 5 to cavities The Y-mon!!

91 JOINT WIGNER FUNCTION OF THE TWO-MODE CAT W J (b A, b B ): a function in a 4D space States live in Hilbert space of dimension ~ 5! y - = a A a B - -a A -a B (a =.92) Quantum coherence Predicted Wigner for ideal state: Photon distribution P. Millman et al. Eur. Phys. J. D 32, 233 (25)

92 Ideal: Measured: Wang and Gao et al., Science (26)

93 SUMMARY AND PERSPECTIVES Quantum information protection can be static and/or dynamic Cat code encodes information in dynamical states: hardware efficiency Demonstration of operation while protecting Attained break-even point in quantum error correction Entanglement of two logical qubits Combine protection of cat energy loss and parity monitoring Demonstrate hierarchical layers of quantum error correction

94 MEET THE TEAM! Y. Liu E. Zalys-Geller M. Hatridge S. Mundhada K. Serniak N. Frattini A. Narla Z. Minev S. Shankar A. Roy M. Hays K. Sliwa Z. Leghtas V. Sivak S. Touzard C. Smith U. Vool A. Kou A. Grimm V. Albert R. Schoelkopf L. Frunzio M. Mirrahimi L. Glazman L. Jiang S. Girvin

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University John Stewart Bell Prize Part 1: Michel Devoret, Yale University SUPERCONDUCTING ARTIFICIAL ATOMS: FROM TESTS OF QUANTUM MECHANICS TO QUANTUM COMPUTERS Part 2: Robert Schoelkopf, Yale University CIRCUIT

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Introduction to Circuit QED Lecture 2

Introduction to Circuit QED Lecture 2 Departments of Physics and Applied Physics, Yale University Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

THEORY SMG, L. Glazman, Liang Jiang. EXPERIMENT Rob Schoelkopf, Michel Devoret Luigi Frunzio. Simon Nigg M. Mirrahimi Z. Leghtas

THEORY SMG, L. Glazman, Liang Jiang. EXPERIMENT Rob Schoelkopf, Michel Devoret Luigi Frunzio. Simon Nigg M. Mirrahimi Z. Leghtas Departments of Physics and Applied Physics, Yale University Circuit QED: Taming the World s Largest Schrödinger Cat and Measuring Photon Number Parity (without measuring photon number!) EXPERIMENT Rob

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Dynamically protected cat-qubits: a new paradigm for universal quantum computation

Dynamically protected cat-qubits: a new paradigm for universal quantum computation Home Search Collections Journals About Contact us My IOPscience Dynamically protected cat-qubits: a new paradigm for universal quantum computation This content has been downloaded from IOPscience. Please

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Electrical Quantum Engineering with Superconducting Circuits

Electrical Quantum Engineering with Superconducting Circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 Electrical Quantum Engineering with Superconducting Circuits R. Heeres & P. Bertet SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Quantum Control of Superconducting Circuits

Quantum Control of Superconducting Circuits Quantum Control of Superconducting Circuits Liang Jiang Yale University, Applied Physics Victor Albert, Stefan Krastanov, Chao Shen, Changling Zou Brian Vlastakis, Matt Reagor, Andrei Petrenko, Steven

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Schrödinger Cats, Maxwell s Demon and Quantum Error Correction

Schrödinger Cats, Maxwell s Demon and Quantum Error Correction Schrödinger Cats, Maxwell s Demon and Quantum Error Correction Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

arxiv: v1 [quant-ph] 3 Nov 2016

arxiv: v1 [quant-ph] 3 Nov 2016 Degeneracy-preserving quantum non-demolition measurement of parity-type observables for cat-qubits Joachim Cohen 1, W. Clarke Smith, Michel H. Devoret, and Mazyar Mirrahimi 1,3 1 QUANTIC project-team,

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

arxiv: v1 [quant-ph] 6 Dec 2013

arxiv: v1 [quant-ph] 6 Dec 2013 Dynamically protected cat-qubits: a new paradigm for universal quantum computation arxiv:32.207v [quant-ph] 6 Dec 203 Mazyar Mirrahimi,2, Zaki Leghtas 2, Victor V. Albert 2,3, Steven Touzard 2, Robert

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Schrödinger Cats, Maxwell s Demon and Quantum Error Correction

Schrödinger Cats, Maxwell s Demon and Quantum Error Correction Schrödinger Cats, Maxwell s Demon and Quantum Error Correction Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Routes towards quantum information processing with superconducting circuits

Routes towards quantum information processing with superconducting circuits Routes towards quantum information processing with superconducting circuits? 0 1 1 0 U 2 1 0? 0 1 U 1 U 1 Daniel Estève Quantronics SPEC CEA Saclay Quantum Mechanics: resources for information processing

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Lecture 2, March 2, 2017

Lecture 2, March 2, 2017 Lecture 2, March 2, 2017 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Lecture 2, March 1, 2018

Lecture 2, March 1, 2018 Lecture 2, March 1, 2018 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

More information

arxiv: v1 [quant-ph] 15 Nov 2018

arxiv: v1 [quant-ph] 15 Nov 2018 xperimental implementation of a Raman-assisted six-quanta process arxiv:1811.06589v1 [quant-ph] 15 Nov 2018 S.O. Mundhada, 1, A. Grimm, 1 J. Venkatraman, 1 Z.K. Minev, 1 S. Touzard, 1 N.. Frattini, 1 V.V.

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Quantum computation and quantum optics with circuit QED

Quantum computation and quantum optics with circuit QED Departments of Physics and Applied Physics, Yale University Quantum computation and quantum optics with circuit QED Jens Koch filling in for Steven M. Girvin Quick outline Superconducting qubits overview

More information

Condensed Matter Without Matter Quantum Simulation with Photons

Condensed Matter Without Matter Quantum Simulation with Photons Condensed Matter Without Matter Quantum Simulation with Photons Andrew Houck Princeton University Work supported by Packard Foundation, NSF, DARPA, ARO, IARPA Condensed Matter Without Matter Princeton

More information

Entanglement Control of Superconducting Qubit Single Photon System

Entanglement Control of Superconducting Qubit Single Photon System : Quantum omputing Entanglement ontrol of Superconducting Qubit Single Photon System Kouichi Semba Abstract If we could achieve full control of the entangled states of a quantum bit (qubit) interacting

More information

Quantum optics and quantum information processing with superconducting circuits

Quantum optics and quantum information processing with superconducting circuits Quantum optics and quantum information processing with superconducting circuits Alexandre Blais Université de Sherbrooke, Canada Sherbrooke s circuit QED theory group Félix Beaudoin, Adam B. Bolduc, Maxime

More information

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Nathan K. Langford OVERVIEW Acknowledgements Ramiro Sagastizabal, Florian Luthi and the rest of the

More information

Amplification, entanglement and storage of microwave radiation using superconducting circuits

Amplification, entanglement and storage of microwave radiation using superconducting circuits Amplification, entanglement and storage of microwave radiation using superconducting circuits Jean-Damien Pillet Philip Kim s group at Columbia University, New York, USA Work done in Quantum Electronics

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) 2) 3) Readout

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007 Generating Single Microwave Photons in a Circuit arxiv:cond-mat/0702648v1 [cond-mat.mes-hall] 27 Feb 2007 A. A. Houck, 1 D. I. Schuster, 1 J. M. Gambetta, 1 J. A. Schreier, 1 B. R. Johnson, 1 J. M. Chow,

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

A CNOT gate between multiphoton qubits encoded in two cavities

A CNOT gate between multiphoton qubits encoded in two cavities A CNOT gate between multiphoton qubits encoded in two cavities S. Rosenblum 1,2,,, Y.Y. Gao 1,2,, P. Reinhold 1,2, C. Wang 1,2,+, C.J. Axline 1,2, L. Frunzio 1,2, S.M. Girvin 1,2, Liang Jiang 1,2, M. Mirrahimi

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

arxiv: v1 [quant-ph] 15 Dec 2014

arxiv: v1 [quant-ph] 15 Dec 2014 Confining the state of light to a quantum manifold by engineered two-photon loss arxiv:141.4633v1 [quant-ph] 15 Dec 014 Zaki Leghtas, 1 Steven Touzard, 1 Ioan M. Pop, 1 Angela Kou, 1 Brian Vlastakis, 1

More information

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010 High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity arxiv:4.4323v2 [cond-mat.mes-hall] 9 Oct 2 M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster,

More information

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Christopher Eichler - 29.01. 2016 ScaleQIT Conference, Delft In collaboration with: C. Lang, J. Mlynek, Y. Salathe,

More information

Elementary Tutorial on Loss Mechanisms in Circuit QED. Steven M. Girvin Yale University

Elementary Tutorial on Loss Mechanisms in Circuit QED. Steven M. Girvin Yale University Elementary Tutorial on Loss Mechanisms in Circuit QED Steven M. Girvin Yale University 1 Hard to believe the JJ losses are so small 2 Qubits, Cavities, Lumped-Element Oscillators G C tot L Geometric, kinetic,

More information

Advances in Josephson Quantum Circuits

Advances in Josephson Quantum Circuits APS 00 March Meeting, Tutorial #3 Advances in Josephson Quantum Circuits Instructors: Michel Devoret, Yale University "Introduction to superconducting quantum circuits" Yasunobu Nakamura, NEC Japan "Superconducting

More information

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA.

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA. Funding NIST NSA/LPS DARPA Boulder, CO Control and measurement of an optomechanical system using a superconducting qubit Florent Lecocq PIs Ray Simmonds John Teufel Joe Aumentado Introduction: typical

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics Lecture 3: 2-qubit

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris A three lecture course Goal of lectures Manipulating states of simple quantum systems has become an important

More information

Summary: Types of Error

Summary: Types of Error Summary: Types of Error Unitary errors (including leakage and cross-talk) due to gates, interactions. How does this scale up (meet resonance conditions for misc. higher-order photon exchange processes

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011 Observation of quantum jumps in a superconducting artificial atom R. Vijay, D. H. Slichter, and I. Siddiqi Quantum Nanoelectronics Laboratory, Department of Physics, University of California, Berkeley

More information

REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS

REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS IRFAN SIDDIQI YALE UNIVERSITY R. Vijay P. Hyafil E. Boaknin M. Metcalfe F. Pierre L. Frunzio C.M. Wilson C. Rigetti V. Manucharyan J. Gambetta

More information

Strong-coupling Circuit QED

Strong-coupling Circuit QED Departments of Physics and Applied Physics, Yale University Quantum Optics with Electrical Circuits: Strong-coupling Circuit QED Jens Koch Departments of Physics and Applied Physics, Yale University Circuit

More information

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments 1 Instructor: Daryoush Shiri Postdoctoral fellow, IQC IQC, June 2015, WEEK-2 2 Parametric Amplifiers

More information

IBM Systems for Cognitive Solutions

IBM Systems for Cognitive Solutions IBM Q Quantum Computing IBM Systems for Cognitive Solutions Ehningen 12 th of July 2017 Albert Frisch, PhD - albert.frisch@de.ibm.com 2017 IBM 1 st wave of Quantum Revolution lasers atomic clocks GPS sensors

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Autonomous Quantum Error Correction. Joachim Cohen QUANTIC

Autonomous Quantum Error Correction. Joachim Cohen QUANTIC Autonomous Quantum Error Correction Joachim Cohen QUANTIC Outline I. Why quantum information processing? II. Classical bits vs. Quantum bits III. Quantum Error Correction WHY QUANTUM INFORMATION PROCESSING?

More information

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Quantum Integrated Circuits Quantum currents & voltages Microfabricated atoms Digital to Analog Converter

More information

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Ĥ = Ĥ(p, q : Λ), Λ: control parameter { e.g. charge qubit Λ = V g gate voltage phase qubit Λ = I bias current

More information

The Impact of the Pulse Phase Deviation on Probability of the Fock States Considering the Dissipation

The Impact of the Pulse Phase Deviation on Probability of the Fock States Considering the Dissipation Armenian Journal of Physics, 207, vol 0, issue, pp 64-68 The Impact of the Pulse Phase Deviation on Probability of the Fock States Considering the Dissipation GYuKryuchkyan, HS Karayan, AGChibukhchyan

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTAR NFORMATON doi:10.1038/nature10786 FOUR QUBT DEVCE f 3 V 2 V 1 The cqed device used in this experiment couples four transmon qubits to a superconducting coplanar waveguide microwave cavity

More information

From Majorana Fermions to Topological Order

From Majorana Fermions to Topological Order From Majorana Fermions to Topological Order Arxiv: 1201.3757, to appear in PRL. B.M. Terhal, F. Hassler, D.P. DiVincenzo IQI, RWTH Aachen We are looking for PhD students or postdocs for theoretical research

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Mesoscopic field state superpositions in Cavity QED: present status and perspectives

Mesoscopic field state superpositions in Cavity QED: present status and perspectives Mesoscopic field state superpositions in Cavity QED: present status and perspectives Serge Haroche, Ein Bokek, February 21 st 2005 Entangling single atoms with larger and larger fields: an exploration

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation PHYSICAL REVIEW A 69, 062320 (2004) Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation Alexandre Blais, 1 Ren-Shou Huang, 1,2 Andreas Wallraff,

More information

Synthesising arbitrary quantum states in a superconducting resonator

Synthesising arbitrary quantum states in a superconducting resonator Synthesising arbitrary quantum states in a superconducting resonator Max Hofheinz 1, H. Wang 1, M. Ansmann 1, Radoslaw C. Bialczak 1, Erik Lucero 1, M. Neeley 1, A. D. O Connell 1, D. Sank 1, J. Wenner

More information

Introduction to Circuit QED

Introduction to Circuit QED Introduction to Circuit QED Michael Goerz ARL Quantum Seminar November 10, 2015 Michael Goerz Intro to cqed 1 / 20 Jaynes-Cummings model g κ γ [from Schuster. Phd Thesis. Yale (2007)] Jaynes-Cumming Hamiltonian

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Single-Mode Displacement Sensor

Single-Mode Displacement Sensor Single-Mode Displacement Sensor Barbara Terhal JARA Institute for Quantum Information RWTH Aachen University B.M. Terhal and D. Weigand Encoding a Qubit into a Cavity Mode in Circuit-QED using Phase Estimation,

More information

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Ceren Burçak Dağ Supervisors: Dr. Pol Forn-Díaz and Assoc. Prof. Christopher Wilson Institute

More information

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting Jay Gambetta, 1 Alexandre Blais, 1,2 D. I. Schuster, 1 A. Wallraff, 1,3 L. Frunzio, 1 J. Majer, 1 M. H. Devoret,

More information

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France QUANTUM COMPUTING Part II Jean V. Bellissard Georgia Institute of Technology & Institut Universitaire de France QUANTUM GATES: a reminder Quantum gates: 1-qubit gates x> U U x> U is unitary in M 2 ( C

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Logical error rate in the Pauli twirling approximation

Logical error rate in the Pauli twirling approximation Logical error rate in the Pauli twirling approximation Amara Katabarwa and Michael R. Geller Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA (Dated: April 10, 2015)

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft.

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft. Introduction to quantum computing (with superconducting circuits) Lecture 2 Version: 14/89 Frontiers of Condensed Matter San Sebastian, Aug. 28-3, 214 Dr. Leo DiCarlo l.dicarlo@tudelft.nl dicarlolab.tudelft.nl

More information

Towards new states of matter with atoms and photons

Towards new states of matter with atoms and photons Towards new states of matter with atoms and photons Jonas Larson Stockholm University and Universität zu Köln Aarhus Cold atoms and beyond 26/6-2014 Motivation Optical lattices + control quantum simulators.

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

Lecture 6, March 30, 2017

Lecture 6, March 30, 2017 Lecture 6, March 30, 2017 Last week: This week: Brief revisit of the Transmon qubit Gate charge insensitivity Anharmonicity and driving of qubit Tuning by magnetic flux Qubit-Qubit coupling in circuit

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information