Towards new states of matter with atoms and photons

Size: px
Start display at page:

Download "Towards new states of matter with atoms and photons"

Transcription

1 Towards new states of matter with atoms and photons Jonas Larson Stockholm University and Universität zu Köln Aarhus Cold atoms and beyond 26/6-2014

2 Motivation Optical lattices + control quantum simulators. Hubbard models, spin models, 2

3 Motivation High control monitoring hybrid systems manybody systems beyond condensed matter paradigm models. 3

4 Outline 1. Cavity QED in five or so minutes. 2. Many-body cqed: (quantum) optical bistability 3. Collective phenomena, Dicke physics. 4. SU(3) Dicke model. 5. And then 4

5 Cavity Quantum Electrodynamics 5

6 Cavity QED Jaynes-Cummings physics Cavity QED = coupling between few material (atomic) and few electromagnetic degrees of freedom. Cavity atom-field coupling g~ 1 V (V effective mode volume). Strong coupling regime g n γ, κ (γ/κ atom/photon decay rates). Haroche & Raimond, Exploting the Quantum (OUP). 6

7 Cavity QED Jaynes-Cummings physics Jaynes-Cummings Hamiltonian H jc = ωa + a + Ω 2 σ z + g a + σ + σ + a Field energy Atomic energy Interaction energy Dressed states (polaritons) ψ n+ = cos θ e, n + sin θ g, n + 1, ψ n = cos θ e, n sin θ g, n + 1, E n± = ωn ± g2 n + 1, tan 2θ = 2g n + 1/, = Ω ω. Haroche & Raimond, Exploting the Quantum (OUP). 7

8 Cavity QED Jaynes-Cummings physics Vacuum Rabi splitting, E 0± = ±g ( = 0) Schoelkopf & Girvin, Nature 451 (2008). 8

9 Cavity QED Jaynes-Cummings physics Photon blockade Kimble, Nature 436 (2005). 9

10 Cavity QED Jaynes-Cummings physics Atom-atom, atom-field, field-field entanglement. Logic gates. Cats. Tomography. Quantum-classical correspondence. Zeno and measurement phenomena. Field quantization. 10 Haroche & Raimond, Exploting the Quantum (OUP).

11 Cavity QED Dicke physics Dicke 1954: How does N atoms radiate? H d = ωa + a + N i=1 Ω 2 σ i z + g a + + a σ i x ωa + a + Ω 2 S z + g a + + a S x Dicke states S z S, m = m S, m (maximal spin sector S = N/2). ψ H d S, S, 0 2 ~N 2 ψ Superradiance! Enhanced radiation by a factor N! Dicke, Phys. Rev. 93 (1954). 11

12 Cavity QED Dicke physics Thermodynamic limit (g g/ N). Z 2 -parity symmetry breaking. g c = ωω/2 Normal phase: a = 0, S z = N/2 Superradiant phase: a 0, S z > N/2 Classical PT (Ising type), survives also at T = 0 ( quantum PT). No-go theorem. Minimal coupling Hamiltonian, assume ground state atoms, no dipole-dipole interaction Dicke PT forbidden (Rzaźewski, Phys. Rev. Lett. 35, (1975)). Large atom-field coupling by driving openness PT? Wang & Hioe, Phys. Rev. A 7 (1973). 12

13 Many-body cqed 13

14 Many-body cqed Thermal atomic gases had been loaded into resonators, next step a BEC. 2007; Stamper-Kurn, Reichel, Esslinger. (no strict proof for BEC at this stage). Vacuum Rabi splitting ~ N. Optical bistability Brennecke, Nature 450 (2007). 14

15 Many-body cqed Low temperature coupling to atomic motion. Hamiltonian in dispersive regime ( g n, U 0 = g 2 / ) H = dx ψ + x d2 dx 2 + U 0cos 2 x a + a ψ x c a + a iη a a +. Rotating frame ( c = ω ω p ), standing wave of resonator, longitudinal cavity pumping (amplitude η, frequency ω p ), neglecting atom-atom interaction. Steady state photon number n s = Optical bistability η 2 κ 2 + c U 0 dx ψ(x) 2 cos 2 (kx) 2. Ritsch, Rev. Mod. Phys. 85 (2013). 15

16 Many-body cqed Optical bistability Lowest vibrational modes of the BEC: H = ω rec c + c + ( c + g c + c + )a + a iη a a +. Paradigm optomechanical Hamiltonian. Multi-stability and strong coupling regime Brennecke, Science 322 (2008). Venkatesh, Phys. Rev. A 83 (2011). Larson, Phys. Rev. Lett. 100 (2008). 16

17 Many-body cqed Transverse pumping: atoms mediate scattering of photons from pump to cavity. Expand in lowest vibrational modes Effective model = Dicke Hamiltonian in the Schwinger representation. Effective potential Dicke physics V eff x, z = V 0 cos 2 z + U 0 α 2 cos 2 x + W 0 α + α cos x cos (z) Field phase angle α + α = 0, π Z 2 symmetry breaking of Dicke. Condensates in a checkerboard supersolid phase: populates every second site. Nagy, Phys. Rev. Lett. 104 (2010). 17

18 Experimental realizations: Many-body cqed Dicke physics Experimental measurement of field phase. Schematic picture of supersolid states (selforganization transition). Baumann, Nature 464 (2010), Phys. Rev.L ett. 107 (2011). 18

19 SU(3) Dicke model 19

20 Esslinger group, new setup 1: Many-body cqed Beyond regular Dicke physics Schematic picture of the double-cavity setup. Venkatesh & Larson, underway 20

21 Many-body cqed Beyond regular Dicke physics Only cavity A: Only cavity B: Classical potential Classical potential Venkatesh & Larson, underway 21

22 Many-body cqed Beyond regular Dicke physics Cavity A + B: Classical potential Venkatesh & Larson, underway 22

23 Many-body cqed Beyond regular Dicke physics Cavity A + B: No classical frustration! Z 2 Z 2 symmetry. Classical potential Venkatesh & Larson, underway 23

24 Physics beyond mean-field. Many-body cqed Identify the low energy vibrational states Ψ x, z = c0ψ 0 x, z + c1ψ 1 x, z +c2ψ 2 x, z, ψ 0 x, z = 1, ψ N 1,2 x, z = 2 cos 3 x ± 1 z cos(z), N 2 2 Generalized Schwinger representation H su3 = ω A a + a + ω B b + b + ΩΛ 8 + g A N Λ i, i = 1,, 8 SU(3) algebra. Beyond regular Dicke physics Λ 4, Λ 6 and Λ 8 not an SU(2) subgroup. a + a+ Λ 4 + g B N b + b+ Λ 6. Venkatesh & Larson, underway 24

25 Many-body cqed Beyond regular Dicke physics Symmetries: 1. Z 2 Z 2 generalized Dicke parity symmety Π A = exp iπ n A + Λ Λ 8 2, Π B = exp iπ n B Λ Λ If parameters X A = X B an emergent continuous U(1) symmetry U θ = exp iθ a + b b + a iθλ 2. Venkatesh & Larson, underway 25

26 Many-body cqed Beyond regular Dicke physics Mean-field of SU(3) Dicke Λ α =, α = 1,2,, 8, a =, b =. Steady state solutions (U(1) symmetry X A = X B ): Λ 3 Λ 4 = cos θ/2 1 g N c 4 /g ( Dipole 01 ), Λ 6 = sin θ/2 1 g N c 4 /g ( Dipole 02 ), Λ 1 N cos θ = N a+a N b+b N = sin θ g c 2 /g ( Dipole 12 ), 1 g c 2 /g ( Inversion 12 ), = 2ωg κ 2 +ω 2 1 g c 4 /g 4 (Quadrature A), = 2ωg κ 2 +ω 2 1 g c 4 /g 4 (Quadrature B). Venkatesh & Larson, underway 26

27 Many-body cqed Beyond regular Dicke physics Critical coupling g c = 1 2 Ω κ 2 +ω 2 ω, cavity losses κ. x A, x B ~ 1 g c g 1/2 β = 1/2 as in open SU(2) Dicke model. For the Z 2 Z 2 identical critical coupling g c and exponent β. Breaking of Z 2 Z 2 one cavity empty in superradiant phase. Breaking of U(1) both civities populated, amplitude set by θ. Venkatesh & Larson, underway 27

28 What s next? 28

29 Long range interaction Glassy states? Esslinger group, new setup 2: Atoms in (classical) 2D optical lattice 1D tubes. Setup confined in a resonator. Tubes independently interact with the same cavity mode. ~1500 tubes, atoms/tube. 29

30 Long range interaction Glassy states? N-channel Dicke realization H Nd = ωa + N a + Ω i=1 S (i) z + g i a + a + S (i) x + US (i) zs (i) z. Trace out boson field H rlmg = N 2 i=1 S (i) z + U S (i) z + g ij S (i) xs (j) x i,j. N-channel (quasi random) Lipkin-Meshkov-Glick model. g ij Gaussian distributed? glassy states (Strack & Sachdev, Phys. Rev. Lett. 107, (2011); Buchhold, Phys. Rev. A. 87, (2013)). 30

31 Long range interaction Localization Optical lattice + cavity field (standing wave). Incommensurate lattices (cavity field weak), mean-field (atomic part) t φ i = J φ i 1 + φ i+1 + μ i a + aφ i, t a = i a i i μ i φ i φ i a + η. t φ i = J φ i 1 + φ i+1 + μ i φ i, onsite disorder localization (Kramer & MacKinnon, Rep. Prog. Phys. 56, (1993)). t φ i = J φ i 1 + φ i+1 + μ i φ i + φ i 2 φ i, weak nonlinearity localization lost at large times (Pikovsky & Shepelyansky, Phys. Rev. Lett. 100, (2008)). t φ i = J φ i 1 + φ i+1 + μ i f( μ i φ i 2 ) i φ i, localization? 31

32 Thanks! Summary Classical vs. Quantum choas. Possibilities to study closed quantum dynamics. Equilibration and thermalization. Not well understood: i. Criteria for equilibration/thermalization. ii. Mechanism behind thermalization. iii. Definition for Quantum integrability. iv. Open systems 32

From cavity optomechanics to the Dicke quantum phase transition

From cavity optomechanics to the Dicke quantum phase transition From cavity optomechanics to the Dicke quantum phase transition (~k; ~k)! p Rafael Mottl Esslinger Group, ETH Zurich Cavity Optomechanics Conference 2013, Innsbruck Motivation & Overview Engineer optomechanical

More information

Thermalization in Quantum Systems

Thermalization in Quantum Systems Thermalization in Quantum Systems Jonas Larson Stockholm University and Universität zu Köln Dresden 18/4-2014 Motivation Long time evolution of closed quantum systems not fully understood. Cold atom system

More information

Quantum structures of photons and atoms

Quantum structures of photons and atoms Quantum structures of photons and atoms Giovanna Morigi Universität des Saarlandes Why quantum structures The goal: creation of mesoscopic quantum structures robust against noise and dissipation Why quantum

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 4 Previous lectures Classical optics light waves material

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Self organization of a Bose Einstein Condensate in an optical cavity

Self organization of a Bose Einstein Condensate in an optical cavity Self organization of a Bose Einstein Condensate in an optical cavity Mayukh Nilay Khan December 14, 2011 Abstract Here, we discuss the spatial self organization of a BEC in a single mode optical cavity

More information

BEC meets Cavity QED

BEC meets Cavity QED BEC meets Cavity QED Tilman Esslinger ETH ZürichZ Funding: ETH, EU (OLAQUI, Scala), QSIT, SNF www.quantumoptics.ethz.ch Superconductivity BCS-Theory Model Experiment Fermi-Hubbard = J cˆ ˆ U nˆ ˆ i, σ

More information

Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics

Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics Xiaozhen Xu Optical Science and Engineering University of New Mexico Albuquerque, NM 87131 xzxu@unm.edu We consider the nonlinearity

More information

Non-equilibrium quantum phase transition with ultracold atoms in optical cavity

Non-equilibrium quantum phase transition with ultracold atoms in optical cavity Non-equilibrium quantum phase transition with ultracold atoms in optical cavity P. Domokos, D. Nagy, G. Kónya, G. Szirmai J. Asbóth, A. Vukics H. Ritsch (Innsbruck) MTA Szilárdtestfizikai és Optikai Kutatóintézete

More information

MESOSCOPIC QUANTUM OPTICS

MESOSCOPIC QUANTUM OPTICS MESOSCOPIC QUANTUM OPTICS by Yoshihisa Yamamoto Ata Imamoglu A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Toronto Singapore Preface xi 1 Basic Concepts

More information

Nonlinear optics with single quanta

Nonlinear optics with single quanta Nonlinear optics with single quanta A brief excursion into cavity quantum electrodynamics Kevin Moore Physics 208 Fall 2004 What characterizes linear systems? X stuff Y 1. Start with input X 2. X impinges

More information

Condensed Matter Without Matter Quantum Simulation with Photons

Condensed Matter Without Matter Quantum Simulation with Photons Condensed Matter Without Matter Quantum Simulation with Photons Andrew Houck Princeton University Work supported by Packard Foundation, NSF, DARPA, ARO, IARPA Condensed Matter Without Matter Princeton

More information

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

8 Quantized Interaction of Light and Matter

8 Quantized Interaction of Light and Matter 8 Quantized Interaction of Light and Matter 8.1 Dressed States Before we start with a fully quantized description of matter and light we would like to discuss the evolution of a two-level atom interacting

More information

arxiv: v1 [quant-ph] 2 Aug 2011

arxiv: v1 [quant-ph] 2 Aug 2011 Numerical solutions of the Dicke Hamiltonian Miguel A. Bastarrachea-Magnani, Jorge G. Hirsch Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México Apdo. Postal 70-543, Mexico D. F.,

More information

Applied Physics 150a: Homework #3

Applied Physics 150a: Homework #3 Applied Physics 150a: Homework #3 (Dated: November 13, 2014) Due: Thursday, November 20th, anytime before midnight. There will be an INBOX outside my office in Watson (Rm. 266/268). 1. (10 points) The

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Ceren Burçak Dağ Supervisors: Dr. Pol Forn-Díaz and Assoc. Prof. Christopher Wilson Institute

More information

Collective Dynamics of a Generalized Dicke Model

Collective Dynamics of a Generalized Dicke Model Collective Dynamics of a Generalized Dicke Model J. Keeling, J. A. Mayoh, M. J. Bhaseen, B. D. Simons Harvard, January 212 Funding: Jonathan Keeling Collective dynamics Harvard, January 212 1 / 25 Coupling

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Dicke quantum spin glass of atoms and photons

Dicke quantum spin glass of atoms and photons Dicke quantum spin glass of atoms and photons The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Published Version Accessed

More information

Quantum Many Body Physics with Strongly Interacting Matter and Light. Marco Schiro Princeton Center for Theoretical Science

Quantum Many Body Physics with Strongly Interacting Matter and Light. Marco Schiro Princeton Center for Theoretical Science Quantum Many Body Physics with Strongly Interacting Matter and Light Marco Schiro Princeton Center for Theoretical Science Nice, INLN Condensed Matter Seminar July 5 2013 Interacting Light and Matter Far

More information

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013 Ground state cooling via Sideband cooling Fabian Flassig TUM June 26th, 2013 Motivation Gain ultimate control over all relevant degrees of freedom Necessary for constant atomic transition frequencies Do

More information

Optomechanics and spin dynamics of cold atoms in a cavity

Optomechanics and spin dynamics of cold atoms in a cavity Optomechanics and spin dynamics of cold atoms in a cavity Thierry Botter, Nathaniel Brahms, Daniel Brooks, Tom Purdy Dan Stamper-Kurn UC Berkeley Lawrence Berkeley National Laboratory Ultracold atomic

More information

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena Solid State Physics IV -Part II : Macroscopic Quantum Phenomena Koji Usami (Dated: January 6, 015) In this final lecture we study the Jaynes-Cummings model in which an atom (a two level system) is coupled

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Quantum Optics and Quantum Informatics FKA173

Quantum Optics and Quantum Informatics FKA173 Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:30-1:30. Examiners: Jonas Bylander (070-53 44 39) and Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.

More information

Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime

Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime Bijita Sarma and Amarendra K Sarma Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039,

More information

Practical realization of Quantum Computation

Practical realization of Quantum Computation Practical realization of Quantum Computation Cavity QED http://www.quantumoptics.ethz.ch/ http://courses.washington.edu/ bbbteach/576/ http://www2.nict.go.jp/ http://www.wmi.badw.de/sfb631/tps/dipoletrap_and_cavity.jpg

More information

Controlling discrete and continuous symmetries in superradiant phase transitions

Controlling discrete and continuous symmetries in superradiant phase transitions Controlling discrete and continuous symmetries in superradiant phase transitions Alexandre Baksic, Cristiano Ciuti To cite this version: Alexandre Baksic, Cristiano Ciuti. Controlling discrete and continuous

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Bose-Bose mixtures in confined dimensions

Bose-Bose mixtures in confined dimensions Bose-Bose mixtures in confined dimensions Francesco Minardi Istituto Nazionale di Ottica-CNR European Laboratory for Nonlinear Spectroscopy 22nd International Conference on Atomic Physics Cairns, July

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Circuit quantum electrodynamics : beyond the linear dispersive regime

Circuit quantum electrodynamics : beyond the linear dispersive regime Circuit quantum electrodynamics : beyond the linear dispersive regime 1 Jay Gambetta 2 Alexandre Blais 1 1 Département de Physique et Regroupement Québécois sur les matériaux de pointe, 2 Institute for

More information

Introduction to Modern Quantum Optics

Introduction to Modern Quantum Optics Introduction to Modern Quantum Optics Jin-Sheng Peng Gao-Xiang Li Huazhong Normal University, China Vfe World Scientific» Singapore* * NewJerseyL Jersey* London* Hong Kong IX CONTENTS Preface PART I. Theory

More information

Effects of polariton squeezing on the emission of an atom embedded in a microcavity

Effects of polariton squeezing on the emission of an atom embedded in a microcavity Effects of polariton squeezing on the emission of an atom embedded in a microcavity Paolo Schwendimann and Antonio Quattropani Institute of Physics. Ecole Polytechnique Fédérale de Lausanne. CH 1015 Lausanne-EPFL,

More information

Bistability of Feshbach resonance in optical cavity

Bistability of Feshbach resonance in optical cavity Cent. Eur. J. Phys. 1(6 014 47-43 DOI: 10.478/s11534-014-0459-6 Central European Journal of Physics Bistability of Feshbach resonance in optical cavity Research Article Xiao-Qiang Xu 1, You-Quan Li 1 Department

More information

光 - マグノン - マイクロ波 - 超伝導量子ビットのリンクあるいは量子ピタゴラスイッチ

光 - マグノン - マイクロ波 - 超伝導量子ビットのリンクあるいは量子ピタゴラスイッチ 光 - マグノン - マイクロ波 - 超伝導量子ビットのリンクあるいは量子ピタゴラスイッチ 東大先端研 宇佐見康二 Quantum optics with collective excitations in solid Koji Usami RCAST, the University of Tokyo Wonderful world of quantum optics Cavity QED Atom

More information

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Advisor: M. Özgür Oktel Co-Advisor: Özgür E. Müstecaplıoğlu Outline Superradiance and BEC Superradiance

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Microcavity Exciton-Polariton

Microcavity Exciton-Polariton Microcavity Exciton-Polariton Neil Na ( 那允中 ) Institute of Photonics Technologies National Tsing-Hua University 5/3/2012 Outline Microcavity Exciton-polariton QW excitons Microcavity photons Strong coupling

More information

Spontaneous crystallization of light and ultracold atoms

Spontaneous crystallization of light and ultracold atoms Spontaneous crystallization of light and ultracold atoms COST MP1403 NANOSCALE QUANTUM OPTICS Helmut Ritsch Theoretische Physik Universität Innsbruck QLIGHTCRETE, Kreta, June 2016 People Claudiu Genes

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

arxiv: v2 [quant-ph] 6 Nov 2007

arxiv: v2 [quant-ph] 6 Nov 2007 Cavity QED with a Bose-Einstein condensate Ferdinand Brennecke 1, Tobias Donner 1, Stephan Ritter 1, Thomas Bourdel 2, Michael Köhl 3, and Tilman Esslinger 1 1 Institute for Quantum Electronics, ETH Zürich,

More information

THERMALIZATION AND OUT-OF-EQUILIBRIUM DYNAMICS IN OPEN QUANTUM MANY-BODY SYSTEMS

THERMALIZATION AND OUT-OF-EQUILIBRIUM DYNAMICS IN OPEN QUANTUM MANY-BODY SYSTEMS Dissertation THERMALIZATION AND OUT-OF-EQUILIBRIUM DYNAMICS IN OPEN QUANTUM MANY-BODY SYSTEMS Michael Buchhold Supervised by: Prof. Dr. Sebastian Diehl Submitted on June 30th 2015 2 Thermalization and

More information

Light-matter coupling: from the weak to the ultrastrong coupling and beyond. Simone De Liberato Quantum Light and Matter Group

Light-matter coupling: from the weak to the ultrastrong coupling and beyond. Simone De Liberato Quantum Light and Matter Group Light-matter coupling: from the weak to the ultrastrong coupling and beyond Simone De Liberato Quantum Light and Matter Group General theory Open quantum systems Material implementations Advanced topics

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Introduction to Cavity QED

Introduction to Cavity QED Introduction to Cavity QED Fabian Grusdt March 9, 2011 Abstract This text arose in the course of the Hauptseminar Experimentelle Quantenoptik in WS 2010 at the TU Kaiserslautern, organized by Prof. Ott

More information

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA.

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA. Funding NIST NSA/LPS DARPA Boulder, CO Control and measurement of an optomechanical system using a superconducting qubit Florent Lecocq PIs Ray Simmonds John Teufel Joe Aumentado Introduction: typical

More information

Atoms and photons. Chapter 1. J.M. Raimond. September 6, J.M. Raimond Atoms and photons September 6, / 36

Atoms and photons. Chapter 1. J.M. Raimond. September 6, J.M. Raimond Atoms and photons September 6, / 36 Atoms and photons Chapter 1 J.M. Raimond September 6, 2016 J.M. Raimond Atoms and photons September 6, 2016 1 / 36 Introduction Introduction The fundamental importance of the atom-field interaction problem

More information

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State Measuring the electron edm using Cs and Rb atoms in optical lattices (and other experiments) Fang Fang Osama Kassis Xiao Li Dr. Karl Nelson Trevor Wenger Josh Albert Dr. Toshiya Kinoshita DSW Penn State

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Multiparticle Entanglement and Interference in Cavity Quantum Electrodynamics

Multiparticle Entanglement and Interference in Cavity Quantum Electrodynamics Multiparticle Entanglement and Interference in Cavity Quantum Electrodynamics A THESIS SUBMITTED TO GUJARAT UNIVERSITY for the degree of Doctor of Philosophy in Physics BY Pradyumna Kumar Pathak Quantum

More information

SUPA. Quantum Many-Body Physics with Multimode Cavity QED. Jonathan Keeling FOUNDED. University of St Andrews

SUPA. Quantum Many-Body Physics with Multimode Cavity QED. Jonathan Keeling FOUNDED. University of St Andrews Quantum Many-Body Physics with Multimode Cavity QED Jonathan Keeling University of St Andrews FOUNDED 113 SUPA CONDMAT17, Copenhagen, May 17 Jonathan Keeling Multimode cavity QED CONDMAT17 1 What can quantum

More information

Coupling n-level Atoms with l-modes of Quantised Light in a Resonator

Coupling n-level Atoms with l-modes of Quantised Light in a Resonator Journal of Physics: Conference Series PAPER OPEN ACCESS Coupling n-level Atoms with l-modes of Quantised Light in a Resonator To cite this article: O Castaños et al 016 J. Phys.: Conf. Ser. 698 01006 View

More information

Entanglement creation and characterization in a trapped-ion quantum simulator

Entanglement creation and characterization in a trapped-ion quantum simulator Time Entanglement creation and characterization in a trapped-ion quantum simulator Christian Roos Institute for Quantum Optics and Quantum Information Innsbruck, Austria Outline: Highly entangled state

More information

Mesoscopic field state superpositions in Cavity QED: present status and perspectives

Mesoscopic field state superpositions in Cavity QED: present status and perspectives Mesoscopic field state superpositions in Cavity QED: present status and perspectives Serge Haroche, Ein Bokek, February 21 st 2005 Entangling single atoms with larger and larger fields: an exploration

More information

Entangled Photon Generation via Biexciton in a Thin Film

Entangled Photon Generation via Biexciton in a Thin Film Entangled Photon Generation via Biexciton in a Thin Film Hiroshi Ajiki Tokyo Denki University 24,Apr. 2017 Emerging Topics in Optics (IMA, Univ. Minnesota) Entangled Photon Generation Two-photon cascade

More information

Quantum Many-Body Phenomena in Arrays of Coupled Cavities

Quantum Many-Body Phenomena in Arrays of Coupled Cavities Quantum Many-Body Phenomena in Arrays of Coupled Cavities Michael J. Hartmann Physik Department, Technische Universität München Cambridge-ITAP Workshop, Marmaris, September 2009 A Paradigm Many-Body Hamiltonian:

More information

Population Dynamics and Emission Spectrum of a Cascade Three-Level Jaynes Cummings Model with Intensity-Dependent Coupling in a Kerr-like Medium

Population Dynamics and Emission Spectrum of a Cascade Three-Level Jaynes Cummings Model with Intensity-Dependent Coupling in a Kerr-like Medium Commun. Theor. Phys. (Beijing China) 45 (006) pp. 77 731 c International Academic Publishers Vol. 45 No. 4 April 15 006 Population Dynamics and Emission Spectrum of a Cascade Three-Level Jaynes Cummings

More information

Open Quantum Systems and Markov Processes II

Open Quantum Systems and Markov Processes II Open Quantum Systems and Markov Processes II Theory of Quantum Optics (QIC 895) Sascha Agne sascha.agne@uwaterloo.ca July 20, 2015 Outline 1 1. Introduction to open quantum systems and master equations

More information

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles Quantum Computation 650 Spring 2009 Lectures 1-21 The World of Quantum Information Marianna Safronova Department of Physics and Astronomy February 10, 2009 Outline Quantum Information: fundamental principles

More information

Two-level systems coupled to oscillators

Two-level systems coupled to oscillators Two-level systems coupled to oscillators RLE Group Energy Production and Conversion Group Project Staff Peter L. Hagelstein and Irfan Chaudhary Introduction Basic physical mechanisms that are complicated

More information

Single-Mode Displacement Sensor

Single-Mode Displacement Sensor Single-Mode Displacement Sensor Barbara Terhal JARA Institute for Quantum Information RWTH Aachen University B.M. Terhal and D. Weigand Encoding a Qubit into a Cavity Mode in Circuit-QED using Phase Estimation,

More information

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates DÉPARTEMENT DE PHYSIQUE DE L ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL Cavity Quantum Electrodynamics Lecture : entanglement engineering with quantum gates Michel BRUNE Les Houches 003 1 CQED

More information

CAVITY QUANTUM ELECTRODYNAMICS

CAVITY QUANTUM ELECTRODYNAMICS CAVITY QUANTUM ELECTRODYNAMICS Edited by Paul R. Berman Department of Physics University of Michigan Ann Arbor, Michigan ACADEMIC PRESS, INC. Harcourt Brace & Company, Publishers Boston San Diego New York

More information

arxiv: v1 [quant-ph] 6 Aug 2009

arxiv: v1 [quant-ph] 6 Aug 2009 Output entanglement and squeezing of two-mode fields generated by a single atom Ling Zhou, Qing-Xia Mu, Zhong-Ju Liu School of physics and optoelectronic technology, Dalian University of Technology, Dalian

More information

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 425 430 c International Academic Publishers Vol. 42, No. 3, September 15, 2004 Absorption-Amplification Response with or Without Spontaneously Generated

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

arxiv: v1 [quant-ph] 13 Aug 2012

arxiv: v1 [quant-ph] 13 Aug 2012 Phase transitions with finite atom number in the Dicke Model arxiv:1208.2679v1 [uant-ph] 13 Aug 2012 1. Introduction J. G. Hirsch, O. Castaños, E. Nahmad-Achar, and R. López-Peña Instituto de Ciencias

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Transmission spectrum of an optical cavity containing N atoms

Transmission spectrum of an optical cavity containing N atoms PHYSICAL REVIEW A 69, 043805 (2004) Transmission spectrum of an optical cavity containing N atoms Sabrina Leslie,,2 Neil Shenvi, 2 Kenneth R. Brown, 2 Dan M. Stamper-Kurn, and K. Birgitta Whaley 2 Department

More information

Nonlinear and chaotic dynamics of a Bose-Einstein condensate in an optical cavity

Nonlinear and chaotic dynamics of a Bose-Einstein condensate in an optical cavity Nonlinear and chaotic dynamics of a Bose-Einstein condensate in an optical cavity M. Diver, G.R.M. Robb, and G.-L. Oppo Institute of Complex Systems, SUPA, and Department of Physics, University of Strathclyde,

More information

Quantum Electrodynamics with Ultracold Atoms

Quantum Electrodynamics with Ultracold Atoms Quantum Electrodynamics with Ultracold Atoms Valentin Kasper Harvard University Collaborators: F. Hebenstreit, F. Jendrzejewski, M. K. Oberthaler, and J. Berges Motivation for QED (1+1) Theoretical Motivation

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Dynamically protected cat-qubits: a new paradigm for universal quantum computation

Dynamically protected cat-qubits: a new paradigm for universal quantum computation Home Search Collections Journals About Contact us My IOPscience Dynamically protected cat-qubits: a new paradigm for universal quantum computation This content has been downloaded from IOPscience. Please

More information

arxiv: v1 [quant-ph] 23 Oct 2014

arxiv: v1 [quant-ph] 23 Oct 2014 International Journal of Quantum Information c World Scientific Publishing Company arxiv:4380v [quant-ph] 23 Oct 204 ENTANGLEMENT GENERATION IN THE ULTRA-STRONGLY COUPLED RABI MODEL MATTEO BINA Dipartimento

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014 Cavity Optomechanics with synthetic Landau Levels of ultra cold atoms: Sankalpa Ghosh, Physics Department, IIT Delhi Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, 043603 (2013)! HRI, Allahabad,Cold

More information

Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases

Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases Thomas Quella University of Cologne Workshop on Low-D Quantum Condensed Matter University of Amsterdam, 8.7.2013 Based

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Unusual ordered phases of magnetized frustrated antiferromagnets

Unusual ordered phases of magnetized frustrated antiferromagnets Unusual ordered phases of magnetized frustrated antiferromagnets Credit: Francis Pratt / ISIS / STFC Oleg Starykh University of Utah Leon Balents and Andrey Chubukov Novel states in correlated condensed

More information

Photonic Micro and Nanoresonators

Photonic Micro and Nanoresonators Photonic Micro and Nanoresonators Hauptseminar Nanooptics and Nanophotonics IHFG Stuttgart Overview 2 I. Motivation II. Cavity properties and species III. Physics in coupled systems Cavity QED Strong and

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Enhanced atom capturing in a high-q cavity by help of several transverse modes

Enhanced atom capturing in a high-q cavity by help of several transverse modes Enhanced atom capturing in a high-q cavity by help of several transverse modes T. Salzburger, P. Domokos, and H. Ritsch Institute for Theoretical Physics, Universität Innsbruck, Technikerstr. 5, A-6 Innsbruck,

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Theory for strongly coupled quantum dot cavity quantum electrodynamics Folie: 1 Theory for strongly coupled quantum dot cavity quantum electrodynamics Alexander Carmele OUTLINE Folie: 2 I: Introduction and Motivation 1.) Atom quantum optics and advantages of semiconductor

More information

arxiv: v1 [physics.atom-ph] 9 Nov 2013

arxiv: v1 [physics.atom-ph] 9 Nov 2013 Beyond the Dicke Quantum Phase Transition with a Bose-Einstein Condensate in an Optical Ring Resonator D. Schmidt, H. Tomczyk, S. Slama, C. Zimmermann Physikalisches Institut, Eberhard-Karls-Universität

More information

arxiv: v1 [quant-ph] 16 May 2007

arxiv: v1 [quant-ph] 16 May 2007 Light-shift-induced photonic nonlinearities F.G.S.L. Brandão,, M.J. Hartmann,, and M.B. Plenio, QOLS, Blackett Laboratory, Imperial College London, London SW7 AZ, UK IMS, Imperial College London, 53 Prince

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information