THEORY SMG, L. Glazman, Liang Jiang. EXPERIMENT Rob Schoelkopf, Michel Devoret Luigi Frunzio. Simon Nigg M. Mirrahimi Z. Leghtas

Size: px
Start display at page:

Download "THEORY SMG, L. Glazman, Liang Jiang. EXPERIMENT Rob Schoelkopf, Michel Devoret Luigi Frunzio. Simon Nigg M. Mirrahimi Z. Leghtas"

Transcription

1 Departments of Physics and Applied Physics, Yale University Circuit QED: Taming the World s Largest Schrödinger Cat and Measuring Photon Number Parity (without measuring photon number!) EXPERIMENT Rob Schoelkopf, Michel Devoret Luigi Frunzio THEORY SMG, L. Glazman, Liang Jiang Simon Nigg M. Mirrahimi Z. Leghtas M. Hatridge Shyam Shankar G. Kirchmair Brian Vlastakis Andrei Petrenko Claudia degrandi Uri Vool Huaixui Zheng Richard Brierley Matti Silveri

2 2

3 Coherent state is closest thing to a classical sinusoidal RF signal ψ( Φ ) = ψ ( Φ α) 0 3

4 4

5 5 How do we create a cat? Classical signal generators only displace the vacuum and create coherent states. We need some non-linear coupling to the cavity via a qubit.

6 The Josephson tunnel junction is the only known non-linear non-dissipative circuit element 2 Qˆ 2π ˆ H = EJ cos hωb b λb b bb 2C Φ0 Φ + Superconductor ω ω nm Insulating barrier Superconductor (Al) Energy ω 12 ω Josephson plasma oscillation of ~3-4 Cooper pairs Non-linear electromagnetic oscillator ω 01 ~5 10GHz 6

7 Transmon Qubit Energy ω ω ω 12 ω ~ mm Josephson tunnel junction ω 01 ~5 10GHz mobile electrons Superconductivity gaps out single-particle excitations Quantized energy level spectrum is simpler than hydrogen Quality factor Q= ωt 1 exceeds that of hydrogen

8 Remarkable Progress in Coherence Progress = better designs & materials

9 Transmon Qubit Energy ω ω ω 12 ω Anharmonicity allows us to approximately treat oscillator as a two-level spin. 1 = ω 01 ~5 10GHz 0 = Examples of coherent superpositions ( + ) ( ) = =

10 Transmon Qubit in 3D Cavity Josephson junction ~ mm spi n Spin flip 50 mm r r r 7 d = 2 e 1 mm 10 Debye!! Vdipole d Erms g= h Huge dipole moment: strong coupling x = gσ (a + a ) g 100 MHz

11 Quantum op<cs at the single photon level Photon state engineering Goal: arbitrary photon Fock state superpositions ψ = a 0 + a 1 + a 2 + a 3 +K Use the coupling between the cavity (harmonic oscillator) and the two-level qubit (anharmonic oscillator) to achieve this goal. 11

12 Previous State of the Art for Complex Oscillator States Expt l. Wigner tomography: Leibfried et al., 1996 ion traps (NIST Wineland group) Rydberg atom cavity QED Phase qubit circuit QED Haroche/Raimond, 2008 Rydberg (ENS) Hofheinz et al., 2009 (UCSB Martinis/Cleland) ~ 10 photons ~ 10 photons Q Φ

13 Quantum op<cs at the single photon level Large dipole coupling of transmon qubit to cavity permits: Quantum engineer s toolbox to make arbitrary states: Dispersive Hamiltonian: qubit detuned from cavity -qubit can only virtually absorb/emit photons (DOUBLY QND) ω q z z H = ωra a+ σ + χσ a a+ Hdamping 2 resonator qubit Dispersive coupling ω r ω q 13

14 Dispersive Hamiltonian ω q z z H = ωra a+ σ + χσ a a+ Hdamping 2 resonator qubit dispersive coupling cavity frequency = ω + r z χσ g strong-dispersive limit e 2 χ ~ κ κ ω ωr χ ωr + χ 14

15 Strong- Dispersive Limit yields a powerful toolbox g e Cavity frequency depends on qubit state ω ωr χ ωr + χ Microwave pulse at this frequency excites cavity only if qubit is in ground state Microwave pulse at this frequency excites cavity only if qubit is in excited state g D α Engineer s tool #1: Conditional displacement of cavity 15

16 Making a cat: the experiment Q 0i cavity gi C π M qubit P Φ (*fine print for the experts: this is the Husimi Q function not Wigner)

17 Making a cat: the experiment Q 0i cavity gi C π M qubit P Φ

18 Making a cat: the experiment Q 0i cavity gi C π M qubit P Φ

19 Making a cat: the experiment Q 0i cavity gi C π M qubit P Φ

20 Making a cat: Q Φ 0i cavity gi qubit after time: C π M P t = π χ qubit acquires π phase per photon

21 Making a cat: Qubit fully entangled with cavity cat is dead; poison bottle open cat is alive; poison bottle closed Q Φ 0i cavity gi qubit after time: C π M P t = π χ qubit acquires π phase per photon

22 π n Engineer s tool #2: Conditional flip of qubit if exactly n photons ω q z z H = ωra a+ σ + χσ a a+ Hdamping 2 resonator qubit dispersive coupling Reinterpret dispersive term: - quantized light shift of qubit frequency ωq + 2χaa 2 z σ 22

23 - quantized light shift of qubit frequency (coherent microwave state) ωq + 2χaa 2 z σ N.B. power broadened 100X χ Microwaves are par<cles! New low-noise way to do axion dark matter detection?

24 strong dispersive coupling I V DISPERSIVE z χa aσ Qubit Spectroscopy n = 2 n = 1 n = 0 Coherent state in the cavity Qubit excitation 2χ Conditional bit flip π n Spectroscopy frequency (GHz) 24

25 Strong Dispersive Coupling Gives Powerful Tool Set Cavity conditioned bit flip π n Qubit-conditioned cavity displacement g D α multi-qubit geometric entangling phase gates (Paik et al.) Schrödinger cats are now easy (Kirchmair et al.) Photon Schrödinger cats on demand experiment theory G. Kirchmair M. Mirrahimi B. Vlastakis Z. Leghtas A. Petrenko 25

26 Combining conditional cavity displacements with conditional qubit flips, one can disentangle the qubit from the photons ψ = 1 g α + e 2 ( α ) D g π α 0 g D α ψ = 1 g + α 2 ( α ) Qubit in ground state; cavity in photon cat state 26

27 Does it work in prac<ce? Vlastakis et al. Science 342, 607 (2013) ψ = 1 g ± α 2 ( α ) To prove the cat is not an incoherent mixture: - measure photon number parity in the cat - measure the Wigner function (phase space distribution of cat)

28 Proving phase coherence via Parity P = e iπa a = ( 1) n P = p n ( 1) n Coherent state: Mean photon number: 4 Even parity cat state: ψ n = β = 2 ψ = β + β Readout signal 10" Photon number 8" 6" 4" 2" 0" Only photon numbers: 0, 2, 4, ˆP ψ =+ ψ Odd parity cat state: Only photon numbers: 1, 3, 5, ˆP ψ = ψ ψ = β β Spectroscopy frequency (GHz)

29 Wigner Func<on Measurement Vlastakis, Kirchmair, et al., Science (2013) Density Matrix: ρ( Φʹ, Φ) Wigner Function: W ψ ψ ( Q, Φ ) = dψe iqψ ρ( Φ, Φ+ ) 2 2 Handy identity: β =Φ+iQ W ( β) = Ψ D( + β) Pˆ D( β) Ψ ˆ ˆ N ( 1) parity P = = (will explain parity measurement later)

30 Wigner Func<on Measurement Vlastakis, Kirchmair, et al., Science (2013) Interference fringes prove cat is coherent: Im β 0 = Q α + α Reβ =Φ Rapid parity oscillations With small displacements

31 Determinis<c Cat State Produc<on Vlastakis, Kirchmair, et al., Science (2013) Data! 0 Expt l Wigner function - 4

32 Determinis<c Cat State Produc<on Vlastakis, Kirchmair, et al., Science (in press 2013) Data! 0 Expt l Wigner function photons 32.0 photons 38.5 photons 111 photons 111 photons determined by fringe frequency Most macroscopic superposition ever created?

33 Determinis<c Photon Cat Produc<on Vlastakis, Kirchmair, et al., Science (2013) Three-component cat: Four-component cat: 0 Zurek compass state for sub-heisenberg metrology photons 32.0 photons 38.5 photons 111 photons 111 photons determined by fringe frequency

34 Measuring Photon Number Parity - use quantized light shift of qubit frequency ωq + 2χaa 2 z σ e z σ σ i2χnt ˆ iπnˆ 2 = e 2 z z ˆ 1,3,5,... n = x ˆ 0,2,4,... n = 34

35 Coherent State = even cat + odd cat α ( α α ) ( α α ) = even cat odd cat Measure of parity of a coherent randomly projects onto even or odd cat state 35

36 Cat = Coherent State Projected onto Parity! L. Sun et al., Nature (July 2014) qubit is in +x> Fidelity of produced cats: qubit is in -x>

37 No time to talk about: -Continuous QND monitoring of -photon number parity -multi-qubit parity (stabilizers) -Bell inequality violation between a qubit and a macroscopic cat -Quantum error correction using cat state encoding Stabilizer Quantum Error Correction Toolbox for Superconducting Qubits (topological Kitaev toric code) Simon Nigg and SMG Four-component cat: Phys. Rev. Lett. 110, (2013) Z Z Z Z X X X X Dynamically protected cat-qubits: a new paradigm for universal quantum computation Zaki Leghtas et al. New J. Phys. 16, (2014)

38 Circuit QED Team Members 2013 Chen Wang Phillip Reinhold Matt Reagor Teresa Brecht Nissim Ofek Jacob Blumoff Luyan Sun Brian Vlastakis Steve Girvin Kevin Chou Chris Axline Leonid Glazman Luigi Frunzio Eric Holland Reinier Heeres Yvonne Gao Andrei Petrenko Gerhard Kirchmair Z. Leghtas M. Mirrahimi Michel Devoret Liang Jiang Funding:

39 Extra slides beyond here

40 Tracking photon jumps with repeated quantum non- demoli<on parity measurements L. Sun et al., Nature (July 2014) odd even odd even odd even 400 consecutive parity measurements

41 Number of parity jumps Number of parity jumps Probability (%) Probability (%) ODD CAT α = Number of parity jumps ODD CAT 12 Probability (%) Probability (%) EVEN CAT α = Number of parity jumps EVEN CAT α = 1.0 α =

42 arxiv: Stabilizer Quantum Error Correc<on Toolbox for superconduc<ng qubits Simon Nigg and SMG H a a ω a a qj z z = ωr + σ j + χ jσ j j 2 j Kitaev Toric/Surface Topological QEC Code χ j = χ j (fine tuning) Z Z Z Z X X X Stabilizers ZZZZ =+1 XXXX =+1 X Map mul<- qubit parity onto cavity state using new toolbox 42

43 arxiv: Stabilizer Quantum Error Correc<on Toolbox for superconduc<ng qubits Simon Nigg and SMG H = ω a a+ ω σ + a a χσ r qj z z χ = χ j j j j j 2 j (fine tuning) π i 2 j= 1 Magic iden<ty: N z j σ N N e = ( i) Z j= 1 j Z j σ z j 43

44 quan<zed light shia in even cat even cat state: Ψ = 1 2 β + β ( ) P = p n ( 1) n =1 n

45 quan<zed light shia in odd cat odd cat state: Ψ = 1 ( 2 β β ) P = p n ( 1) n n =

46 Parity Time µ s consecutive parity measurements

47 arxiv: Stabilizer Quantum Error Correc<on Toolbox for superconduc<ng qubits Simon Nigg and SMG N- way stabilizer measurements/pumping for QEC Kitaev Toric/Surface Topological QEC Code Z Z Z Z X X X Stabilizers ZZZZ =+1 XXXX =+1 X 47

48 Time evolu<on of a coherent state in cavity for <me T = produces an entangled parity cat 2 π χ π i 2 j= 1 Magic iden<ty: N z j σ N N e = ( i) Z j= 1 j Z j σ z j α P ψ + α P + ψ ZZZZ = 1 ZZZZ =+ 1 Measurement of cavity yields N- way parity of qubits 48

Introduction to Circuit QED Lecture 2

Introduction to Circuit QED Lecture 2 Departments of Physics and Applied Physics, Yale University Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

Schrödinger Cats, Maxwell s Demon and Quantum Error Correction

Schrödinger Cats, Maxwell s Demon and Quantum Error Correction Schrödinger Cats, Maxwell s Demon and Quantum Error Correction Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

Schrödinger Cats, Maxwell s Demon and Quantum Error Correction

Schrödinger Cats, Maxwell s Demon and Quantum Error Correction Schrödinger Cats, Maxwell s Demon and Quantum Error Correction Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS Michel Devoret, Yale University Acknowledgements to Yale quantum information team members:

More information

Elementary Tutorial on Loss Mechanisms in Circuit QED. Steven M. Girvin Yale University

Elementary Tutorial on Loss Mechanisms in Circuit QED. Steven M. Girvin Yale University Elementary Tutorial on Loss Mechanisms in Circuit QED Steven M. Girvin Yale University 1 Hard to believe the JJ losses are so small 2 Qubits, Cavities, Lumped-Element Oscillators G C tot L Geometric, kinetic,

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Quantum Control of Superconducting Circuits

Quantum Control of Superconducting Circuits Quantum Control of Superconducting Circuits Liang Jiang Yale University, Applied Physics Victor Albert, Stefan Krastanov, Chao Shen, Changling Zou Brian Vlastakis, Matt Reagor, Andrei Petrenko, Steven

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University John Stewart Bell Prize Part 1: Michel Devoret, Yale University SUPERCONDUCTING ARTIFICIAL ATOMS: FROM TESTS OF QUANTUM MECHANICS TO QUANTUM COMPUTERS Part 2: Robert Schoelkopf, Yale University CIRCUIT

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Electrical Quantum Engineering with Superconducting Circuits

Electrical Quantum Engineering with Superconducting Circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 Electrical Quantum Engineering with Superconducting Circuits R. Heeres & P. Bertet SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400

More information

Dynamically protected cat-qubits: a new paradigm for universal quantum computation

Dynamically protected cat-qubits: a new paradigm for universal quantum computation Home Search Collections Journals About Contact us My IOPscience Dynamically protected cat-qubits: a new paradigm for universal quantum computation This content has been downloaded from IOPscience. Please

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Quantum computation and quantum optics with circuit QED

Quantum computation and quantum optics with circuit QED Departments of Physics and Applied Physics, Yale University Quantum computation and quantum optics with circuit QED Jens Koch filling in for Steven M. Girvin Quick outline Superconducting qubits overview

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

A CNOT gate between multiphoton qubits encoded in two cavities

A CNOT gate between multiphoton qubits encoded in two cavities A CNOT gate between multiphoton qubits encoded in two cavities S. Rosenblum 1,2,,, Y.Y. Gao 1,2,, P. Reinhold 1,2, C. Wang 1,2,+, C.J. Axline 1,2, L. Frunzio 1,2, S.M. Girvin 1,2, Liang Jiang 1,2, M. Mirrahimi

More information

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Quantum Integrated Circuits Quantum currents & voltages Microfabricated atoms Digital to Analog Converter

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

arxiv: v1 [quant-ph] 6 Dec 2013

arxiv: v1 [quant-ph] 6 Dec 2013 Dynamically protected cat-qubits: a new paradigm for universal quantum computation arxiv:32.207v [quant-ph] 6 Dec 203 Mazyar Mirrahimi,2, Zaki Leghtas 2, Victor V. Albert 2,3, Steven Touzard 2, Robert

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Single-Mode Displacement Sensor

Single-Mode Displacement Sensor Single-Mode Displacement Sensor Barbara Terhal JARA Institute for Quantum Information RWTH Aachen University B.M. Terhal and D. Weigand Encoding a Qubit into a Cavity Mode in Circuit-QED using Phase Estimation,

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Amplification, entanglement and storage of microwave radiation using superconducting circuits

Amplification, entanglement and storage of microwave radiation using superconducting circuits Amplification, entanglement and storage of microwave radiation using superconducting circuits Jean-Damien Pillet Philip Kim s group at Columbia University, New York, USA Work done in Quantum Electronics

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Summary: Types of Error

Summary: Types of Error Summary: Types of Error Unitary errors (including leakage and cross-talk) due to gates, interactions. How does this scale up (meet resonance conditions for misc. higher-order photon exchange processes

More information

Quantum computing hardware

Quantum computing hardware Quantum computing hardware aka Experimental Aspects of Quantum Computation PHYS 576 Class format 1 st hour: introduction by BB 2 nd and 3 rd hour: two student presentations, about 40 minutes each followed

More information

Quantum Optics and Quantum Informatics FKA173

Quantum Optics and Quantum Informatics FKA173 Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:30-1:30. Examiners: Jonas Bylander (070-53 44 39) and Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

arxiv: v1 [quant-ph] 15 Nov 2018

arxiv: v1 [quant-ph] 15 Nov 2018 xperimental implementation of a Raman-assisted six-quanta process arxiv:1811.06589v1 [quant-ph] 15 Nov 2018 S.O. Mundhada, 1, A. Grimm, 1 J. Venkatraman, 1 Z.K. Minev, 1 S. Touzard, 1 N.. Frattini, 1 V.V.

More information

Introduction to Circuit QED

Introduction to Circuit QED Introduction to Circuit QED Michael Goerz ARL Quantum Seminar November 10, 2015 Michael Goerz Intro to cqed 1 / 20 Jaynes-Cummings model g κ γ [from Schuster. Phd Thesis. Yale (2007)] Jaynes-Cumming Hamiltonian

More information

Microscopic structure of entanglement in the many-body environment of a qubit

Microscopic structure of entanglement in the many-body environment of a qubit Microscopic structure of entanglement in the many-body environment of a qubit Serge Florens, [Ne el Institute - CNRS/UJF Grenoble] displacements 0.4 0.2 0.0 0.2 fpol. fanti. fsh 0.4 10-7 : Microscopic

More information

arxiv: v1 [quant-ph] 3 Nov 2016

arxiv: v1 [quant-ph] 3 Nov 2016 Degeneracy-preserving quantum non-demolition measurement of parity-type observables for cat-qubits Joachim Cohen 1, W. Clarke Smith, Michel H. Devoret, and Mazyar Mirrahimi 1,3 1 QUANTIC project-team,

More information

Entanglement Control of Superconducting Qubit Single Photon System

Entanglement Control of Superconducting Qubit Single Photon System : Quantum omputing Entanglement ontrol of Superconducting Qubit Single Photon System Kouichi Semba Abstract If we could achieve full control of the entangled states of a quantum bit (qubit) interacting

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Strong-coupling Circuit QED

Strong-coupling Circuit QED Departments of Physics and Applied Physics, Yale University Quantum Optics with Electrical Circuits: Strong-coupling Circuit QED Jens Koch Departments of Physics and Applied Physics, Yale University Circuit

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA.

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA. Funding NIST NSA/LPS DARPA Boulder, CO Control and measurement of an optomechanical system using a superconducting qubit Florent Lecocq PIs Ray Simmonds John Teufel Joe Aumentado Introduction: typical

More information

Quantum Measurements and Back Action (Spooky and Otherwise)

Quantum Measurements and Back Action (Spooky and Otherwise) Quantum Measurements and Back Action (Spooky and Otherwise) SM Girvin Yale University Thanks to Michel, Rob, Michael, Vijay, Aash, Simon, Dong, Claudia for discussions and comments on Les Houches notes.

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Synthesising arbitrary quantum states in a superconducting resonator

Synthesising arbitrary quantum states in a superconducting resonator Synthesising arbitrary quantum states in a superconducting resonator Max Hofheinz 1, H. Wang 1, M. Ansmann 1, Radoslaw C. Bialczak 1, Erik Lucero 1, M. Neeley 1, A. D. O Connell 1, D. Sank 1, J. Wenner

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Mesoscopic field state superpositions in Cavity QED: present status and perspectives

Mesoscopic field state superpositions in Cavity QED: present status and perspectives Mesoscopic field state superpositions in Cavity QED: present status and perspectives Serge Haroche, Ein Bokek, February 21 st 2005 Entangling single atoms with larger and larger fields: an exploration

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Quantum Computing An Overview

Quantum Computing An Overview Quantum Computing An Overview NAS Division NASA Ames Research Center TR Govindan Program Manager, QIS U.S. Army Research Office Outline Motivation Essentials of the Quantum Computing (QC) model Challenges

More information

arxiv: v1 [quant-ph] 15 Dec 2014

arxiv: v1 [quant-ph] 15 Dec 2014 Confining the state of light to a quantum manifold by engineered two-photon loss arxiv:141.4633v1 [quant-ph] 15 Dec 014 Zaki Leghtas, 1 Steven Touzard, 1 Ioan M. Pop, 1 Angela Kou, 1 Brian Vlastakis, 1

More information

Advances in Josephson Quantum Circuits

Advances in Josephson Quantum Circuits APS 00 March Meeting, Tutorial #3 Advances in Josephson Quantum Circuits Instructors: Michel Devoret, Yale University "Introduction to superconducting quantum circuits" Yasunobu Nakamura, NEC Japan "Superconducting

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena Solid State Physics IV -Part II : Macroscopic Quantum Phenomena Koji Usami (Dated: January 6, 015) In this final lecture we study the Jaynes-Cummings model in which an atom (a two level system) is coupled

More information

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft.

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft. Introduction to quantum computing (with superconducting circuits) Lecture 2 Version: 14/89 Frontiers of Condensed Matter San Sebastian, Aug. 28-3, 214 Dr. Leo DiCarlo l.dicarlo@tudelft.nl dicarlolab.tudelft.nl

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007 Generating Single Microwave Photons in a Circuit arxiv:cond-mat/0702648v1 [cond-mat.mes-hall] 27 Feb 2007 A. A. Houck, 1 D. I. Schuster, 1 J. M. Gambetta, 1 J. A. Schreier, 1 B. R. Johnson, 1 J. M. Chow,

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

An architecture for integrating planar and 3D cqed devices

An architecture for integrating planar and 3D cqed devices An architecture for integrating planar and 3D cqed devices C. Axline, M. Reagor, R. Heeres, P. Reinhold, C. Wang, K. Shain, W. Pfaff, Y. Chu, L. Frunzio, and R. J. Schoelkopf Department of Applied Physics,

More information

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Ceren Burçak Dağ Supervisors: Dr. Pol Forn-Díaz and Assoc. Prof. Christopher Wilson Institute

More information

Violation of Bell s inequality in Josephson phase qubits

Violation of Bell s inequality in Josephson phase qubits Violation of Bell s inequality in Josephson phase qubits Markus Ansmann, H. Wang, Radoslaw C. Bialczak, Max Hofheinz, Erik Lucero, M. Neeley, A. D. O Connell, D. Sank, M. Weides, J. Wenner, A. N. Cleland,

More information

arxiv: v1 [quant-ph] 8 Aug 2016

arxiv: v1 [quant-ph] 8 Aug 2016 Implementing a Universal Gate Set on a Logical Qubit Encoded in an Oscillator Reinier W. Heeres, 1, Philip Reinhold, 1, Nissim Ofek, 1 Luigi Frunzio, 1 Liang Jiang, 1 Michel H. Devoret, 1 and Robert J.

More information

Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity

Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity PHYSICAL REVIEW A 87, 04235 (203) Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity Zaki Leghtas,,2,* Gerhard Kirchmair, 2 Brian Vlastakis, 2 Michel H. Devoret, 2

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

Lecture 2, March 1, 2018

Lecture 2, March 1, 2018 Lecture 2, March 1, 2018 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004 Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004 A very active research field: Code information in simple systems (atoms, photons..) and use

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Quantum simulation with superconducting circuits

Quantum simulation with superconducting circuits Quantum simulation with superconducting circuits Summary: introduction to quantum simulation with superconducting circuits: quantum metamaterials, qubits, resonators motional averaging/narrowing: theoretical

More information

Lecture 3 Quantum non-demolition photon counting and quantum jumps of light

Lecture 3 Quantum non-demolition photon counting and quantum jumps of light Lecture 3 Quantum non-demolition photon counting and quantum jumps of light A stream of atoms extracts information continuously and non-destructively from a trapped quantum field Fundamental test of measurement

More information

REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS

REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS IRFAN SIDDIQI YALE UNIVERSITY R. Vijay P. Hyafil E. Boaknin M. Metcalfe F. Pierre L. Frunzio C.M. Wilson C. Rigetti V. Manucharyan J. Gambetta

More information

Quantum Simulation with Rydberg Atoms

Quantum Simulation with Rydberg Atoms Hendrik Weimer Institute for Theoretical Physics, Leibniz University Hannover Blaubeuren, 23 July 2014 Outline Dissipative quantum state engineering Rydberg atoms Mesoscopic Rydberg gates A Rydberg Quantum

More information

Routes towards quantum information processing with superconducting circuits

Routes towards quantum information processing with superconducting circuits Routes towards quantum information processing with superconducting circuits? 0 1 1 0 U 2 1 0? 0 1 U 1 U 1 Daniel Estève Quantronics SPEC CEA Saclay Quantum Mechanics: resources for information processing

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics Lecture 3: 2-qubit

More information

Quantum optics and optomechanics

Quantum optics and optomechanics Quantum optics and optomechanics 740nm optomechanical crystals LIGO mirror AMO: Alligator nanophotonic waveguide quantum electro-mechanics Oskar Painter, Jeff Kimble, Keith Schwab, Rana Adhikari, Yanbei

More information

Lecture 6, March 30, 2017

Lecture 6, March 30, 2017 Lecture 6, March 30, 2017 Last week: This week: Brief revisit of the Transmon qubit Gate charge insensitivity Anharmonicity and driving of qubit Tuning by magnetic flux Qubit-Qubit coupling in circuit

More information

Content of the lectures

Content of the lectures Content of the lectures Lecture 1 Introduction to quantum noise, squeezed light and entanglement generation Quantization of light, Continuous-variable, Homodyne detection, Gaussian states, Optical parametric

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Circuit quantum electrodynamics : beyond the linear dispersive regime

Circuit quantum electrodynamics : beyond the linear dispersive regime Circuit quantum electrodynamics : beyond the linear dispersive regime 1 Jay Gambetta 2 Alexandre Blais 1 1 Département de Physique et Regroupement Québécois sur les matériaux de pointe, 2 Institute for

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

From Majorana Fermions to Topological Order

From Majorana Fermions to Topological Order From Majorana Fermions to Topological Order Arxiv: 1201.3757, to appear in PRL. B.M. Terhal, F. Hassler, D.P. DiVincenzo IQI, RWTH Aachen We are looking for PhD students or postdocs for theoretical research

More information

Condensed Matter Without Matter Quantum Simulation with Photons

Condensed Matter Without Matter Quantum Simulation with Photons Condensed Matter Without Matter Quantum Simulation with Photons Andrew Houck Princeton University Work supported by Packard Foundation, NSF, DARPA, ARO, IARPA Condensed Matter Without Matter Princeton

More information