The Nobel Prize in Physics 2012

Size: px
Start display at page:

Download "The Nobel Prize in Physics 2012"

Transcription

1 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado Boulder, CO, USA For ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems. Kungl. Vetenskapsakademien

2 We never experiment with just one electron or atom or (small) molecule. In thoughtexperiments we sometimes assume that we do; this invariably entails ridiculous consequences E. Schrödinger Experiment with single atoms (ions) and with one or few photons

3 Ion in a trap Photon in a cavity Manipulation and observation with photons Manipulation och observation with atoms n=51 n=50 A two-level system is coupled to a quantized harmonic oscillator

4 1. Methods Background New techniques 2. Applications Within science For the future For today

5 Capturing and cooling an ion Ion trap technique 1970s Paul and Dehmelt, Nobel prize 1989 Doppler cooling (with laser light) proposed by Wineland and Dehmelt for ions 1975 demonstrated experimentally for ions 1978 Chu, Phillips, Cohen-Tannoudji, Nobel prize 1997

6 Ion traps Lasers Ions Electrodes Linear Paul trap Electric field + Radio frequency field NIST home page An ion trap

7 Observation of ions 2 P 3/2 F=3,m F =3 Be + 2 S 1/2 F=2,m F =2 5d 10 6s 6p 2 P 1/2 NIST home page Hg + 5d 9 6s 2 2 D 1/2 forbidden 5d 10 6s 2 2 S 1/2 Wineland s and Toschek s groups 1986

8 Sideband cooling > ω 0 ω 0 ω v ω v v=2 v=1 v=0 Quantized motion Cooling in the lowest energy state of the trap > v=2 v=1 v=0 Control of the internal and external states of the ion Wineland s group 1989 (1D) och 1995 (3D)

9 Control of the state of an ion > > ω 0 ω v v=1 v=0 v=1 v=0 ϕ 0 >= > 0> ϕ 1 >= (α > +β >) 0> Superposition of internal states Red sideband π pulse > 0> > 1> ϕ 2 >= α > 0>+β > 1> = > (α 0>+β 1>) Superposition of vibrational states Cirac, Zoller, theory,1995 Wineland s group, experiment 1995 Blatt s group, experiment for two ions 2003

10 Cavity Quantum Electrodynamics (CQED) Properties of one atom in a cavity Kleppner, Walther, Haroche (1985) CQED in the optical domain: Kimble Circuit QED: using supraconducting circuits

11 Capture of microwave photons Q=4x T c = 130 ms 51,1 GHz km Supraconducting mirrors in niobium 0,8K Microwave photons ENS home page A half cavity

12 Experiment with photons n=51 51 GHz Rb, n=50 Circular Rydberg atom l= m =49 B: Preparation of Rydberg atoms R 1, R 2 : Resonant cavities where superpositions of and are created D: Field ionisation detector R 1, R 2, D: Ramsey interferometer C: Cavity

13 Measurement of 0 or 1 photon > z x > > + > > +e iφ > y >

14 Measurement of 0 or 1 photon > z x > > + > > + > > y 0 photon φ=0 >

15 Measurement of 0 or 1 photon > z x > > + > > - > 1 photon φ=π > > > y Phase shift Haroche s group, 1990, 1999, 2007

16 Measurement of 0 or 1 photon > > > > Many atoms see the same photon time (s)

17 Measurement of a few photons Observation of the progressive collapse of a wave function Quantum feedback (2011)

18 1. Methods Background New techniques 2. Applications Within science For the future For today

19 Schrödinger s cat 1935 Schrödinger Difficult to apply quantum mechanics to everyday s life! When does a superposition of states stop to exist and become one state or the other? Transition between the quantum and classical worlds

20 Decoherence of Schrödinger s cat ϕ 0 >= ( > + >) α> α Coherent field After the cavity: ϕ 1 >= > αe -iφ > +e iφ > αe iφ > Dead cat Living cat Entanglement between the atom and the field Decay of coherence Haroche s group 1996 Wineland s group 1996

21 Film of the decoherence of a Schrödinger s cat Wigner function Superposition Statistical mixture

22 Towards quantum computers Bits 0 1 Quantum bits 1> z x N qubits: superposition of 2 N states Parallelism interesting for some operations y Many systems proposed for quantum computers: Ions in a trap (14 qubits) Atoms in a cavity Superconducting circuits Atoms in optical lattices etc 0> First 2qubit quantum gate CNOT operation Wineland s group 1995

23 Optical Clocks Caesium atom Aluminium ion Microwave Visible 10 4 Precision of an optical ion clock 10-17

24 Optical clocks using quantum logic 3 P 1 F=3,m F = PHz 8 mhz bandwidth 27 Al + 2 P 3/2 Cooling och detection Quantum logic 1 S 0 No strong transition for cooling and detection Be + 2 S 1/2 F=2,m F =2 F=1,m F =1 Quantum logic spectroscopy technique Al-Be Wineland s group 2005

25 How does one measure the precision of optical clocks? Frequency comb technique: Hall and Hänsch 1999 NP:2005

26 Optical ion clocks 8 x10-18 Al + Mg + Difference in height 30 cm Wineland s group 2010 Difference in velocity: a few m/s

27 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado Boulder, CO, USA For ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems.

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Quantum Logic Spectroscopy and Precision Measurements

Quantum Logic Spectroscopy and Precision Measurements Quantum Logic Spectroscopy and Precision Measurements Piet O. Schmidt PTB Braunschweig and Leibniz Universität Hannover Bad Honnef, 4. November 2009 Overview What is Quantum Metrology? Quantum Logic with

More information

Quantum computation with trapped ions

Quantum computation with trapped ions Abstract Since the first preparation of a single trapped, laser-cooled ion by Neuhauser et el. in 198, a continuously increasing degree of control over the of single ions has been achieved, such that what

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Quantum Optics. Manipulation of «simple» quantum systems

Quantum Optics. Manipulation of «simple» quantum systems Quantum Optics Manipulation of «simple» quantum systems Antoine Browaeys Institut d Optique, Palaiseau, France Quantum optics = interaction atom + quantum field e g ~ 1960: R. Glauber (P. Nobel. 2005),

More information

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013 Ground state cooling via Sideband cooling Fabian Flassig TUM June 26th, 2013 Motivation Gain ultimate control over all relevant degrees of freedom Necessary for constant atomic transition frequencies Do

More information

A central problem in cryptography: the key distribution problem.

A central problem in cryptography: the key distribution problem. Scientific American 314, 48-55 (2016) A central problem in cryptography: the key distribution problem. Mathematics solution: public key cryptography. Public-key cryptography relies on the computational

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Open Quantum Systems

Open Quantum Systems Open Quantum Systems Basics of Cavity QED There are two competing rates: the atom in the excited state coherently emitting a photon into the cavity and the atom emitting incoherently in free space Basics

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Quantum theory has opened to us the microscopic world of particles, atoms and photons..and has given us the keys of modern technologies

Quantum theory has opened to us the microscopic world of particles, atoms and photons..and has given us the keys of modern technologies Power and strangeness of the quantum Quantum theory has opened to us the microscopic world of particles, atoms and photons.and has given us the keys of modern technologies This is a theory whose logics

More information

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions Quantum Information Processing with Trapped Ions Overview: Experimental implementation of quantum information processing with trapped ions 1. Implementation concepts of QIP with trapped ions 2. Quantum

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris www.college-de-france.fr A

More information

Cavity Quantum Electrodynamics Lecture 1

Cavity Quantum Electrodynamics Lecture 1 DÉPARTEMENT DE PHYSIQUE DE L ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL Cavity Quantum Electrodynamics Lecture 1 Michel BRUNE Les Houches 2003 1 Quantum information and Cavity QED Principle of

More information

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004 Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004 A very active research field: Code information in simple systems (atoms, photons..) and use

More information

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris A three lecture course Goal of lectures Manipulating states of simple quantum systems has become an important

More information

Laser History. In 1916, Albert Einstein predicted the existence of stimulated emission, based on statistical physics considerations.

Laser History. In 1916, Albert Einstein predicted the existence of stimulated emission, based on statistical physics considerations. Laser History In 1916, Albert Einstein predicted the existence of stimulated emission, based on statistical physics considerations. Einstein, A., Zur Quantentheorie der Strahlung, Physikalische Gesellschaft

More information

Quantum computing hardware

Quantum computing hardware Quantum computing hardware aka Experimental Aspects of Quantum Computation PHYS 576 Class format 1 st hour: introduction by BB 2 nd and 3 rd hour: two student presentations, about 40 minutes each followed

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion ion interaction induced by laser pulses that excite the ion`s

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Introduction to Circuit QED Lecture 2

Introduction to Circuit QED Lecture 2 Departments of Physics and Applied Physics, Yale University Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

Towards Quantum Computation with Trapped Ions

Towards Quantum Computation with Trapped Ions Towards Quantum Computation with Trapped Ions Ion traps for quantum computation Ion motion in linear traps Nonclassical states of motion, decoherence times Addressing individual ions Sideband cooling of

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles Quantum Computation 650 Spring 2009 Lectures 1-21 The World of Quantum Information Marianna Safronova Department of Physics and Astronomy February 10, 2009 Outline Quantum Information: fundamental principles

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA.

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA. Funding NIST NSA/LPS DARPA Boulder, CO Control and measurement of an optomechanical system using a superconducting qubit Florent Lecocq PIs Ray Simmonds John Teufel Joe Aumentado Introduction: typical

More information

Lecture 3 Quantum non-demolition photon counting and quantum jumps of light

Lecture 3 Quantum non-demolition photon counting and quantum jumps of light Lecture 3 Quantum non-demolition photon counting and quantum jumps of light A stream of atoms extracts information continuously and non-destructively from a trapped quantum field Fundamental test of measurement

More information

Quantum Optics and Quantum Informatics 7.5hp (FKA173) Introductory Lecture

Quantum Optics and Quantum Informatics 7.5hp (FKA173) Introductory Lecture Quantum Optics and Quantum Informatics 7.5hp (FKA173) Introductory Lecture Fasrummet (A820) 09:00 Oct. 31-2017 Lectures: Jonas Bylander (jonas.bylander@chalmers.se) and Thilo Bauch (bauch@chalmers.se)

More information

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Rainer Blatt Institut für Experimentalphysik, Universität Innsbruck, Institut für Quantenoptik und Quanteninformation, Österreichische

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Laser-cooling and trapping (some history) Theory (neutral atoms) Hansch & Schawlow, 1975

Laser-cooling and trapping (some history) Theory (neutral atoms) Hansch & Schawlow, 1975 Laser-cooling and trapping (some history) Theory (neutral atoms) Hansch & Schawlow, 1975 Laser-cooling and trapping (some history) Theory (neutral atoms) Hansch & Schawlow, 1975 (trapped ions) Wineland

More information

The physics of cold atoms from fundamental problems to time measurement and quantum technologies. Michèle Leduc

The physics of cold atoms from fundamental problems to time measurement and quantum technologies. Michèle Leduc The physics of cold atoms from fundamental problems to time measurement and quantum technologies Michèle Leduc Lima, 20 October 2016 10 5 Kelvin 10 4 Kelvin Surface of the sun 10 3 Kelvin 10 2 Kelvin earth

More information

Квантовые цепи и кубиты

Квантовые цепи и кубиты Квантовые цепи и кубиты Твердотельные наноструктуры и устройства для квантовых вычислений Лекция 2 А.В. Устинов Karlsruhe Institute of Technology, Germany Russian Quantum Center, Russia Trapped ions Degree

More information

Particle control in a quantum world

Particle control in a quantum world THE NOBEL PRIZE IN PHYSICS 2012 INFORMATION FOR THE PUBLIC Particle control in a quantum world Serge Haroche and David J. Wineland have independently invented and developed ground-breaking methods for

More information

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality PHYS 34 Modern Physics Ultracold Atoms and Trappe Ions Today and Mar.3 Contents: a) Revolution in physics nd Quantum revolution b) Quantum simulation, measurement, and information c) Atomic ensemble and

More information

School on. Cold Atoms and Molecules. and. Applications in Spectroscopy. University of Tunis. Tree

School on. Cold Atoms and Molecules. and. Applications in Spectroscopy. University of Tunis. Tree School on Cold Atoms and Molecules and Applications in Spectroscopy University of Tunis Your Scientific Family Tree Daniel Kleppner MIT/Harvard Center for Ultracold Atoms 19 March, 2015 Our Scientific

More information

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Quantum Integrated Circuits Quantum currents & voltages Microfabricated atoms Digital to Analog Converter

More information

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert Which technology? 000 001 010 011 Quantum processor 100 011 110 011 Cavity QED NMR Superconducting qubits Quantum dots Trapped atoms/ions A. Ekert Which technology? 000 001 010 011 Quantum processor 100

More information

«Demonstration of a small programmable quantum computer with atomic qubits» Philip Rhyner, Colin Kälin

«Demonstration of a small programmable quantum computer with atomic qubits» Philip Rhyner, Colin Kälin «Demonstration of a small programmable quantum computer» Philip Rhyner, Colin Kälin 14.05.2018 Introduction PART 1: Trapped ion quantum computers Ion trap States, Initialization and Measurement One- and

More information

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates DÉPARTEMENT DE PHYSIQUE DE L ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL Cavity Quantum Electrodynamics Lecture : entanglement engineering with quantum gates Michel BRUNE Les Houches 003 1 CQED

More information

Cooling Using the Stark Shift Gate

Cooling Using the Stark Shift Gate Imperial College London Cooling Using the Stark Shift Gate M.B. Plenio (Imperial) A. Retzker (Imperial) Maria Laach 7/3/007 Department of Physics and Institute for Mathematical Sciences Imperial College

More information

Laser-based precision spectroscopy and the optical frequency comb technique 1

Laser-based precision spectroscopy and the optical frequency comb technique 1 Laser-based precision spectroscopy and optical frequency comb technique 1 1 Alternatively: Why did Hänsch win Noble prize? Dr. Björn Hessmo Physikalisches Institut, Universität Heidelberg The Nobel prize

More information

Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten

Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten Christian Lisdat Goslar 12.02.2013 Gesetz über die Einheiten im Messwesen und die Zeitbestimmung Why clocks? 6 Physikalisch-Technische

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Quantum information processing with trapped atoms

Quantum information processing with trapped atoms Quantum information processing with trapped atoms Introduction Fundamentals: ion iontraps, quantum bits, bits, quantum gates Implementations: 2-qubit gates, teleportation, More recent, more advanced, Jürgen

More information

Controlling Photons in a Box and Exploring the Quantum to Classical Boundary

Controlling Photons in a Box and Exploring the Quantum to Classical Boundary Controlling Photons in a Box and Exploring the Quantum to Classical Boundary Nobel Lecture, December 8, 2012 by Serge Haroche Laboratoire Kastler Brossel de l Ecole Normale Supérieure & Collège de France,

More information

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical Physics Louisiana State University http://quantum.phys.lsu.edu

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Introduction to Cavity QED

Introduction to Cavity QED Introduction to Cavity QED Fabian Grusdt March 9, 2011 Abstract This text arose in the course of the Hauptseminar Experimentelle Quantenoptik in WS 2010 at the TU Kaiserslautern, organized by Prof. Ott

More information

Cold Ions and their Applications for Quantum Computing and Frequency Standards

Cold Ions and their Applications for Quantum Computing and Frequency Standards Cold Ions and their Applications for Quantum Computing and Frequency Standards Trapping Ions Cooling Ions Superposition and Entanglement Ferdinand Schmidt-Kaler Institute for Quantum Information Processing

More information

Mesoscopic field state superpositions in Cavity QED: present status and perspectives

Mesoscopic field state superpositions in Cavity QED: present status and perspectives Mesoscopic field state superpositions in Cavity QED: present status and perspectives Serge Haroche, Ein Bokek, February 21 st 2005 Entangling single atoms with larger and larger fields: an exploration

More information

Quantum Metrology Optical Atomic Clocks & Many-Body Physics

Quantum Metrology Optical Atomic Clocks & Many-Body Physics Quantum Metrology Optical Atomic Clocks & Many-Body Physics Jun Ye JILA, National Institute of Standards & Technology and University of Colorado APS 4CS Fall 2011 meeting, Tucson, Oct. 22, 2011 Many-body

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

Bringing quantum mechanics to life: from Schrödinger's cat to Schrödinger's microbe

Bringing quantum mechanics to life: from Schrödinger's cat to Schrödinger's microbe Bringing quantum mechanics to life: from Schrödinger's cat to Schrödinger's microbe Tongcang Li 1. Department of Physics and Astronomy 2. School of Electrical and Computer Engineering 3. Birck Nanotechnology

More information

A trip to Quantum Physics

A trip to Quantum Physics A trip to Quantum Physics - Schrödinger s cats, Einstein s nightmares and quantum technology - Diego Porras School of Mathematical & Physical Sciences A bit of history Quantum weirdness Complexity in quantum

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Dietrich Leibfried Time and Frequency Division National Institute of Standards and Technology Boulder, CO USA The remaining QIP challenge DiVincenzo requirements:

More information

EYLSA laser for atom cooling

EYLSA laser for atom cooling 1/7 For decades, cold atom system and Bose-Einstein condensates (obtained from ultra-cold atoms) have been two of the most studied topics in fundamental physics. Several Nobel prizes have been awarded

More information

PHYS598 AQG Introduction to the course

PHYS598 AQG Introduction to the course PHYS598 AQG Introduction to the course First quantum gas in dilute atomic vapors 87 Rb BEC : Wieman / Cornell group (1995) Logistics A bit about the course material Logistics for the course Website: https://courses.physics.illinois.edu/phys598aqg/fa2017/

More information

Trapped ion quantum control. Jonathan Home IDEAS league school,

Trapped ion quantum control. Jonathan Home  IDEAS league school, Trapped ion quantum control Jonathan Home www.tiqi.ethz.ch IDEAS league school, 11.09.2015 Lectures Ken Brown, IDEAS League school, Sweden 1) Basics (review). Measurement, Preparation, Coherent control

More information

Future of Quantum Science and Technology

Future of Quantum Science and Technology Future of Quantum Science and Technology Serge Haroche S.H &D.Wineland, 2012 Nobel in Physics Quantum theory has opened to us the microscopic world of particles, atoms and photons.and has given us the

More information

The trapped-ion qubit tool box. Roee Ozeri

The trapped-ion qubit tool box. Roee Ozeri The trapped-ion qubit tool box Contemporary Physics, 5, 531-550 (011) Roee Ozeri Weizmann Institute of Science Rehovot, 76100, Israel ozeri@weizmann.ac.il Physical Implementation of a quantum computer

More information

Quantum teleportation

Quantum teleportation Quantum teleportation "Deterministic quantum teleportation with atoms", M. Riebe et al., Nature 429, 734 (2004). "Deterministic quantum teleportation of atomic qubits", M. D. Barrett et al., Nature 429,

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

1. Introduction. 2. New approaches

1. Introduction. 2. New approaches New Approaches To An Indium Ion Optical Frequency Standard Kazuhiro HAYASAKA National Institute of Information and Communications Technology(NICT) e-mail:hayasaka@nict.go.jp ECTI200 . Introduction Outline

More information

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology Towards quantum metrology with N00N states enabled by ensemble-cavity interaction Hao Zhang Monika Schleier-Smith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MIT-Harvard

More information

Atomic clocks. Clocks

Atomic clocks. Clocks Atomic clocks Clocks 1 Ingredients for a clock 1. Need a system with periodic behavior: it cycles occur at constant frequency 2. Count the cycles to produce time interval 3. Agree on the origin of time

More information

Amplification, entanglement and storage of microwave radiation using superconducting circuits

Amplification, entanglement and storage of microwave radiation using superconducting circuits Amplification, entanglement and storage of microwave radiation using superconducting circuits Jean-Damien Pillet Philip Kim s group at Columbia University, New York, USA Work done in Quantum Electronics

More information

4-3 New Regime of Circuit Quantum Electro Dynamics

4-3 New Regime of Circuit Quantum Electro Dynamics 4-3 New Regime of Circuit Quantum Electro Dynamics Kouichi SEMBA, Fumiki YOSHIHARA, Tomoko FUSE, Sahel ASHHAB, Kosuke KAKUYANAGI, and Shiro SAITO Researchers at the National Institute of Information and

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS 1 QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS C. F. ROOS, M. CHWALLA, T. MONZ, P. SCHINDLER, K. KIM, M. RIEBE, and R. BLATT Institut für Experimentalphysik, Universität Innsbruck,

More information

Ion crystallisation. computing

Ion crystallisation. computing Ion crystallisation and application to quantum computing Cooling with incrased laser power: (a) reduced Doppler width (b) Kink in the line profile (b) P=0.2 mw P=0.5 mw Excitation spectra of an ion cloud

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Courtesy of Timo Koerber Institut für Experimentalphysik Universität Innsbruck 1. Basic experimental techniques 2. Two-particle entanglement 3. Multi-particle

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Quantum jumps of light: birth and death of a photon in a cavity

Quantum jumps of light: birth and death of a photon in a cavity QCCC Workshop Aschau, 27 Oct 27 Quantum jumps of light: birth and death of a photon in a cavity Stefan Kuhr Johannes-Gutenberg Universität Mainz S. Gleyzes, C. Guerlin, J. Bernu, S. Deléglise, U. Hoff,

More information

Content of the lectures

Content of the lectures Content of the lectures Lecture 1 Introduction to quantum noise, squeezed light and entanglement generation Quantization of light, Continuous-variable, Homodyne detection, Gaussian states, Optical parametric

More information

Rydberg excited Calcium Ions for quantum interactions

Rydberg excited Calcium Ions for quantum interactions Warsaw 08.03.2012 Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Igor Lesanovsky Outline 1. The R-ION consortium Who are we? 2. Physics Goals What State are of we the

More information

Practical realization of Quantum Computation

Practical realization of Quantum Computation Practical realization of Quantum Computation Cavity QED http://www.quantumoptics.ethz.ch/ http://courses.washington.edu/ bbbteach/576/ http://www2.nict.go.jp/ http://www.wmi.badw.de/sfb631/tps/dipoletrap_and_cavity.jpg

More information

Chapter 6. Exploring Decoherence in Cavity QED

Chapter 6. Exploring Decoherence in Cavity QED Chapter 6 Exploring Decoherence in Cavity QED Serge Haroche, Igor Dotsenko, Sébastien Gleyzes, Michel Brune, and Jean-Michel Raimond Laboratoire Kastler Brossel de l Ecole Normale Supérieure, 24 rue Lhomond

More information

arxiv:quant-ph/ v3 19 May 1997

arxiv:quant-ph/ v3 19 May 1997 Correcting the effects of spontaneous emission on cold-trapped ions C. D Helon and G.J. Milburn Department of Physics University of Queensland St Lucia 407 Australia arxiv:quant-ph/9610031 v3 19 May 1997

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Lecture 2: Quantum measurement, Schrödinger cat and decoherence

Lecture 2: Quantum measurement, Schrödinger cat and decoherence Lecture 2: Quantum measurement, Schrödinger cat and decoherence 5 1. The Schrödinger cat 6 Quantum description of a meter: the "Schrödinger cat" problem One encloses in a box a cat whose fate is linked

More information

From trapped ions to macroscopic quantum systems

From trapped ions to macroscopic quantum systems 7th International Summer School of the SFB/TRR21 "Control of Quantum Correlations in Tailored Matter 21-13 July 2014 From trapped ions to macroscopic quantum systems Peter Rabl Yesterday... Trapped ions:

More information

Zero-point cooling and low heating of trapped 111 Cd + ions

Zero-point cooling and low heating of trapped 111 Cd + ions PHYSICAL REVIEW A 70, 043408 (2004) Zero-point cooling and low heating of trapped 111 Cd + ions L. Deslauriers, P. C. Haljan, P. J. Lee, K-A. Brickman, B. B. Blinov, M. J. Madsen, and C. Monroe FOCUS Center,

More information

Fundamental Constants and Units

Fundamental Constants and Units Schladming Winter School 2010: Masses and Constants Lecture I Fundamental Constants and Units Ekkehard Peik Physikalisch-Technische Bundesanstalt Time and Frequency Department Braunschweig, Germany Physikalisch-Technische

More information

Counting non-destructively photons in a cavity, reconstructing Schrödinger cat states of light & realizing movies of their decoherence

Counting non-destructively photons in a cavity, reconstructing Schrödinger cat states of light & realizing movies of their decoherence Counting non-destructively photons in a cavity, reconstructing Schrödinger cat states of light & realizing movies of their decoherence Serge Haroche, ENS and Collège de France, Paris International Workshop

More information

Outlines of Quantum Physics

Outlines of Quantum Physics Duality S. Eq Hydrogen Theorems Perturbation Spin Atoms Radiation Outlines of 1 Wave-Particle Duality 2 The Schrödinger Equation 3 The Hydrogen Atom 4 Theorems of Quantum Mechanics 5 The Variation Method

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 due today April 11 th class will be at 2PM instead of

More information

Quantum information processing and cavity QED experiments with trapped Ca + ions

Quantum information processing and cavity QED experiments with trapped Ca + ions Quantum information processing and cavity QED experiments with trapped Ca + ions S. Gulde, H. Häffner, M. Riebe, G. Lancaster, A. Mundt, A. Kreuter, C. Russo, C. Becher, J. Eschner, F. Schmidt-Kaler, I.

More information

Implementing Quantum walks

Implementing Quantum walks Implementing Quantum walks P. Xue, B. C. Sanders, A. Blais, K. Lalumière, D. Leibfried IQIS, University of Calgary University of Sherbrooke NIST, Boulder 1 Reminder: quantum walk Quantum walk (discrete)

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris Les Puces à Atomes Jakob Reichel Laboratoire Kastler Brossel de l E.N.S., Paris Atom chips: Cold atoms meet the nanoworld ~ 100 nm BEC (~ 10 5 atoms, ~ 100 nk) microstructured surface bulk material ( ~

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

ION TRAPS STATE OF THE ART QUANTUM GATES

ION TRAPS STATE OF THE ART QUANTUM GATES ION TRAPS STATE OF THE ART QUANTUM GATES Silvio Marx & Tristan Petit ION TRAPS STATE OF THE ART QUANTUM GATES I. Fault-tolerant computing & the Mølmer- Sørensen gate with ion traps II. Quantum Toffoli

More information

Why Quantum Technologies?

Why Quantum Technologies? Why Quantum Technologies? Serge Haroche Quantum Europe 2017 Malta, February 17 th 2017 Quantum theory has opened to us the microscopic world of particles, atoms and photons.and has given us the keys of

More information