Electrical Quantum Engineering with Superconducting Circuits

Size: px
Start display at page:

Download "Electrical Quantum Engineering with Superconducting Circuits"

Transcription

1 switching probability Electrical Quantum Engineering with Superconducting Circuits R. Heeres & P. Bertet SPEC, CEA Saclay (France), Quantronics group swap duration (ns)

2 Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) Readout using a resonator 2) Amplification & Feedback 3) Quantum state engineering Lecture 3: Multi-qubit gates and algorithms Lecture 4: Introduction to Hybrid Quantum Devices

3 Ideal Qubit Readout a 0>+b 1> 1 0 a + b 0? 1 t meas << T a + b a + b 0? 1 0? relax Hi-Fid Quantum Non Demolition (QND) BUT HOW??? SURPRISINGLY DIFFICULT AND INTERESTING QUESTION FOR SUPERCONDUCTING QUBITS

4 The Readout Problem 1) Readout should be FAST: t meas T 1 ~40μs for high fidelity (F 1 t meas T 1 ) Ideally t meas < few hundred ns 2) Readout should be NON-INVASIVE (Quantum Non-Destructive, QND): Unwanted transition caused by readout process errors (if we find 0 as the answer, the state should remain 0 ) 3) Readout should be COMPLETELY OFF during manipulations: (i.e. have no interaction with environment decoherence)

5 Measurement of Photonic Qubits Measure a photon: CLICK! (there was a photon) Measure polarization: PBS CLICK! (photon was H)

6 Readout in Different Systems PhD Thesis, A. Burrell (2010)

7 Cavity Quantum Electrodynamics Interaction between a cavity and an atom Key work by Haroche (Nobel 2012) State-selective detector (Measure P(e) by selective ionization)

8 Qubit Resonator Interaction 2D geometry Microwave Fabri-Perot V in C c L = nl n / 2 C c V out Superconductor B E Si/SiO2 Coplanar Waveguide (CPW) : TEM mode

9 Qubit Resonator Interaction 2D geometry CPW resonator Superconducting artificial atom R. Schoelkopf, 2004 A. Blais et al., Phys. Rev. A 69, (2004) A. Walraff et al., Nature 431, 162 (2004) I. Chiorescu et al., Nature 431, 159 (2004) or: CIRCUIT QUANTUM ELECTRODYNAMICS

10 Qubit Resonator Interaction 3D geometry Storage Cavity Transmon Meas. Cavity Input/Output still: CIRCUIT QUANTUM ELECTRODYNAMICS

11 A. Blais et al., PRA 69, (2004) CPB Coupled to CPW Resonator ˆ V V aˆ aˆ V g 0 Cg gext V ext c ˆ ˆn Hˆ E cos ˆ 4E nˆ nˆ aˆ aˆ 2 tot J C g c 2 Hˆ E cos ˆ 4E nˆ n aˆ aˆ 8( C V E / 2 e) nˆ ( a a ) tot J C gext c g 0 C Hˆ q Hˆ cav 2-level approximation + Rotating Wave Approximation Ĥint H tot = ω ge 2 σ z + ω c a a + g(σ + a + σ a ) Jaynes-Cummings Hamiltonian

12 Strong Coupling Regime g 2 ev ( C / C) 0 n 1 ˆ 0 g GEOMETRICAL dependence of g Easily tuned by circuit design Can be made very large! (Typically : 0 200MHz) g 200 MHz, kHz Strong coupling condition naturally fulfilled with superconducting circuits (Q=100 enough for strong coupling!!)

13 The Jaynes-Cummings Model g,3> g,2> g,1> g,0> gn, 1 en, d d e,3> e,2> e,1> e,0> ge HJ C z c( a a 1/ 2) g( a a ) 2 HJ C Restriction of H J-C to g,n+1>, e,n> gn, 1 couples only level doublets g,n+1>, e,n> Exact diagonalization possible en, ( n 1) c / 2 g n 1 g n 1 ( n 1) c / 2 ge c Note : g,0> state is left unchanged by H J-C with E g,0 =-/2

14 The Jaynes-Cummings Model g,3> g,2> g,1> g,0> d d e,3> e,2> e,1> e,0> ge HJ C z c( a a 1/ 2) g( a a ) 2 HJ C Coupled states couples only level doublets g,n+1>, e,n> Exact diagonalization possible, n cos e, n sin g, n 1 n, n sin e, n cos g, n 1 n n n n tan E, n ( n 1) c 4 g ( n 1) E, n ( n 1) c 4 g ( n 1) 2 1 g n

15 The Jaynes-Cummings model 1.08 en, 1.04 E/(h c ) 1.00 gn, 1 gn, en, /g ge c

16 The Jaynes-Cummings model 1.08,n en, 1.04 E/(h c ) 1.00 gn, 1 2g n1,n gn, en, /g ge c

17 Two Interesting Limits 1.08,n en, 1.04 E/(h c ) 1.00 gn, 1 2g n1,n gn, en, RESONANT REGIME (=0) /g ge c

18 Two Interesting Limits 1.08,n en, 1.04 E/(h c ) 1.00 gn, 1 2g n1,n gn, en, DISPERSIVE REGIME ( >>g) RESONANT REGIME (=0) /g DISPERSIVE REGIME ( >>g)

19 Two Interesting Limits 1.08,n en, 1.04 E/(h c ) 1.00 gn, 1 2g n1 QUANTUM STATE ENGINEERING,n gn, QUBIT STATE en, READOUT 0.92 DISPERSIVE REGIME ( >>g) RESONANT REGIME (=0) /g QUBIT STATE READOUT DISPERSIVE REGIME ( >>g)

20 JC: Dispersive Regime (δ g) ge ge 2 ( aa1/ 2) HJ C / z ( c z ) a a 0 z ca a g with the dispersive coupling constant 1) Qubit state-dependent shift of the cavity frequency c c z Cavity can probe the qubit state non-destructively 2) Light shift of the qubit transition in the presence of n photons ge 2n Field in the resonator causes qubit frequency shift and decoherence (if fluctuating)

21 Dispersive Readout Principle iωct Ve iωct Ve Ve iω t + c L.O ω + χσ c z a 1 a 0 0> or 1>?? = c p or 0??? 1 2 0> p 1> 0,96 1,00 1,04 d / c

22 Typical 2D Implementation 5 mm (f 0 =6.5GHz) Q=700 80mm 40mm g 45MHz (optical+e-beam lithography) 2mm

23 Typical Setup MW drive MW meas LO I Q 20dB 50MHz Fast Digitizer A(t) (t) COIL V c db G=56dB 300K 20dB G=40dB T N =2.5K DC-8 GHz 50 4K 30dB 600mK GHz 20dB 4-8 GHz 50 18mK

24 Typical Setup Wet fridge Dry fridge Last 5-10 years - Much easier to operate (no liquid He) - Much more space

25 JC Hamiltonian in Action Signature for strong coupling: Placing a single resonant atom inside the cavity leads to splitting of transmission peak Bishop et al., Nat. Phys. (2009) observed in: vacuum Rabi splitting cavity QED R.J. Thompson et al., PRL 68, 1132 (1992) I. Schuster et al. Nature Physics 4, (2008) atom off-resonance on resonance circuit QED A. Wallraff et al., Nature 431, 162 (2004) quantum dot systems J.P. Reithmaier et al., Nature 432, 197 (2004) T. Yoshie et al., Nature 432, 200 (2004) 25 A. Wallraff et al., Nature 431, 162 (2004)

26 Qubit Spectroscopy -120 MW drv Pump TLS -122 g MW meas Probe resonator phase ( ) Some e p 5,25 5,30 5,35 Drive freq (GHz) e g p / c

27 Detecting Rabi Oscillations MW drv MW meas Δt Variable-length drive Projective measurement x Ensemble averaging T 2R =316 ns Y ( ) X t (ns)

28 PART II: AMPLIFICATION & FEEDBACK

29 Readout: Signal-to-Noise iωct Ve iωct Ve Ve iω t + c ω + χσ c a 1 z 0> or 1>?? Ideal amplifier L.O a 0 = c p 0 2 or??? 1 0> p 1> 0,96 1,00 1,04 d / c

30 Readout: Signal-to-Noise iωct Ve iωct Ve Ve iω t + c ω + χσ c z a 1 0> or 1>?? Real amplifier T N =5K L.O a 0 = c 0 or 1??? No discrimination in 1 shot p 2 0> p 1> 0,96 1,00 1,04 d / c

31 Readout: Signal-to-Noise iωct Ve iωct Ve QUANTUM- LIMITED AMPLIFIER?? Ve iω t + c ω + χσ c a 1 z 0> or 1>?? Real amplifier T N =5K L.O a 0 = c 0 or 1 in one single-shot?? p 2 0> p 1> 0,96 1,00 1,04 d / c

32 Parametric Amplification Castellanos, PhD thesis (2010)

33 Parametric Amplification (Slide by Michel Devoret)

34 Parametric Amplification Josephson pot. ~sin (φ) Gives all odd terms! Josephson pot. ~cos (φ) Gives all even terms! (Slide by Michel Devoret)

35 Parametric Amplification (Slide by Michel Devoret)

36 Parametric Amplification JPA / JPC + Very simple to make - Narrow band + Ultimate efficiency TWPA - Complicated:1000s JJ - Slightly less efficient now + Broadband, directional Quantumcircuits.com Macklin et al., Science (2015)

37 Signal-to-Noise with Par-amp M. Castellanos-Beltran, K. Lehnert, APL (2007) (quantum limit on how good an amplifier can be : Caves theorem) Actually reached in several experiments : quantum limited measurement

38 Typical Measurement Chain OUTPUT INPUT DRIVE (courtesy I. Siddiqi)

39 Pulsed Readout readout off readout on R. Vijay, D.H. Slichter, and I. Siddiqi, PRL 106, (2011) (courtesy I. Siddiqi)

40 Single-Shot Histograms No Par-amp g> e> g> e> With Par-amp g> e> g> e> Single-shot discrimination of qubit state Abdo et al., PRL (2014)

41 Cont. Readout: Quantum Jumps You can observe transitions in real-time! (in this case for a fluxonium qubit) Vool et al., PRL (2014)

42 Single-Shot Readout Feedback

43 Real-Time Feedback Many use FPGAs for real-time feedback Ofek et al., Nature 2016

44 Quantum Error Correction The ultimate quantum feedback machine Fowler, PRA (2012)

45 PART III: QUANTUM STATE ENGINEERING

46 Two Interesting Limits 1.08,n en, 1.04 E/(h c ) en, 0.92 gn, 1 QUBIT STATE READOUT DISPERSIVE REGIME ( >>g) QUANTUM 2g n STATE 1 ENGINEERING RESONANT REGIME (=0) /g,n QUBIT STATE READOUT DISPERSIVE REGIME ( >>g) gn, 1

47 Resonant JC: Vacuum Rabi Osc., n e, n g, n 1 / 2, n e, n g, n 1 / 2 COMPLETE ATOM-PHOTON MIXING Uncoupled sytem prepared in e,n> COUPLING SUDDENLY ON at t=0 P(e) P( e) 1/ 2(1 cos2g n 1 t) g,n+1> e, n i g, n 1 / 2 g n0 t/2p 1/ t p

48 Phase Qubit Coupled to Resonator I saturate meas. Coupling turned on & off via qubit bias = 40 MHz Current bias (courtesy J. Martinis)

49 Generating Fock States: Pumping Photons One by One (As done for ion traps) g e (courtesy J. Martinis)

50 Stimulated Emission Swap Oscillations Depend on n (courtesy J. Martinis)

51 Swap Oscillations Depend on n (courtesy J. Martinis)

52 Swap Oscillations Depend on n COUPLING SUDDENLY ON at t=0 1,0 - Atom prepared in g> - Oscillator in unknown state P(g) 0,8 0,6 0,4 0,2 P( g) 1/ 2 1 p( n)cos 2g nt n 0, gt/2p Measurement of p(n)

53 Generating Arbitrary States i 2 Desired final state g Law and Eberly, PRL (1996) Reverse-engineer final state by building pulse sequence backwards arrow indicates complex amplitude of corresponding basis state 2g 1g 0g ub phae ubit roup 1e 0e zero amplitude Energy level representation of desired state ub (courtesy J. Martinis)

54 State Tomo. of Harmonic Oscillator (courtesy J. Martinis)

55 State Tomo. of Harmonic Oscillator P ( ) p n n (courtesy J. Martinis)

56 State Tomo. of Harmonic Oscillator P ( ) p n n (courtesy J. Martinis)

57 Wigner Tomography of Fock State 7 Theory Experiment ub phae ubit roup ub (courtesy J. Martinis)

58 Wigner Tomography, 0 N states: Hofheinz, Nature (2009)

59 Two Interesting Limits 1.08,n en, 1.04 E/(h c ) QUBIT STATE en, READOUT 0.92 gn, 1 QUANTUM STATE ENGINEERING! DISPERSIVE REGIME ( >>g) 2g n1 QUANTUM STATE ENGINEERING RESONANT REGIME (=0) /g,n QUANTUM STATE ENGINEERING! DISPERSIVE REGIME ( >>g) gn, 1 QUBIT STATE READOUT

60 Dispersive State Manipulation We can displace the oscillator state Creates coherent state from vacuum Closest analog to a classical state Poisson photon number distribution Average photon number n = α 2 α = c n n 2 1 n =

61 Dispersive State Manipulation The dispersive Hamiltonian allows selective qubit rotations +π/2 0 φ

62 Dispersive State Manipulation Operation library: Qubit rotations Cavity displacements Conditional qubit rotations Conditional cavity phase Cat state Entangling gates: τ 1 χ Theoretically universal (using SNAP gate) Krastanov et al., PRA 2015, Heeres et al., PRL 2016 Vlastakis et al., Science 2013

63 Dispersive State Manipulation How to account for additional terms? How to do non-coherent state operations? Faster by making control-knobs more flexible? H C,I = a + a H C,Q = i(a a ) H T,I = b + b H T,Q = i(b b )

64 GRadient Ascent Pulse Engineering Numerical search for pulse implementing desired operation GRAPE Khaneja et al., J. Mag. Res. (2005)

65 Example Application Realize 6 0 to make Fock state 6? The effect of the pulse is a unitary operation We have only specified what happens to 0! (many unitaries satisfy our request ) Heeres et al., arxiv

66 Conclusions Circuit Quantum Electrodynamics: Allows QND readout of qubit state in the dispersive regime Using parametric amplifiers high-fidelity singleshot readout is possible In both the resonant and the dispersive regime oscillator control and tomography is possible

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) 2) 3) Readout

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris A three lecture course Goal of lectures Manipulating states of simple quantum systems has become an important

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Quantum computation and quantum optics with circuit QED

Quantum computation and quantum optics with circuit QED Departments of Physics and Applied Physics, Yale University Quantum computation and quantum optics with circuit QED Jens Koch filling in for Steven M. Girvin Quick outline Superconducting qubits overview

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Quantum Integrated Circuits Quantum currents & voltages Microfabricated atoms Digital to Analog Converter

More information

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA.

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA. Funding NIST NSA/LPS DARPA Boulder, CO Control and measurement of an optomechanical system using a superconducting qubit Florent Lecocq PIs Ray Simmonds John Teufel Joe Aumentado Introduction: typical

More information

Amplification, entanglement and storage of microwave radiation using superconducting circuits

Amplification, entanglement and storage of microwave radiation using superconducting circuits Amplification, entanglement and storage of microwave radiation using superconducting circuits Jean-Damien Pillet Philip Kim s group at Columbia University, New York, USA Work done in Quantum Electronics

More information

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Nathan K. Langford OVERVIEW Acknowledgements Ramiro Sagastizabal, Florian Luthi and the rest of the

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics Lecture 3: 2-qubit

More information

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris www.college-de-france.fr A

More information

Introduction to Circuit QED

Introduction to Circuit QED Introduction to Circuit QED Michael Goerz ARL Quantum Seminar November 10, 2015 Michael Goerz Intro to cqed 1 / 20 Jaynes-Cummings model g κ γ [from Schuster. Phd Thesis. Yale (2007)] Jaynes-Cumming Hamiltonian

More information

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University John Stewart Bell Prize Part 1: Michel Devoret, Yale University SUPERCONDUCTING ARTIFICIAL ATOMS: FROM TESTS OF QUANTUM MECHANICS TO QUANTUM COMPUTERS Part 2: Robert Schoelkopf, Yale University CIRCUIT

More information

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS Michel Devoret, Yale University Acknowledgements to Yale quantum information team members:

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

Introduction to Circuit QED Lecture 2

Introduction to Circuit QED Lecture 2 Departments of Physics and Applied Physics, Yale University Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

Nonlinear Oscillators and Vacuum Squeezing

Nonlinear Oscillators and Vacuum Squeezing Nonlinear Oscillators and Vacuum Squeezing David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts

More information

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

Single Microwave-Photon Detector based on Superconducting Quantum Circuits 17 th International Workshop on Low Temperature Detectors 19/July/2017 Single Microwave-Photon Detector based on Superconducting Quantum Circuits Kunihiro Inomata Advanced Industrial Science and Technology

More information

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010 High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity arxiv:4.4323v2 [cond-mat.mes-hall] 9 Oct 2 M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster,

More information

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011 Observation of quantum jumps in a superconducting artificial atom R. Vijay, D. H. Slichter, and I. Siddiqi Quantum Nanoelectronics Laboratory, Department of Physics, University of California, Berkeley

More information

Condensed Matter Without Matter Quantum Simulation with Photons

Condensed Matter Without Matter Quantum Simulation with Photons Condensed Matter Without Matter Quantum Simulation with Photons Andrew Houck Princeton University Work supported by Packard Foundation, NSF, DARPA, ARO, IARPA Condensed Matter Without Matter Princeton

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments 1 Instructor: Daryoush Shiri Postdoctoral fellow, IQC IQC, June 2015, WEEK-2 2 Parametric Amplifiers

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

Quantum optics and quantum information processing with superconducting circuits

Quantum optics and quantum information processing with superconducting circuits Quantum optics and quantum information processing with superconducting circuits Alexandre Blais Université de Sherbrooke, Canada Sherbrooke s circuit QED theory group Félix Beaudoin, Adam B. Bolduc, Maxime

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Synthesising arbitrary quantum states in a superconducting resonator

Synthesising arbitrary quantum states in a superconducting resonator Synthesising arbitrary quantum states in a superconducting resonator Max Hofheinz 1, H. Wang 1, M. Ansmann 1, Radoslaw C. Bialczak 1, Erik Lucero 1, M. Neeley 1, A. D. O Connell 1, D. Sank 1, J. Wenner

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Quantum simulation with superconducting circuits

Quantum simulation with superconducting circuits Quantum simulation with superconducting circuits Summary: introduction to quantum simulation with superconducting circuits: quantum metamaterials, qubits, resonators motional averaging/narrowing: theoretical

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

arxiv: v1 [quant-ph] 31 May 2010

arxiv: v1 [quant-ph] 31 May 2010 Single-shot qubit readout in circuit Quantum Electrodynamics François 1 Mallet, Florian R. 1 Ong, Agustin 1 Palacios-Laloy, François 1 Nguyen, Patrice 1 Bertet, Denis 1 Vion * and Daniel 1 Esteve 1 Quantronics

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Ceren Burçak Dağ Supervisors: Dr. Pol Forn-Díaz and Assoc. Prof. Christopher Wilson Institute

More information

Lecture 6, March 30, 2017

Lecture 6, March 30, 2017 Lecture 6, March 30, 2017 Last week: This week: Brief revisit of the Transmon qubit Gate charge insensitivity Anharmonicity and driving of qubit Tuning by magnetic flux Qubit-Qubit coupling in circuit

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11505 I. DEVICE PARAMETERS The Josephson (E J and charging energy (E C of the transmon qubit were determined by qubit spectroscopy which yielded transition frequencies ω 01 /π =5.4853

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

THEORY SMG, L. Glazman, Liang Jiang. EXPERIMENT Rob Schoelkopf, Michel Devoret Luigi Frunzio. Simon Nigg M. Mirrahimi Z. Leghtas

THEORY SMG, L. Glazman, Liang Jiang. EXPERIMENT Rob Schoelkopf, Michel Devoret Luigi Frunzio. Simon Nigg M. Mirrahimi Z. Leghtas Departments of Physics and Applied Physics, Yale University Circuit QED: Taming the World s Largest Schrödinger Cat and Measuring Photon Number Parity (without measuring photon number!) EXPERIMENT Rob

More information

Advances in Josephson Quantum Circuits

Advances in Josephson Quantum Circuits APS 00 March Meeting, Tutorial #3 Advances in Josephson Quantum Circuits Instructors: Michel Devoret, Yale University "Introduction to superconducting quantum circuits" Yasunobu Nakamura, NEC Japan "Superconducting

More information

Routes towards quantum information processing with superconducting circuits

Routes towards quantum information processing with superconducting circuits Routes towards quantum information processing with superconducting circuits? 0 1 1 0 U 2 1 0? 0 1 U 1 U 1 Daniel Estève Quantronics SPEC CEA Saclay Quantum Mechanics: resources for information processing

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Circuit quantum electrodynamics : beyond the linear dispersive regime

Circuit quantum electrodynamics : beyond the linear dispersive regime Circuit quantum electrodynamics : beyond the linear dispersive regime 1 Jay Gambetta 2 Alexandre Blais 1 1 Département de Physique et Regroupement Québécois sur les matériaux de pointe, 2 Institute for

More information

Quantum-information processing with circuit quantum electrodynamics

Quantum-information processing with circuit quantum electrodynamics PHYSICAL REVIEW A 75, 339 7 Quantum-information processing with circuit quantum electrodynamics Alexandre Blais, 1, Jay Gambetta, 1 A Wallraff, 1,3 D I Schuster, 1 S M Girvin, 1 M H Devoret, 1 and R J

More information

Mesoscopic field state superpositions in Cavity QED: present status and perspectives

Mesoscopic field state superpositions in Cavity QED: present status and perspectives Mesoscopic field state superpositions in Cavity QED: present status and perspectives Serge Haroche, Ein Bokek, February 21 st 2005 Entangling single atoms with larger and larger fields: an exploration

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

Quantum non-demolition measurement of a superconducting two-level system

Quantum non-demolition measurement of a superconducting two-level system 1 Quantum non-demolition measurement of a superconducting two-level system A. Lupaşcu 1*, S. Saito 1,2, T. Picot 1, P. C. de Groot 1, C. J. P. M. Harmans 1 & J. E. Mooij 1 1 Quantum Transport Group, Kavli

More information

Optomechanics and spin dynamics of cold atoms in a cavity

Optomechanics and spin dynamics of cold atoms in a cavity Optomechanics and spin dynamics of cold atoms in a cavity Thierry Botter, Nathaniel Brahms, Daniel Brooks, Tom Purdy Dan Stamper-Kurn UC Berkeley Lawrence Berkeley National Laboratory Ultracold atomic

More information

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Christopher Eichler - 29.01. 2016 ScaleQIT Conference, Delft In collaboration with: C. Lang, J. Mlynek, Y. Salathe,

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Entanglement Control of Superconducting Qubit Single Photon System

Entanglement Control of Superconducting Qubit Single Photon System : Quantum omputing Entanglement ontrol of Superconducting Qubit Single Photon System Kouichi Semba Abstract If we could achieve full control of the entangled states of a quantum bit (qubit) interacting

More information

Theory for investigating the dynamical Casimir effect in superconducting circuits

Theory for investigating the dynamical Casimir effect in superconducting circuits Theory for investigating the dynamical Casimir effect in superconducting circuits Göran Johansson Chalmers University of Technology Gothenburg, Sweden International Workshop on Dynamical Casimir Effect

More information

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Theory for strongly coupled quantum dot cavity quantum electrodynamics Folie: 1 Theory for strongly coupled quantum dot cavity quantum electrodynamics Alexander Carmele OUTLINE Folie: 2 I: Introduction and Motivation 1.) Atom quantum optics and advantages of semiconductor

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation PHYSICAL REVIEW A 69, 062320 (2004) Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation Alexandre Blais, 1 Ren-Shou Huang, 1,2 Andreas Wallraff,

More information

Lecture 3 Quantum non-demolition photon counting and quantum jumps of light

Lecture 3 Quantum non-demolition photon counting and quantum jumps of light Lecture 3 Quantum non-demolition photon counting and quantum jumps of light A stream of atoms extracts information continuously and non-destructively from a trapped quantum field Fundamental test of measurement

More information

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University Strongly Driven Semiconductor Double Quantum Dots Jason Petta Physics Department, Princeton University Lecture 3: Cavity-Coupled Double Quantum Dots Circuit QED Charge-Cavity Coupling Towards Spin-Cavity

More information

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting Jay Gambetta, 1 Alexandre Blais, 1,2 D. I. Schuster, 1 A. Wallraff, 1,3 L. Frunzio, 1 J. Majer, 1 M. H. Devoret,

More information

Niels Bohr Institute Copenhagen University. Eugene Polzik

Niels Bohr Institute Copenhagen University. Eugene Polzik Niels Bohr Institute Copenhagen University Eugene Polzik Ensemble approach Cavity QED Our alternative program (997 - ): Propagating light pulses + atomic ensembles Energy levels with rf or microwave separation

More information

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Ĥ = Ĥ(p, q : Λ), Λ: control parameter { e.g. charge qubit Λ = V g gate voltage phase qubit Λ = I bias current

More information

Ultrafast quantum nondemolition measurements based on a diamond-shaped artificial atom

Ultrafast quantum nondemolition measurements based on a diamond-shaped artificial atom Ultrafast quantum nondemolition measurements based on a diamond-shaped artificial atom Igor Diniz, Etienne Dumur, Olivier Buisson, Alexia Auffèves To cite this version: Igor Diniz, Etienne Dumur, Olivier

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Implementing Quantum walks

Implementing Quantum walks Implementing Quantum walks P. Xue, B. C. Sanders, A. Blais, K. Lalumière, D. Leibfried IQIS, University of Calgary University of Sherbrooke NIST, Boulder 1 Reminder: quantum walk Quantum walk (discrete)

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Supplementary Information for Controlled catch and release of microwave photon states

Supplementary Information for Controlled catch and release of microwave photon states Supplementary Information for Controlled catch and release of microwave photon states Yi Yin, 1, Yu Chen, 1 Daniel Sank, 1 P. J. J. O Malley, 1 T. C. White, 1 R. Barends, 1 J. Kelly, 1 Erik Lucero, 1 Matteo

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates DÉPARTEMENT DE PHYSIQUE DE L ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL Cavity Quantum Electrodynamics Lecture : entanglement engineering with quantum gates Michel BRUNE Les Houches 003 1 CQED

More information

SUPERCONDUCTING QUBITS

SUPERCONDUCTING QUBITS SUPERCONDUCTING QUBITS Theory Collaborators Prof. A. Blais (UdS) Prof. A. Clerk (McGill) Prof. L. Friedland (HUJI) Prof. A.N. Korotkov (UCR) Prof. S.M. Girvin (Yale) Prof. L. Glazman (Yale) Prof. A. Jordan

More information

Theory of quantum dot cavity-qed

Theory of quantum dot cavity-qed 03.01.2011 Slide: 1 Theory of quantum dot cavity-qed -- LO-phonon induced cavity feeding and antibunching of thermal radiation -- Alexander Carmele, Julia Kabuss, Marten Richter, Andreas Knorr, and Weng

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007 Generating Single Microwave Photons in a Circuit arxiv:cond-mat/0702648v1 [cond-mat.mes-hall] 27 Feb 2007 A. A. Houck, 1 D. I. Schuster, 1 J. M. Gambetta, 1 J. A. Schreier, 1 B. R. Johnson, 1 J. M. Chow,

More information

Quantum walks on circles in phase space via superconducting circuit quantum electrodynamics

Quantum walks on circles in phase space via superconducting circuit quantum electrodynamics Quantum walks on circles in phase space via superconducting circuit quantum electrodynamics Peng Xue, 1 Barry C. Sanders, 1 Alexandre Blais, 2 and Kevin Lalumière 2 1 Institute for Quantum Information

More information

Magnetic Resonance in Quantum Information

Magnetic Resonance in Quantum Information Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information