Quantum optics and quantum information processing with superconducting circuits

Size: px
Start display at page:

Download "Quantum optics and quantum information processing with superconducting circuits"

Transcription

1 Quantum optics and quantum information processing with superconducting circuits Alexandre Blais Université de Sherbrooke, Canada Sherbrooke s circuit QED theory group Félix Beaudoin, Adam B. Bolduc, Maxime Boissonneault, Jérôme Bourassa, Samuel Boutin, Andy Ferris, Kevin Lalumière, Clemens Mueller, Matt Woolley Former members: Marcus da Silva, Gabrielle Denhez

2 Microwave-photon antibunching without clicks Alexandre Blais Université de Sherbrooke, Canada Sherbrooke s circuit QED theory group Félix Beaudoin, Adam B. Bolduc, Maxime Boissonneault, Jérôme Bourassa, Samuel Boutin, Andy Ferris, Kevin Lalumière, Clemens Mueller, Matt Woolley Former members: Marcus da Silva, Gabrielle Denhez Quantum Device Lab, ETH Zurich Deniz Bozyigit, C. Lang, L. Steffen, J. M. Fink, M. Baur, R. Bianchetti, P. J. Leek, S. Filipp, Andreas Wallraff

3 Energy [a.u.] Nature s atoms 1 Good «two-level atom» approximation 2 E1 = E1 E = ~ 1 Position [a.u.] Control internal state by shining laser tuned at the transition frequency H= d E(t) with Hyperfine levels of 9Be+ have long decay and coherence times T1 a few years T2 & 1 seconds E(t) = E cos 1 t Reasonably short π-pulse time T 5 µs Low error per gates: ~.48% T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O Brien, Nature 464, 45 (21)

4 Q 3 Energy [a.u.] V (t) = V cos 1 t Artificial atoms: a toolkit p = 1/ LC Standard toolkit Flux [a.u.] Capacitor Simple initialization to ground state Inductor 1 Resistor Wire p = 1/ LC 1 GHz.5 K Not a good «two-level» atom... 3 K 1 mk

5 Artificial atoms: potential shaping Energy [a.u.] 1 t Q Standard toolkit I= Capacitor Inductor Resistor Wire /L p = 1/ LC Flux [a.u.] Josephson junctions V (t) = V cos 3 I = I sin(2 / I LJ ( ) = = ) 1 2 I cos(2 1 / )

6 V (t) = V cos 1 t Energy [a.u.] Artificial atoms: potential shaping Capacitor Inductor Resistor Wire Josephson junctions Standard toolkit Flux [a.u.] I = I sin(2 / I LJ ( ) = = ) 1 2 I cos(2 1 / )

7 Artificial atoms: fast and coherent V (t) = V cos 1t Energy [a.u.] Very short π-pulse time T 4 2 ns Big improvements in relaxation and dephasing times Error per gates of.25%, similar to trapped ion results T2 [µs] 1, 1, 1,,1,1 Flux [a.u.], Year 1, 1, 1,,1, T1 [µs] Short pulse: J. M Chow et al, Phys. Rev. A 82, 435(R) (21) Long coherence: H. Paik et al, arxiv: v2 (211)?

8 Energy [a.u.] From atomic physics to quantum optics 1 Good «two-level atom» approximation 2 E1 = E1 E = ~ 1 Position [a.u.] Control internal state by shining laser at the transition frequency d E(t) { H= with g Can the field of a single photon, or even vacuum fluctuations, have a large effect? E(t) = E cos 1 t Cavity QED 1) Work with large atoms (d) 2) Confine the field (E) Exploring the Quantum: Atoms, Cavities, and Photons, S. Haroche and J.-M. Raimond (26)

9 From cavity to circuit QED Artificial atoms are large ~ 3 µm V(t)

10 From cavity to circuit QED E-field can be tightly confined E/ p 1/ Large zero-point fluctuations of the field: E.2 V/m Blais, Huang, Wallraff, Girvin & Schoelkopf, Phys. Rev. A 69, 6232 (24)

11 From cavity to circuit QED Atom : Transmon qubit of transition frequency ω a and long coherence time Cavity : Superconducting coplanar transmission-line resonator of fundamental mode frequency ω r g circuit /2 [ 1] GHz g cavity /2 5 khz Proposal: Blais, Huang, Wallraff, Girvin & Schoelkopf, Phys. Rev. A 69, 6232 (24) First realization: Wallraff, Schuster, Blais, Frunzio, Huang, Majer, Kumar, Girvin & Schoelkopf. Nature 431, 162 (24) Ultra-strong coupling: Bourassa, Gambetta, Abdumalikov, Astafiev, Nakamura & Blais. Phys. Rev. A 8, 3219 (29)

12 Quantum optics with circuit QED Signature of quantum nature of light How to characterize this single microwave-photon source? 1 2 x Δt 1 2Δt 1 3Δt 1 : : : : Counts t n1 n2 x Delay G(2) ( ) = ha (t + )a (t)a(t + )a(t)i D. F. Walls and G. J. Milburn. Quantum Optics (28)

13 On-demand single microwave-photon source b 1.2 First experimental steps towards single microwave-photon detectors 5 µm <σz> <a a> On-demand single microwave photon source Rabi angle (rad) A. Houck et al. Nature 449, 328 (27) Y.-F. Chen et al. arxiv: D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

14 On-demand single microwave-photon source b 1.2 First experimental steps towards single microwave-photon detectors 5 µm <σz> <a a> On-demand single microwave photon source g Rabi angle (rad) A. Houck et al. Nature 449, 328 (27) Y.-F. Chen et al. arxiv: D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

15 Quantum mechanics of microwave measurements â ˆb g b ˆbamp apple b Output field: ˆb(t) = p bâ(t) ˆbin (t)? Amplification: b amp (t) =g b b(t) ) [b amp (t),b amp(t)] = g 2 b C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985); C. M. Caves, Phys. Rev. D 26, 1817 (1982) B. Yurke and J. S. Denker, Phys. Rev. A 29, 1419 (1984); A. Clerk et al., Rev. Mod. Phys. 82, 1155 (21)

16 Quantum mechanics of microwave measurements I â apple b ˆb g b Q Output field: Amplification: ˆb(t) = p bâ(t) b amp (t) =g b b(t)+ with ˆbin (t) q g 2 b 1d b (t) hd b (t)d b(t )i = N T (t t ) Added noise C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985); C. M. Caves, Phys. Rev. D 26, 1817 (1982) B. Yurke and J. S. Denker, Phys. Rev. A 29, 1419 (1984); A. Clerk et al., Rev. Mod. Phys. 82, 1155 (21)

17 Quantum mechanics of microwave measurements Ib Xb / (b + b) Pb / i(b ^ b a Xb gb b Output field: b (t) = p b a (t) with ^ Pb i Qb b in (t) Amplification: bamp (t) = gb b(t) + hdb (t)db (t )i b) q gb2 = NT (t 1d b (t) Added noise t ) Beam-splitter: added vacuum noise and commuting outputs C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985); C. M. Caves, Phys. Rev. D 26, 1817 (1982) B. Yurke and J. S. Denker, Phys. Rev. A 29, 1419 (1984); A. Clerk et al., Rev. Mod. Phys. 82, 1155 (21)

18 Complex envelope â apple b ˆb g b I b ^ X b i ^ P b Q b X b / (b + b) P b / i(b b) Complex envelope: Ŝ b (t) = ˆX b (t)+i ˆP b (t) = g bˆb(t)+ ˆNb (t) = g b p bâ(t)+ ˆN b(t) Digitalized using FPGA electronics with a 1 ns time resolution 1/apple

19 Beam-splitter: Noise rejection X b / (b + b) P b / i(b b) â apple b ˆb g b S b (t) Complex envelope: Ŝ b (t) = ˆX b (t)+i ˆP b (t) = g bˆb(t)+ ˆNb (t) = g b p bâ(t)+ ˆN b(t) Digitalized using FPGA electronics with a 1 ns time resolution 1/apple

20 Beam-splitter: Noise rejection ge e b a b fˆ gf i Complex envelope: S b (t) = X b (t) + ip b (t) Se(t) Sf(t) Rejection of uncorrelated noise = gb b (t) + N b (t) p = gb b a (t) + N b (t) Digitalized using FPGA electronics with a 1 ns time resolution 1/

21 Same-time averages ge e b a b fˆ gf i Se(t) Sf(t) Same-time averages: Quadrature hs e (t)i ha (t)i Cross-power hs e (t)s f (t)i ha (t)a (t)i M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

22 Protocol e Repeat ~ 16-9 times 1. Cool to ground state 1i = gi i a 2i 3i Se(t) gf Sf(t) = ( gi + ei) i 3. Transfer state to resonator f i 2. Prepare arbitrary qubit state b ge = gi ( i + 1i) r = cos( r /2) = sin( r /2)ei 4. Measure quadratures, extract Se,f(t) and calculate desired quantity 5. Average results M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

23 Same-time averages Re a t 2P.5.5 Rabi angle Qr 3P 2 P 1 P Amplitude arb. 2 1 i = ( i + 1i) hs e (t)i / ha (t)i = e t Ms.4.5 t/2 e / sin( r )e Amplitude arb. 1 a b f t/2 /2 ge Se(t) gf Sf(t) i P2 P Rabi angle 3P 2 Qr 2P See also: A. A. Houck et al. Nature 449, 328 (27) M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

24 Same-time averages a t a t Rabi angle Qr 2P 3P P 1 S e (t)s f (t) 1 P i = ( i + 1i) 1 2 Power arb Power arb. = 2 e t t Ms.4 + P (Nef ) Can be (mostly) subtracted away with measurements in the ground state e a (t)a (t) + P (Nef ).5 a b f ge Se(t) gf Sf(t) i P2 P Rabi angle 3P 2 Qr 2P See also: A. A. Houck et al. Nature 449, 328 (27) M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

25 Two-time averages ge e fˆ b a b i gf Se(t) Sf(t) Two-time correlation functions: hs e (t)s f (t + )i = p ge gf (1) G (t, t + ) + N ef ( ) 2 G(1) ( ) = ha (t)a(t + )i ge gf (2) (2) + )S f (t + )S f (t)i = G (t, t + ) + Gnoise (t, t + ) 4 p h i ge gf + N ef ( )G(1) (t +, t) ()G(1) (t +, t + ) + ()G(1) (t, t) + ( )G(1) (t, t + ) 2 hs e (t)s e (t M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211) See also: Menzel et al., Phys. Rev. Lett. 15, 141 (21); Mariantoni et al., Phys. Rev. Lett. 15, (21)

26 Two-time correlation functions: G (2) ( ) Second order cross-correlation: hŝ e(t)ŝ e(t + )Ŝf (t + )Ŝf (t)i = g eg f 4 G(2) (t, t + )+G (2) noise (t, t + ) p ge g f h i + N ef ( )G (1) (t +,t) ()G (1) (t +,t+ )+ ()G (1) (t, t)+ ( )G (1) (t, t + ) 2 G (2) ( )=ha (t + )a (t)a(t + )a(t)i Pulsed single-microwave photon source - Pulse delay: t p = 512 ns 1/, 1/T 1 - Expected results: G 2 ( = nt p ) / sin 4 ( r /2) G 2 () = M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

27 Two-time correlation functions: G (2) ( ) 1. G 2 Τ norm Αr.9 G (2) () = G (2) (nt p ) / sin 4 ( r /2) Π 2 Π. Rabi angle Θ r Τ Μs M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

28 Two-time correlation functions: G(2)( )!" 1..5 G(2) () = G#2$ #Τ$ %norm.&.!1" 1. G(2) (ntp ) / sin4 ( r /2) !Αr ".9" 1. Wigner function reconstruction of itinerant.5 microwave photon Π!2 Rabi angle.!2!1 1 Τ!Μs" 2 3 Π Θr 4 C. Eichler et al, Phys. Rev. Lett. 16, 2253 (211) M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

29 Summary Quantum information processing Antibunching: Quantum nature of microwave light demonstrated Correlations characterize output field Quantum mechanics on large length scales On-demand single photon source Superconducting high-q resonator Transmon qubits with long coherence times

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Quantum computation and quantum optics with circuit QED

Quantum computation and quantum optics with circuit QED Departments of Physics and Applied Physics, Yale University Quantum computation and quantum optics with circuit QED Jens Koch filling in for Steven M. Girvin Quick outline Superconducting qubits overview

More information

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

More information

Circuit quantum electrodynamics : beyond the linear dispersive regime

Circuit quantum electrodynamics : beyond the linear dispersive regime Circuit quantum electrodynamics : beyond the linear dispersive regime 1 Jay Gambetta 2 Alexandre Blais 1 1 Département de Physique et Regroupement Québécois sur les matériaux de pointe, 2 Institute for

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

Entanglement Control of Superconducting Qubit Single Photon System

Entanglement Control of Superconducting Qubit Single Photon System : Quantum omputing Entanglement ontrol of Superconducting Qubit Single Photon System Kouichi Semba Abstract If we could achieve full control of the entangled states of a quantum bit (qubit) interacting

More information

Microwave Photon Counter Based on Josephson Junctions

Microwave Photon Counter Based on Josephson Junctions Microwave Photon Counter Based on Josephson Junctions pendence of tunneling on barrier height, Γ 1 is 2-3 orders of magnitude larger than Γ 0. Our experimental protocol involves pulsing the junction bias

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007 Generating Single Microwave Photons in a Circuit arxiv:cond-mat/0702648v1 [cond-mat.mes-hall] 27 Feb 2007 A. A. Houck, 1 D. I. Schuster, 1 J. M. Gambetta, 1 J. A. Schreier, 1 B. R. Johnson, 1 J. M. Chow,

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Introduction to Circuit QED

Introduction to Circuit QED Introduction to Circuit QED Michael Goerz ARL Quantum Seminar November 10, 2015 Michael Goerz Intro to cqed 1 / 20 Jaynes-Cummings model g κ γ [from Schuster. Phd Thesis. Yale (2007)] Jaynes-Cumming Hamiltonian

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010 High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity arxiv:4.4323v2 [cond-mat.mes-hall] 9 Oct 2 M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster,

More information

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator : A New Era in Quantum Information Processing Technologies Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator Yuichiro Matsuzaki, Kosuke Kakuyanagi, Hiraku Toida, Hiroshi

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Microwave Photon Counter Based on Josephson Junctions

Microwave Photon Counter Based on Josephson Junctions Microwave Photon Counter Based on Josephson Junctions Abstract. This should be a stand alone and brief description of the paper. It should say what is described in the paper and what the main result is.

More information

Multipartite Entanglement Generation Assisted by Inhomogeneous Coupling

Multipartite Entanglement Generation Assisted by Inhomogeneous Coupling Multipartite Entanglement Generation Assisted by Inhomogeneous Coupling C. E. López, 1, F. Lastra, 1 G. Romero, 3 E. Solano, 3, 4 and J. C. Retamal 1, 1 Departamento de Física, Universidad de Santiago

More information

arxiv: v3 [quant-ph] 14 Feb 2013

arxiv: v3 [quant-ph] 14 Feb 2013 mplementation of a Toffoli Gate with Superconducting Circuits A. Fedorov, L. Steffen, M. Baur, M.P. da Silva, 2, 3 and A. Wallraff Department of Physics, ETH urich, CH-893 urich, Switzerland 2 Disruptive

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

arxiv: v1 [cond-mat.supr-con] 5 May 2015

arxiv: v1 [cond-mat.supr-con] 5 May 2015 Superconducting metamaterials and qubits B.L.T. Plourde a, Haozhi Wang a, Francisco Rouxinol a, M.D. LaHaye a a Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA arxiv:1505.01015v1

More information

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Christopher Eichler - 29.01. 2016 ScaleQIT Conference, Delft In collaboration with: C. Lang, J. Mlynek, Y. Salathe,

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED

Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED Commun. Theor. Phys. 56 (011 35 39 Vol. 56, No. 3, September 15, 011 Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED WU

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS Michel Devoret, Yale University Acknowledgements to Yale quantum information team members:

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Strong-coupling Circuit QED

Strong-coupling Circuit QED Departments of Physics and Applied Physics, Yale University Quantum Optics with Electrical Circuits: Strong-coupling Circuit QED Jens Koch Departments of Physics and Applied Physics, Yale University Circuit

More information

Quantum Physics with Superconducting Qubits

Quantum Physics with Superconducting Qubits Quantum Physics with Superconducting Qubits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch Science Team: J.-C. Besse, M. Collodo, S. Garcia, S. Gasparinetti, J. Heinsoo, S. Krinner, P. Kurpiers, P. Magnard

More information

Electrical Quantum Engineering with Superconducting Circuits

Electrical Quantum Engineering with Superconducting Circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 Electrical Quantum Engineering with Superconducting Circuits R. Heeres & P. Bertet SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400

More information

Low-loss superconducting resonant circuits using vacuum-gap-based microwave components

Low-loss superconducting resonant circuits using vacuum-gap-based microwave components Low-loss superconducting resonant circuits using vacuum-gap-based microwave components Katarina Cicak 1, Dale Li 1, Joshua A. Strong 1,2, Michael S. Allman 1,2, Fabio Altomare 1, Adam J. Sirois 1,2, Jed

More information

Condensed Matter Without Matter Quantum Simulation with Photons

Condensed Matter Without Matter Quantum Simulation with Photons Condensed Matter Without Matter Quantum Simulation with Photons Andrew Houck Princeton University Work supported by Packard Foundation, NSF, DARPA, ARO, IARPA Condensed Matter Without Matter Princeton

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓 Quantum Optics with Propagating Microwaves in Superconducting Circuits 許耀銓 Outline Motivation: Quantum network Introduction to superconducting circuits Quantum nodes The single-photon router The cross-kerr

More information

Lecture 6, March 30, 2017

Lecture 6, March 30, 2017 Lecture 6, March 30, 2017 Last week: This week: Brief revisit of the Transmon qubit Gate charge insensitivity Anharmonicity and driving of qubit Tuning by magnetic flux Qubit-Qubit coupling in circuit

More information

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University Strongly Driven Semiconductor Double Quantum Dots Jason Petta Physics Department, Princeton University Lecture 3: Cavity-Coupled Double Quantum Dots Circuit QED Charge-Cavity Coupling Towards Spin-Cavity

More information

Quantum-information processing with circuit quantum electrodynamics

Quantum-information processing with circuit quantum electrodynamics PHYSICAL REVIEW A 75, 339 7 Quantum-information processing with circuit quantum electrodynamics Alexandre Blais, 1, Jay Gambetta, 1 A Wallraff, 1,3 D I Schuster, 1 S M Girvin, 1 M H Devoret, 1 and R J

More information

Quantum walks on circles in phase space via superconducting circuit quantum electrodynamics

Quantum walks on circles in phase space via superconducting circuit quantum electrodynamics Quantum walks on circles in phase space via superconducting circuit quantum electrodynamics Peng Xue, 1 Barry C. Sanders, 1 Alexandre Blais, 2 and Kevin Lalumière 2 1 Institute for Quantum Information

More information

Theory for investigating the dynamical Casimir effect in superconducting circuits

Theory for investigating the dynamical Casimir effect in superconducting circuits Theory for investigating the dynamical Casimir effect in superconducting circuits Göran Johansson Chalmers University of Technology Gothenburg, Sweden International Workshop on Dynamical Casimir Effect

More information

The Impact of the Pulse Phase Deviation on Probability of the Fock States Considering the Dissipation

The Impact of the Pulse Phase Deviation on Probability of the Fock States Considering the Dissipation Armenian Journal of Physics, 207, vol 0, issue, pp 64-68 The Impact of the Pulse Phase Deviation on Probability of the Fock States Considering the Dissipation GYuKryuchkyan, HS Karayan, AGChibukhchyan

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

arxiv: v1 [cond-mat.mes-hall] 16 Oct 2012

arxiv: v1 [cond-mat.mes-hall] 16 Oct 2012 Microwave Quantum Optics with an Artificial Atom arxiv:1210.4303v1 [cond-mat.mes-hall] 16 Oct 2012 Io-Chun Hoi 1, C.M. Wilson 1, Göran Johansson 1, Joel Lindkvist 1, Borja Peropadre 2, Tauno Palomaki 1,

More information

Implementing Quantum walks

Implementing Quantum walks Implementing Quantum walks P. Xue, B. C. Sanders, A. Blais, K. Lalumière, D. Leibfried IQIS, University of Calgary University of Sherbrooke NIST, Boulder 1 Reminder: quantum walk Quantum walk (discrete)

More information

Quantum electromechanics with dielectric oscillators

Quantum electromechanics with dielectric oscillators Quantum electromechanics with dielectric oscillators Johannes M. Fink Institute of Science and Technology (IST Austria) IST: M. Wulf, S. Barzanjeh, M. Peruzzo, N. Kuntner CIT: M. Kalaee, P. Dieterle, O.

More information

arxiv: v1 [cond-mat.supr-con] 14 Aug 2012

arxiv: v1 [cond-mat.supr-con] 14 Aug 2012 Controlled catch and release of microwave photon states Yi Yin, 1 Yu Chen, 1 Daniel Sank, 1 P. J. J. O Malley, 1 T. C. White, 1 R. Barends, 1 J. Kelly, 1 Erik Lucero, 1 Matteo Mariantoni, 1, 2 A. Megrant,

More information

Andreas Wallraff (ETH Zurich)

Andreas Wallraff (ETH Zurich) Fast, High-Fidelity Dispersive Readout of Superconducting Qubits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch Science Team: A. Beckert, J.-C. Besse, M. Collodo, C. Eichler, S. Garcia, S. Gasparinetti,

More information

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011 Observation of quantum jumps in a superconducting artificial atom R. Vijay, D. H. Slichter, and I. Siddiqi Quantum Nanoelectronics Laboratory, Department of Physics, University of California, Berkeley

More information

Quantum Nonlinearities in

Quantum Nonlinearities in Quantum Nonlinearities in Circuit QED Circuit QED offers the possibility to realize an exceptionally strong coupling between artificial atoms individual superconducting qubits and single microwave photons

More information

Exploring Quantum Simulations with Superconducting Circuits

Exploring Quantum Simulations with Superconducting Circuits Exploring Quantum Simulations with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch Team: J.-C. Besse, R. Buijs, M. Collodo, S. Garcia, S. Gasparinetti, J. Heinsoo, S. Krinner,

More information

Photon shot noise dephasing in the strong-dispersive limit of circuit QED

Photon shot noise dephasing in the strong-dispersive limit of circuit QED PHYSICAL REVIEW B 86, 180504(R) (2012) Photon shot noise dephasing in the strong-dispersive limit of circuit QED A. P. Sears, A. Petrenko, G. Catelani, L. Sun, Hanhee Paik, G. Kirchmair, L. Frunzio, L.

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Interaction between surface acoustic waves and a transmon qubit

Interaction between surface acoustic waves and a transmon qubit Interaction between surface acoustic waves and a transmon qubit Ø Introduction Ø Artificial atoms Ø Surface acoustic waves Ø Interaction with a qubit on GaAs Ø Nonlinear phonon reflection Ø Listening to

More information

Quantum non-demolition measurements:

Quantum non-demolition measurements: Quantum non-demolition measurements: One path to truly scalable quantum computation Kae Nemoto Tim Spiller Sean Barrett Ray Beausoleil Pieter Kok Bill Munro HP Labs (Bristol) Why should optical quantum

More information

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Ĥ = Ĥ(p, q : Λ), Λ: control parameter { e.g. charge qubit Λ = V g gate voltage phase qubit Λ = I bias current

More information

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena Solid State Physics IV -Part II : Macroscopic Quantum Phenomena Koji Usami (Dated: January 6, 015) In this final lecture we study the Jaynes-Cummings model in which an atom (a two level system) is coupled

More information

arxiv: v1 [quant-ph] 31 May 2010

arxiv: v1 [quant-ph] 31 May 2010 Single-shot qubit readout in circuit Quantum Electrodynamics François 1 Mallet, Florian R. 1 Ong, Agustin 1 Palacios-Laloy, François 1 Nguyen, Patrice 1 Bertet, Denis 1 Vion * and Daniel 1 Esteve 1 Quantronics

More information

arxiv: v1 [quant-ph] 13 Dec 2017

arxiv: v1 [quant-ph] 13 Dec 2017 Inversion of qubit energy levels in qubit-oscillator circuits in the deep-strong-coupling regime arxiv:171.539v1 [quant-ph] 13 Dec 17 F. Yoshihara, 1, T. Fuse, 1 Z. Ao, S. Ashhab, 3 K. Kakuyanagi, 4 S.

More information

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University John Stewart Bell Prize Part 1: Michel Devoret, Yale University SUPERCONDUCTING ARTIFICIAL ATOMS: FROM TESTS OF QUANTUM MECHANICS TO QUANTUM COMPUTERS Part 2: Robert Schoelkopf, Yale University CIRCUIT

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

arxiv: v1 [quant-ph] 22 Apr 2013

arxiv: v1 [quant-ph] 22 Apr 2013 Signatures of Hong-Ou-Mandel Interference at Microwave Frequencies M. J. Woolley, 1 C. Lang, 2 C. Eichler, 2 A. Wallraff, 2 and A.Blais 1 1 Departément de Physique, Université de Sherbrooke, Sherbrooke,

More information

Thermal Excitation of Multi-Photon Dressed States in Circuit Quantum Electrodynamics

Thermal Excitation of Multi-Photon Dressed States in Circuit Quantum Electrodynamics Thermal Excitation of Multi-Photon Dressed States in Circuit Quantum Electrodynamics J. M. Fink, M. Baur, R. Bianchetti, S. Filipp, M. Göppl, P. J. Leek, L. Steffen, A. Blais and A. Wallraff Department

More information

Amplification, entanglement and storage of microwave radiation using superconducting circuits

Amplification, entanglement and storage of microwave radiation using superconducting circuits Amplification, entanglement and storage of microwave radiation using superconducting circuits Jean-Damien Pillet Philip Kim s group at Columbia University, New York, USA Work done in Quantum Electronics

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

arxiv: v1 [cond-mat.supr-con] 29 Dec 2013

arxiv: v1 [cond-mat.supr-con] 29 Dec 2013 High Fidelity Qubit Readout with the Superconducting Low-Inductance Undulatory Galvanometer Microwave Amplifier D. Hover, S. Zhu, T. Thorbeck, G.J. Ribeill, and R. McDermott Department of Physics, University

More information

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

Single Microwave-Photon Detector based on Superconducting Quantum Circuits 17 th International Workshop on Low Temperature Detectors 19/July/2017 Single Microwave-Photon Detector based on Superconducting Quantum Circuits Kunihiro Inomata Advanced Industrial Science and Technology

More information

Synthesising arbitrary quantum states in a superconducting resonator

Synthesising arbitrary quantum states in a superconducting resonator Synthesising arbitrary quantum states in a superconducting resonator Max Hofheinz 1, H. Wang 1, M. Ansmann 1, Radoslaw C. Bialczak 1, Erik Lucero 1, M. Neeley 1, A. D. O Connell 1, D. Sank 1, J. Wenner

More information

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Cooperative atom-light interaction in a blockaded Rydberg ensemble Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation

More information

Quantum optics and optomechanics

Quantum optics and optomechanics Quantum optics and optomechanics 740nm optomechanical crystals LIGO mirror AMO: Alligator nanophotonic waveguide quantum electro-mechanics Oskar Painter, Jeff Kimble, Keith Schwab, Rana Adhikari, Yanbei

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics Lecture 3: 2-qubit

More information

PART 2 : BALANCED HOMODYNE DETECTION

PART 2 : BALANCED HOMODYNE DETECTION PART 2 : BALANCED HOMODYNE DETECTION Michael G. Raymer Oregon Center for Optics, University of Oregon raymer@uoregon.edu 1 of 31 OUTLINE PART 1 1. Noise Properties of Photodetectors 2. Quantization of

More information

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments 1 Instructor: Daryoush Shiri Postdoctoral fellow, IQC IQC, June 2015, WEEK-2 2 Parametric Amplifiers

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft.

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft. Introduction to quantum computing (with superconducting circuits) Lecture 2 Version: 14/89 Frontiers of Condensed Matter San Sebastian, Aug. 28-3, 214 Dr. Leo DiCarlo l.dicarlo@tudelft.nl dicarlolab.tudelft.nl

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Coherent superposition states as quantum rulers

Coherent superposition states as quantum rulers PHYSICAL REVIEW A, VOLUME 65, 042313 Coherent superposition states as quantum rulers T. C. Ralph* Centre for Quantum Computer Technology, Department of Physics, The University of Queensland, St. Lucia,

More information

4-3 New Regime of Circuit Quantum Electro Dynamics

4-3 New Regime of Circuit Quantum Electro Dynamics 4-3 New Regime of Circuit Quantum Electro Dynamics Kouichi SEMBA, Fumiki YOSHIHARA, Tomoko FUSE, Sahel ASHHAB, Kosuke KAKUYANAGI, and Shiro SAITO Researchers at the National Institute of Information and

More information

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Nathan K. Langford OVERVIEW Acknowledgements Ramiro Sagastizabal, Florian Luthi and the rest of the

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Quantum Integrated Circuits Quantum currents & voltages Microfabricated atoms Digital to Analog Converter

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11505 I. DEVICE PARAMETERS The Josephson (E J and charging energy (E C of the transmon qubit were determined by qubit spectroscopy which yielded transition frequencies ω 01 /π =5.4853

More information

State tomography of capacitively shunted phase qubits with high fidelity. Abstract

State tomography of capacitively shunted phase qubits with high fidelity. Abstract State tomography of capacitively shunted phase qubits with high fidelity Matthias Steffen, M. Ansmann, R. McDermott, N. Katz, Radoslaw C. Bialczak, Erik Lucero, Matthew Neeley, E.M. Weig, A.N. Cleland,

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) 2) 3) Readout

More information