Quantum computing : principles and practical implementations

Size: px
Start display at page:

Download "Quantum computing : principles and practical implementations"

Transcription

1 Quantum computing : principles and practical implementations D. Vion QUAN UM ELECT RONICS GROUP Scott Adams/Dilbert 4 st ORAP Forum, March 29 th 28, Paris, France

2 Warning: several types of quantum processors Logic gate computing Adiabatic computing DWave more exotic: - one way QC - Quantum Turing machine running sequentially gates from a universal set of gates to implement an algorithm T. Lanting et al, PRX 4 (24) Energy minimization, by quantum annealing this introductory talk see K. Michielson s talk

3 Outline I. Basics of logic gate quantum computing H. X Y Z H II. Practical implementations

4 The adiabatic quantum processor Couplings encoding the problem Adiabatically establish the Hamiltonian B Read the spins - Encoding all problems not easy - Better suited for optimization problems - Role of decoherence and temperature vs speed not fully understood State of the art: Dwave (2 Josephson qubits): - Interesting tests and material simulations - Quantum speedup not demonstrated see K. Michielson s talk

5 Reminder : the classical gate computer n=log 2 (N) T (N states) Turing (937) slowing-down poly(n) U Elementary information: Processed with logic gate arrays bit or NOT and a single 2 bit gate (as XOR) are enough : Universal set Imperfections error detection based on redundancy : Ex: parity bit / byte Do the same with quantum bits to benefit from quantum superposition and entanglement

6 Quantum objects (bit) and superposition of states Mach-Zender interferometer photon

7 Quantum objects (bit) and superposition of states Mach-Zender interferometer A PM A PM B probability /2 /2 photon B

8 Quantum objects (bit) and superposition of states Mach-Zender interferometer A B PM A PM B probability /4 /4 /2 photon

9 Quantum objects (bit) and superposition of states Mach-Zender interferometer A B PM A PM B probability /4 /4 /2 photon

10 Quantum objects (bit) and superposition of states Mach-Zender interferometer A B photon PM A PM B probability!!! The photon goes along both paths at the same time «within the meaning of interference».

11 Quantum objects (bit) and superposition of states photon ϕ The photon goes along both paths at the same time probability photon = α + β which path measurement or 2 α β 2 2 = α

12 The quantum bit and single qubit gates qb = α + β iϕ iϕ θ θ cos e + sin e 2 2 x φ z θ ϕ y projective measurement ou 2 α 2 β important property: no-cloning Duplication of unknown state is impossible Single qubit logic gate : all rotations A few gates: r R x (, φ ) probability ( φ ) i ( φ ) ( φ ) ( φ ) cos / 2 sin / 2 = isin / 2 cos / 2 X, Y, Z, H = In practice, 8, 9 and one 45 rotations are enough But informational content not larger than classical bit: Power will come from having several qubits and entanglement

13 Quantum register and entangling 2-qubit gate n qubit register N = 2 n basis states... = p n Most general register state : reg = N p= a p p Universal set of gates (any unitary evolutions) - single qubit gates - «good» (entangling) 2-qubit gate control target CNOT (quantum XOR) qb qb qb2 qb2 ' qb qb2 qb2 '

14 What entanglement means control target CNOT (quantum XOR) qb qb2 qb2 ' +? 2? + 2 very strong quantum corelations measure qubit projects both! maximum entanglement

15 Entanglement is a ressource (dense coding as a simple proof) EPR pair qba + 2 qbb 2 bits b b 2 encodage transmission qba decoding (disentanglement) system states qb A Z qb A X qb A iy qb A + + qb A qb B H b b 2 2 classical bits transmitted with a single transmitted qubit!

16 Quantum algorithms Ensemble de n qubits N = 2 n états de base n... = p H X. Z H espace temps N p= a p p Y see A. Leverrier s talk

17 Example : find the period of a periodic function f(x) λ =? Shor (994) spectra x N=2 n samples n qubits ΠH x x TF + n qubits U f f ( x)

18 Example : find the period of a periodic function f(x) λ =? Shor (994) spectra x N=2 n samples n qubits ΠH x x TF + U f n qubits f ( x) N x= x

19 Example : find the period of a periodic function f(x) λ =? Shor (994) spectra x N=2 n samples n qubits poly(n) ΠH x x TF + U f n qubits f ( x) N x= x N x= x f ( x) quantum parallelism + entanglement!

20 Example : find the period of a periodic function f(x) λ =? Shor (994) f spectra x N=2 n samples n qubits ΠH x x TF + U f n qubits f ( x) f N x= x N x= x f ( x) j= m l, j= x l + jλ f quantum parallelism + entanglement!

21 Example : find the period of a periodic function f(x) λ =? Shor (994) spectrum x N=2 p samples n qubits ΠH x x TF K N / λ + U f n qubits f ( x) λ / K N x= x N x= x f ( x) j= m l, j= x l + jλ f λ if coprime quantum parallelism + entanglement! x= K N / λ x

22 Exemple : détermination de la période d une fonction Application : Factorisation des grands nombres (*) Tâche longue (base de la cryptographie) M =?? Shor (994) Nombres à 3 chiffres 26 chiffres Durée avec GHz Ordinateur quantique ~ mois ~ million d années 9 portes T=? 8 T x ( ) mod f x = a M a < M M (*) Méthode précédente avec et co-premier avec / 2 a λ m et M partagent un facteur commun déterminé par un algorithme classique.

23 Serious problem : decoherence i x = e x x = reg a ϕ 2 hazards:sudden death disease ϕ drift x... drive U hν (X)? autres d de liberté dj i 2 πν dt α β e + n = 2 ò X t ) dt X ( t ) p d ( relaxation déphasage aléatoire random dephasing sensitivity coef noise

24 Un gros problème: la décohérence Correction d erreur possible (malgré le non clonage) : encodage sur plusieurs qubits avec enchevêtrement Exemple: correction de relaxation (bit flip) ( E, E ) = (, ) ( U, U 2 ) = ( + + +, ) ( V, V 2 ) = ( + + +, ) ( U, U 2 ) ( V, V 2 ) X ψ = α + β E E X X Ne marche que si erreur <,% par porte quantique!

25 Fragility of quantum superpositions: decoherence reg iϕ N = α e,,..., + α e,,..., α e,,..., iϕ iϕ N Sudden death: relaxation Disease: pure dephasing qubit j environnment λ i (t) low-frequency noise j hω a hω ( λ ) i iϕ ( t) + be j j t e iϕ ( t) Γ t e ϕ T = Γ Γ ϕ T Γ = Γ = Γ ϕ

26 Fragility of quantum superpositions: error correction Use redundancy (despite non-cloning) Example: relaxation (bit-flip) correction ( L, L ) = (, ) ( U, U 2 ) = ( + + +, ) ( V, V 2 ) = ( + + +, ) bit flip or not detection ( U, U 2 ) ( V, V 2 ) X correction ψ = a + b L L X X syndroms Generalization to all 3 possible errors: 7-bit Steane code Works if error <.% per gate! Surface code: %!

27 Outline I. Basics of logic gate quantum computing H. X Y Z H II. Practical implementations

28 Outline I. General overview II. Qbits with superconducting circuits

29 The gate quantum processor A quantum Turing machine based on a universal set of gates U U? U 2? - qubit: 2-level-system ψ = a + b resetable to - A few single qubit gates U ψ - a 2-qubit entangling gate U 2 α, α, α 2, α 3,,, - qubit readout with high fidelity universal set

30 The local and network approaches U U 2

31 The local and network approaches U U 2 flying qubit quantum state transfer entanglement between separate small systems

32 Physical implementations NMR non scalable

33 Physical implementations NMR Photons qb gate 2qb gate non scalable single photon sources needed

34 Physical implementations NMR Photons Spins in solid - Implanted - Quantum dots - electronic - nuclear non scalable non deterministic yet (in progress) A. Morello Sydney

35 Physical implementations NMR Photons Spins in solid - Implanted - Quantum dots - electronic - nuclear A. Morello Sydney non scalable non deterministic yet in progress

36 Physical implementations NMR Photons Spins in solid Trapped ions - Implanted (or atoms) - Quantum dots - electronic - nuclear R. Blatt (Insbrück) non scalable non deterministic yet in progress DRF-DRT

37 Physical implementations NMR Photons Spins in solid Trapped ions Superconducting - Implanted (or atoms) circuits - Quantum dots - electronic - nuclear J. Martinis Google non scalable non deterministic yet in progress

38 Physical implementations (non exhaustive) NMR Photons Spins in solid Trapped ions Superconducting - Implanted (or atoms) circuits - Quantum dots - electronic - nuclear non scalable non deterministic yet in progress Most advanced not easily scalable Most advanced

39 The gate quantum computer roadmap photons spins QD ions superconduc. circuits qubits not really yes 5 7 -qubit gate F yes F>99.8 F>99. F>99.7, 99.9 readout F F>9% F>99.8 F>99. F>96, 99 2-qubit gate F F>95% yes / no 25µs F>97 ~ns F>96.5, 99.4 coherence T 2 /T 2q-gate?? yes / no 2 2, error correction demo no no yes yes logical qubit better than physical no no? no algorithm w/o error correc no no yes yes algorithm w error correc no no no no fault tolerance and scalability no no no no but try with surface code

40 The gate quantum computer roadmap photons spins QD ions superconduc. circuits qubits not really yes qubit gate F yes F>99.8 F>99.9 F>99.7, 99.9 readout F F>9% F>99.8 F>99.9 F>96, 99 2-qubit gate F F>95% yes / no 25µs F>97 ~ns F>96.5, 99.4 coherence T 2 /T 2q-gate?? yes / no > 2 error correction demo no no yes yes logical qubit better than physical no no marginally marginally algorithm w/o error correc no no yes yes algorithm w error correc no no no no fault tolerance and scalability no no no no but try with surface code best results not always obtained all at the same time

41 Actors in quantum computing (not exhaustive) ACADEMIC WORLD NATIONAL LABS: Lincoln Lab, JET, CEA LETI, BIG COMPANIES: - IBM => gate QC (7 qbits, > 5 soon) - GOOGLE + UCSB: gate QC (> 5) - INTEL + QTECH: gate QC (7 qbits) - MICROSOFT + QTECH : soft - ATOS: 4-qubit emulator + compilers see P. Mueller s talk see C. Piechurski s talk SMALLER COMPANIES: - DWAVE: Adiabatic QC, annealing with 2 qubits - RIGETTI Computing: Hard + soft - HYPRES: fabrication.

42 II. Practical implementation with superconducting qubits ) Making qubits with Josephson junctions 2) Circuit-QED architecture for qubit readout 3) Single-qubit gates with microwave and dc pulses 4) Example of the iswap two-qubit gate 5) Example of a simple algorithm: Grover with two qubits

43 . Making qbits with superconducting circuits a) Start from a classical LC electrical harmonic oscillator: L C

44 . Making qubits with superconducting circuits a) Start from a classical LC electrical harmonic oscillator: θ = t V ( t ') dt ' +Q potential energy E = θ 2 / 2L «kinetic» energy p E = Q 2 / 2C c ω = LC 2 2 θ Q H = + 2L 2C θ

45 . Making qubits with superconducting circuits a) Start from a classical LC electrical harmonic oscillator: b) Make it quantum ˆ θ = t Vˆ( t ') dt ' ˆ +Q θ, ˆ ˆ Q = ih potential energy E = θ 2 / 2L «kinetic» energy p Hˆ hω θ E c ˆ2 2 θ Qˆ = + =hω 2L 2C 2 Q = 2C a a

46 . Making qubits with superconducting circuits a) Start from a classical LC electrical harmonic oscillator: b) Make it quantum ˆ θ = t Vˆ( t ') dt ' ˆ +Q θ, ˆ ˆ Q = ih potential energy E = θ 2 / 2L «kinetic» energy p Hˆ hω θ E c ˆ2 2 θ Qˆ = + =hω 2L 2C 2 Q = 2C a a

47 . Making qubits with superconducting circuits a) Start from a classical LC electrical harmonic oscillator: b) Make it quantum by fullfilling 2 conditions: hω >> θ L nh, C pf ν 5GHz hν T = 3 mk 8 P( ) < k T kbt B 4 nκ ω >> κ >> θ Q energy decay rate superconductors

48 . Making qubits with superconducting circuits a) Start from a classical LC electrical harmonic oscillator: hω >> k T Q >> b) Make it quantum by fullfilling and c) Replace the inductor by a nonlinear one B => a Josephson junction 4 ω 3 2 Hˆ θˆ Ep = θ 2 / 2L ˆ2 2 θ Qˆ = + =hω 2L 2C ˆ +Q a a hω θ L ( θ ) J ( e) 2 / 2 / EJ = h cosθ qubit ω Hˆ E p = E J cos( θ ) = E cos( θ ) + J θˆ hω ˆ 2 Q 2C ˆ +Q hω 23 hω 2 θ

49 . Making qubits with superconducting circuits a) Start from a classical LC electrical harmonic oscillator: hω >> k T Q >> b) Make it quantum by fullfilling and c) Replace the inductor by a nonlinear one B => a Josephson junction insulator S S 2e ω L ( ) J θ θˆ ˆ +Q E p = E J cos( θ ) Cooper pair box qubit hω θ ˆ ω ˆ σ / 2 H = h z

50 . Making qubits with superconducting circuits a) b) c) d) Split the Josephson junction (SQUID) to make the qubit magnetically tunable insulator S S Φ 2e L (, ) J θ Φ θˆ Φ ˆ +Q E p = E J cos( θ ) qubit ( Φ) H = hω σ z hω ˆ ˆ / 2 θ

51 . Making qubits with superconducting circuits: summary The transmon qubit is a kind of superconducting LC oscillator ω - at microwave frequency - cold enough at ω - nonlinear at the single photon level - thus behaving as a 2LS - electric dipole - magnetically tunable - driven resonantly at ω Φ ω ( Φ) ˆ +Q H ˆ = h ˆ σ / 2 z 4µm 2µm

52 . Making qubits with superconducting circuits: summary The (Cooper pair box) transmon qubit is a kind of superconducting LC oscillator ω - at microwave frequency - cold enough at ω - nonlinear at the single photon level - thus behaving as a 2LS - electric dipole - magnetically tunable - driven resonantly at ω Φ ω ( Φ) ˆ +Q H ˆ = h ˆ σ / 2 z 2 nm Al/Al 2 O 3 /Al

53 . Making qubits with superconducting circuits Ex: transmon qubit = nonlinear superconducting LC oscillator at 5- GHz Φ artificial two-level atom hν ( Φ) Al/Al 2 O 3 /Al 2 nm 2µm or effective spin /2 ˆ ˆ / 2 H = hν σ z 4µm

54 Fabrication technique ) e-beam patterning 2) development 3) first evaporation 4) oxidation 5) second evap. 6) lift-off 7) electrical test small junctions Al/Al 2 O 3 /Al junctions O 2 e - e-beam lithography PMMA PMMA-MAA SiO 2 small junctions Multi angle shadow evaporation

55 2. Qubit readout: introduction α >+β > a b +? t meas << T a b + a b +?? To measure β 2 : repeat same experimetal sequence ON OFF ON OFF Cool down Q. state preparation measure Cool down Q. state preparation measure time

56 2. Circuit-QED architecture to readout a Josephson qubit Couple qubit to a resonator like atoms in quantum electrodynamics Cooper pair box qubit = artificial atom D CPW resonator A. Blais et al., Phys. Rev. A 69, 6232 (24) A. Walraff et al., Nature 43, 62 (24) I. Chiorescu et al., Nature 43, 59 (24)

57 2. Circuit-QED architecture to readout a Josephson qubit Couple qubit to a resonator like atoms in quantum electrodynamics A. Blais et al., Phys. Rev. A 69, 6232 (24) A. Walraff et al., Nature 43, 62 (24) Jaynes-Cummings Hamiltonian (dispersive) hωσ ω + c σ + σ - + Ĥ = - ˆ ˆ ˆ Z + h a a + hg( ˆ aˆ + ˆ a ˆ ) 2 >> G ω c ω r E resonator (ω c ) d qubit ν h + Ĥ eff = - ( ωge + χ)ˆ σz + h( ωc - χσˆ Z ) â â 2 χ = G 2 / cavity frequency = ω + c χ if qubit projected on ω - c χ

58 2. Circuit-QED architecture to readout a Josephson qubit Vcos( 2π f t) f ' = f -χσ Z ( π φ ) Vcos 2 f t + ν a b + reflected phase φ φ φ frequency f/f

59 2. Circuit-QED architecture to readout a Josephson qubit Homodyne detection of reflected signal iωt Ve C c c iωt + φ(t) Ve A(t) φ ( t) CPB π φ - φ = 8 χ L.O κ φ π frequency ω/ω c

60 2. Circuit-QED architecture to readout a Josephson qubit Typical implementation use distributed coplanar waveguide resonator CPW ~ 6 GHz Nb E j Nb

61 2. Circuit-QED architecture to readout a Josephson qubit Typical implementation (Quantronics) with λ/2 coplanar waveguide resonator 5 mm (f =6.5GHz) Q=7 8µm 4µm (optical+e-beam lithography) =GHz => φ - φ

62 2. Circuit-QED architecture to readout a Josephson qubit A key figure of merit is the single-shot readout error rates (or readout fidelity ) > > P()= -ε Fidelity = - ε P()= -ε - ε Fidelity limited by - qubit relaxation during measurement time - noise of first amplifier p() Quantronics 24 (Josephson bifurcation amplifier) ε =2.4% Today : ε, ε <.2% in 5 ns with quantum limited parametric amplifiers.2 ε =%. 5 5 equivalent Rabi pulse duration (ns) 2

63 3. Single qubit gates: rotation around X a(t) cos(ω t + ) ω > Z α = a ( t ) dt Y X >

64 3. Single qubit gates: rotation around X ϕ in equator b(t) cos(ω t + ϕ) ω > Z β = b ( t ) dt X ϕ X ϕ Y >

65 3. Single qubit gates: rotation around Z Φ ω Φ ( t) > γ = δω ( t ) dt Z X ϕ Y Combine X, Z or X, X ϕ => generate all U Today: fidelity > 99.9 % R. Barends et al., Nature (24) >

66 4. Decoherence in quantum circuits Relaxation (Spontaneous emission) hω ( ) λ i Pure dephasing λ i (t) hω i ( t) + α βe ϕ t D λ, H = h λ Γ = π D, S () 2 ϕ λ z λ π T = Γ = D S 2 ( ω ) 2 λ, λ environmental density of modes at qubit frequency D λ,z ω = λ iϕ ( t ) Γ2t fϕ ( t) e e T Γ = Γ = Γ ϕ Low-frequency noise

67 4. Decoherence in quantum circuits Macroscopic sources : real part of the impedance of the circuits Microscopic sources : moving charges and flipping spins R e - N g +dn g (t) Φ+dΦ(t) Spin flips R ULTIMATE LIMITS ON COHERENCE TIMES UNKNOWN YET

68 4. Decoherence in quantum circuits Best results with transmon R. Barends et al., PRL (23) =3 = 2

69 5. Simple example of the iswap /2 two-qubit gate fixed capacitive coupling Φ H / h ν ν = A B A B A B A B σ z σ z g σ σ σ σ ( ) I II qubits coupled only on resonance ν = ν ( π U ) SWAP int = i 2g Fastest entangling gate + i 2

70 5. Simple example of the iswap /2 two-qubit gate fixed capacitive coupling Φ 2 µm

71 4. Simple example of the iswap /2 two-qubit gate fixed capacitive coupling Φ (Quantronics 2) readout resonator qubits mm coupling capacitor frequency control 2 µm

72 5. Simple example of the iswap /2 two-qubit gate 5 µm frequency control

73 5. Simple example of the iswap /2 two-qubit gate A. Dewes et al., PRL (2) frequencies (GHz) ν ΙΙ ν c Ι ν c ΙΙ ν Ι 2g/π = 9 MHz φ I /φ φ I,II /φ

74 4. Simple example of the iswap /2 two-qubit gate Drive QB II QB I X π 6.82 GHz 6.67 GHz 6.42 GHz f QB I QB II 5.32GHz 5.3 GHz Swap Duration 6.3GHz Occupation proba,,8,6,4,2 Data corrected from readout errors, iswap 2 2 Swap 3 duration (ns) swap duration (ns)

75 5. Characterizing the iswap /2 two-qubit gate readouts I II X,Y iswap Z tomo. I,X,Y I II ns 3*3 rotations*3 independent probabilities (P,P,P ) = 27 measured numbers Fit experimental density matrix ρ exp Compute fidelity ( / 2 / 2 F = Tr ρ ) th ρexpρth

76 4. Characterizing the iswap /2 two-qubit gate occupation proba, > >,8,6 >,4,2, > swap duration (ns) gate tomography F=92% Todays gate fidelity F>98%

77 5. The grover search algorithm: a benchmark for quantum speedup 77 x, y {,,,} f y (x)=, x = y, x y f ()= f ()= f ()= f ()= CLASSICALLY Random trial: probability of success /4 QUANTUM-MECHANICALLY Grover s search algorithm : probability can reach!

78 5. The grover search algorithm: principle 78 78gg State Preparation Oracle (O) Decoding (D) Readout > > H ( ) x f y ( x) x x D x x y + x y x 2 y Grover et. al., PRL 79, 997

79 6. The grover search algorithm: encoding 79 State Preparation Oracle (among 4) Decoding (D) > > Y π/2 Y π/2 iswap Z +/-π/2 Z +/-π/2 iswap X π/2 X π/2 x x y + x y x y

80 Implementation of the Algorithm 8 State Preparation Oracle (O) Decoding (D) > > Y π/2 Y π/2 iswap Z -π/2 Z -π/2 iswap X π/2 X π/2 f [φ(t)], a(t) Y(π/2) iswap Z(±π/2) iswap f X(π/2) ns Similar to: DiCarlo et.al., Nature 46(29) F=98% F=87% F=7%

81 5. The grover search algorithm: pulse implementation 8 State Preparation Oracle (O ) Decoding (D) Readout > > Y π/2 Y π/2 iswap Z -π/2 Z -π/2 iswap X π/2 X π/2 readout f [φ(t)], a(t) Y(π/2) iswap Z(±π/2) iswap X(π/2) X 2 (π) ns

82 5. The grover search algorithm: success probability 82 State Preparation Oracle Function (R) Diffusion Operator (D) Readout > > Y π/2 Y π/2 iswap Z ±π/2 Z ±π/2 iswap X π/2 X π/2 67 % f f f f 62 % 55 % 52 % query and check F i > 25 % for all oracles Quantum speedupachieved! Deweset. al.,prb RapidComm85 (22)

83 Results for Different Oracle Functions π 67 % 55 % 62 % 52 % F i > 5 % for all four oracles Demonstration of quantum speed-up Dewes et.al. PRB (22)

84 What we have seen: 84 - A microwave circuit can be quantum during up to µs - Single qubit gate error rate <.%? - Readout with error rate <.3 % - Two qubit gates with error rate ~ -3% - Quantum speedup demonstrated but algorithm error rate above -2% Recent demonstration - Error correction demonstrated with limited improvement - Operational 7 qubit processor demonstrated - «calculation» of very simple diatomic molecules Current research - Surface code: an architecture robust against decoherence at the price of a huge overhead - Stabilization of quantum states by dissipation engineering - Hybrid architectures combining circuits for fast gates and spins for long memory

85 The surface (stabilizer) code architecture data qubit X measure qubit Z measure qubit - Repeat measurements of all X,Z - Memorize errors - don t need to correct But

86 The surface (stabilizer) code architecture data qubit X measure qubit Z measure qubit - Repeat measurements of all X,Z - Memorize errors - don t need to correct - Define plaquette logical qubit - Define logical qubits by holes - Single qubit gate X L = product X - Two qubit gates by braiding But huge overhead: >36 qubit/logical error/gate!

87 V. Schmitt A. Dewes Thank you! QUAN UM ELECT RONICS GROUP A. Dewes, V. Schmitt, P. Bertet, D. Vion, D. Esteve Technical Support: P. Senat, P. Orfila

88

89 A few demos with ion and/or circuit quantum processors Grover algorithm with 8% success Factor 5 with 5 % success Implement Rabi model Hamiltonian by trotterization Other simple simulations Recompute ground state of simple diatomic molecules (quantum chemistry) /

90 Research strategies Demonstrate potentiality of adiabatic QC (Dwave) Complete roadmap to surface code => 7 qubit-plaquette (IBM, Google, QuTech-Intel, DRT) Develop spin qubit in semiconductors QuTech, Princeton, Sydney, DRT, Develop optical flying qubits - single qubit sources - conversion to optical qubits Develop alternative qubits immune to decoherence ( back to roadmap starting point) - Yale encoding in Microwave Schrödinger cat states with autonomous stabilization - Interface spins with minute long coherence (Sydney, DRF) - Topologically protected (Majorana) qubits /

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Routes towards quantum information processing with superconducting circuits

Routes towards quantum information processing with superconducting circuits Routes towards quantum information processing with superconducting circuits? 0 1 1 0 U 2 1 0? 0 1 U 1 U 1 Daniel Estève Quantronics SPEC CEA Saclay Quantum Mechanics: resources for information processing

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics Lecture 3: 2-qubit

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) 2) 3) Readout

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations. QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING Philippe Grangier, Institut d'optique, Orsay 1. Quantum cryptography : from basic principles to practical realizations. 2. Quantum computing : a conceptual revolution

More information

Electrical Quantum Engineering with Superconducting Circuits

Electrical Quantum Engineering with Superconducting Circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 Electrical Quantum Engineering with Superconducting Circuits R. Heeres & P. Bertet SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400

More information

Let's Build a Quantum Computer!

Let's Build a Quantum Computer! Let's Build a Quantum Computer! 31C3 29/12/2014 Andreas Dewes Acknowledgements go to "Quantronics Group", CEA Saclay. R. Lauro, Y. Kubo, F. Ong, A. Palacios-Laloy, V. Schmitt PhD Advisors: Denis Vion,

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

IBM Systems for Cognitive Solutions

IBM Systems for Cognitive Solutions IBM Q Quantum Computing IBM Systems for Cognitive Solutions Ehningen 12 th of July 2017 Albert Frisch, PhD - albert.frisch@de.ibm.com 2017 IBM 1 st wave of Quantum Revolution lasers atomic clocks GPS sensors

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Introduction to Circuit QED

Introduction to Circuit QED Introduction to Circuit QED Michael Goerz ARL Quantum Seminar November 10, 2015 Michael Goerz Intro to cqed 1 / 20 Jaynes-Cummings model g κ γ [from Schuster. Phd Thesis. Yale (2007)] Jaynes-Cumming Hamiltonian

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

The Quantum Supremacy Experiment

The Quantum Supremacy Experiment The Quantum Supremacy Experiment John Martinis, Google & UCSB New tests of QM: Does QM work for 10 15 Hilbert space? Does digitized error model also work? Demonstrate exponential computing power: Check

More information

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation QSIT09.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical physics fails

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTAR NFORMATON doi:10.1038/nature10786 FOUR QUBT DEVCE f 3 V 2 V 1 The cqed device used in this experiment couples four transmon qubits to a superconducting coplanar waveguide microwave cavity

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France QUANTUM COMPUTING Part II Jean V. Bellissard Georgia Institute of Technology & Institut Universitaire de France QUANTUM GATES: a reminder Quantum gates: 1-qubit gates x> U U x> U is unitary in M 2 ( C

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII Prospects for Superconducting ubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII uantum error correction and the future of solid state qubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII

More information

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay 400 nm Solid State Qubits (1) S D Daniel Esteve QUAN UM ELECT RONICS GROUP SPEC, CEA-Saclay From the Copenhagen school (1937) Max Planck front row, L to R : Bohr, Heisenberg, Pauli,Stern, Meitner, Ladenburg,

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

Topological Quantum Computation. George Toh 11/6/2017

Topological Quantum Computation. George Toh 11/6/2017 Topological Quantum Computation George Toh 11/6/2017 Contents Quantum Computing Comparison of QC vs TQC Topological Quantum Computation How to implement TQC? Examples, progress Industry investment Future

More information

Quantum Optics. Manipulation of «simple» quantum systems

Quantum Optics. Manipulation of «simple» quantum systems Quantum Optics Manipulation of «simple» quantum systems Antoine Browaeys Institut d Optique, Palaiseau, France Quantum optics = interaction atom + quantum field e g ~ 1960: R. Glauber (P. Nobel. 2005),

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Lecture 2, March 1, 2018

Lecture 2, March 1, 2018 Lecture 2, March 1, 2018 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft.

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft. Introduction to quantum computing (with superconducting circuits) Lecture 2 Version: 14/89 Frontiers of Condensed Matter San Sebastian, Aug. 28-3, 214 Dr. Leo DiCarlo l.dicarlo@tudelft.nl dicarlolab.tudelft.nl

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles Quantum Computation 650 Spring 2009 Lectures 1-21 The World of Quantum Information Marianna Safronova Department of Physics and Astronomy February 10, 2009 Outline Quantum Information: fundamental principles

More information

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

Josephson-Junction Qubits

Josephson-Junction Qubits Josephson-Junction Qubits John Martinis Kristine Lang, Ray Simmonds, Robert McDermott, Sae Woo Nam, Jose Aumentado, Dustin Hite, Dave Pappas, NST Boulder Cristian Urbina, (CNRS/CEA Saclay) Qubit 8µm Atom

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

IBM quantum experience: Experimental implementations, scope, and limitations

IBM quantum experience: Experimental implementations, scope, and limitations IBM quantum experience: Experimental implementations, scope, and limitations Plan of the talk IBM Quantum Experience Introduction IBM GUI Building blocks for IBM quantum computing Implementations of various

More information

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto Quantum error correction on a hybrid spin system Christoph Fischer, Andrea Rocchetto Christoph Fischer, Andrea Rocchetto 17/05/14 1 Outline Error correction: why we need it, how it works Experimental realization

More information

Topologicaly protected abelian Josephson qubits: theory and experiment.

Topologicaly protected abelian Josephson qubits: theory and experiment. Topologicaly protected abelian Josephson qubits: theory and experiment. B. Doucot (Jussieu) M.V. Feigelman (Landau) L. Ioffe (Rutgers) M. Gershenson (Rutgers) Plan Honest (pessimistic) review of the state

More information

Quantum computation and quantum optics with circuit QED

Quantum computation and quantum optics with circuit QED Departments of Physics and Applied Physics, Yale University Quantum computation and quantum optics with circuit QED Jens Koch filling in for Steven M. Girvin Quick outline Superconducting qubits overview

More information

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical Physics Louisiana State University http://quantum.phys.lsu.edu

More information

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University John Stewart Bell Prize Part 1: Michel Devoret, Yale University SUPERCONDUCTING ARTIFICIAL ATOMS: FROM TESTS OF QUANTUM MECHANICS TO QUANTUM COMPUTERS Part 2: Robert Schoelkopf, Yale University CIRCUIT

More information

Physical mechanisms of low frequency noises in superconducting qubits

Physical mechanisms of low frequency noises in superconducting qubits Physical mechanisms of low frequency noises in superconducting qubits Lara Faoro LPTHE and Rutgers University (USA) Lev Ioffe (Rutgers) and Alexei Kitaev (CalTech) Exp. Collaborators: O. Astafiev, Y. Pashkin,

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

Lecture 2, March 2, 2017

Lecture 2, March 2, 2017 Lecture 2, March 2, 2017 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Advances in Josephson Quantum Circuits

Advances in Josephson Quantum Circuits APS 00 March Meeting, Tutorial #3 Advances in Josephson Quantum Circuits Instructors: Michel Devoret, Yale University "Introduction to superconducting quantum circuits" Yasunobu Nakamura, NEC Japan "Superconducting

More information

Mesoscopic Shelving Readout of Superconducting Qubits in Circuit Quantum Electrodynamics

Mesoscopic Shelving Readout of Superconducting Qubits in Circuit Quantum Electrodynamics Mesoscopic Shelving Readout of Superconducting Qubits in Circuit Quantum Electrodynamics Diploma Thesis by Barbara Gabriele Ursula Englert October 008 Supervised by Prof. Dr. Rudolf Gross and Prof. Dr.

More information

Circuit quantum electrodynamics with transmon qubits

Circuit quantum electrodynamics with transmon qubits TECHNISCHE UNIVERSITÄT MÜNCHEN WMI WALTHER - MEISSNER - INSTITUT FÜR TIEF - TEMPERATURFORSCHUNG BAYERISCHE AKADEMIE DER WISSENSCHAFTEN Circuit quantum electrodynamics with transmon qubits Master s Thesis

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

Theory for investigating the dynamical Casimir effect in superconducting circuits

Theory for investigating the dynamical Casimir effect in superconducting circuits Theory for investigating the dynamical Casimir effect in superconducting circuits Göran Johansson Chalmers University of Technology Gothenburg, Sweden International Workshop on Dynamical Casimir Effect

More information

Superconducting phase qubits

Superconducting phase qubits Quantum Inf Process (2009) 8:81 103 DOI 10.1007/s11128-009-0105-1 Superconducting phase qubits John M. Martinis Published online: 18 February 2009 The Author(s) 2009. This article is published with open

More information

Magnetic semiconductors. (Dilute) Magnetic semiconductors

Magnetic semiconductors. (Dilute) Magnetic semiconductors Magnetic semiconductors We saw last time that: We d like to do spintronics in semiconductors, because semiconductors have many nice properties (gateability, controllable spin-orbit effects, long spin lifetimes).

More information

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Ĥ = Ĥ(p, q : Λ), Λ: control parameter { e.g. charge qubit Λ = V g gate voltage phase qubit Λ = I bias current

More information

Quantum Optics and Quantum Informatics 7.5hp (FKA173) Introductory Lecture

Quantum Optics and Quantum Informatics 7.5hp (FKA173) Introductory Lecture Quantum Optics and Quantum Informatics 7.5hp (FKA173) Introductory Lecture Fasrummet (A820) 09:00 Oct. 31-2017 Lectures: Jonas Bylander (jonas.bylander@chalmers.se) and Thilo Bauch (bauch@chalmers.se)

More information

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

Single Microwave-Photon Detector based on Superconducting Quantum Circuits 17 th International Workshop on Low Temperature Detectors 19/July/2017 Single Microwave-Photon Detector based on Superconducting Quantum Circuits Kunihiro Inomata Advanced Industrial Science and Technology

More information

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010 High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity arxiv:4.4323v2 [cond-mat.mes-hall] 9 Oct 2 M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster,

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004 Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004 A very active research field: Code information in simple systems (atoms, photons..) and use

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab Martin Weides, Karlsruhe Institute of Technology July 2 nd, 2014 100 mm Basic potentials

More information

Dynamically protected cat-qubits: a new paradigm for universal quantum computation

Dynamically protected cat-qubits: a new paradigm for universal quantum computation Home Search Collections Journals About Contact us My IOPscience Dynamically protected cat-qubits: a new paradigm for universal quantum computation This content has been downloaded from IOPscience. Please

More information

From SQUID to Qubit Flux 1/f Noise: The Saga Continues

From SQUID to Qubit Flux 1/f Noise: The Saga Continues From SQUID to Qubit Flux 1/f Noise: The Saga Continues Fei Yan, S. Gustavsson, A. Kamal, T. P. Orlando Massachusetts Institute of Technology, Cambridge, MA T. Gudmundsen, David Hover, A. Sears, J.L. Yoder,

More information

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation PHYSICAL REVIEW A 69, 062320 (2004) Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation Alexandre Blais, 1 Ren-Shou Huang, 1,2 Andreas Wallraff,

More information

Quantum computing hardware

Quantum computing hardware Quantum computing hardware aka Experimental Aspects of Quantum Computation PHYS 576 Class format 1 st hour: introduction by BB 2 nd and 3 rd hour: two student presentations, about 40 minutes each followed

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

State tomography of capacitively shunted phase qubits with high fidelity. Abstract

State tomography of capacitively shunted phase qubits with high fidelity. Abstract State tomography of capacitively shunted phase qubits with high fidelity Matthias Steffen, M. Ansmann, R. McDermott, N. Katz, Radoslaw C. Bialczak, Erik Lucero, Matthew Neeley, E.M. Weig, A.N. Cleland,

More information

Quantum Optics in Wavelength Scale Structures

Quantum Optics in Wavelength Scale Structures Quantum Optics in Wavelength Scale Structures SFB Summer School Blaubeuren July 2012 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk Confining light: periodic dielectric structures Photonic

More information

The Development of a Quantum Computer in Silicon

The Development of a Quantum Computer in Silicon The Development of a Quantum Computer in Silicon Professor Michelle Simmons Director, Centre of Excellence for Quantum Computation and Communication Technology, Sydney, Australia December 4th, 2013 Outline

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007 Generating Single Microwave Photons in a Circuit arxiv:cond-mat/0702648v1 [cond-mat.mes-hall] 27 Feb 2007 A. A. Houck, 1 D. I. Schuster, 1 J. M. Gambetta, 1 J. A. Schreier, 1 B. R. Johnson, 1 J. M. Chow,

More information