QUANTUM COHERENCE OF JOSEPHSON RADIO-FREQUENCY CIRCUITS OUTLINE

Size: px
Start display at page:

Download "QUANTUM COHERENCE OF JOSEPHSON RADIO-FREQUENCY CIRCUITS OUTLINE"

Transcription

1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" QUANTUM COHERENCE IN SOLID STATE SYSTEMS QUANTUM COHERENCE OF JOSEPHSON RADIO-FREQUENCY CIRCUITS Michel Devoret, Applied Physics, Yale University, USA and Collège de France, Paris OUTLINE 1. Motivation: Josephson circuits and quantum information 2. Quantum-mechanical superconducting LC oscillator 3. A non-dissipative, non-linear element: the Josephson junction 4. The Cooper pair box artificial atom circuit 5. Readout of the Cooper pair box qubit BREAK 6. Coherence of Josephson circuits 7. Quantum bus concept 1

2 OUTLINE 1. Motivation: Josephson circuits and quantum information 2. Quantum-mechanical superconducting LC oscillator 3. A non-dissipative, non-linear element: the Josephson junction 4. The Cooper pair box artificial atom circuit 5. Readout of the Cooper pair box qubit 6. Coherence of Josephson circuits 7. Quantum bus concept IMPLEMENTATIONS OF A SINGLE, MANIPULABLE, QUANTUM-MECHANICALLY COHERENT SYSTEM micro PHOTON NUCLEAR SPIN ION ATOM MOLECULE ATOMIC-SIZE DEFECT IN CRYSTAL QUANTUM DOT coupling with env t. MACRO JOSEPHSON RF CIRCUIT (Leggett, '80) 2

3 CLASSICAL RADIO-FREQUENCY CIRCUITS Communications Hergé, Moulinsart 1940's : MHz 2000's : GHz Computation Sony US Army Photo WHAT IS A RADIO-FREQUENCY CIRCUIT? A RF CIRCUIT IS A NETWORK OF ELECTRICAL ELEMENTS node n element loop branch np V np I np node p TWO COLLECTIVE DYNAMICAL VARIABLES CHARACTERIZE THE STATE OF EACH DIPOLE ELEMENT AT EVERY INSTANT: Voltage across the element: Current through the element: () Vnp t = E d n I t = j dσ np p () n p 3

4 CONSTITUTIVE RELATIONS EACH ELEMENT IS TAKEN FROM A FINITE SET OF ELEMENT TYPES EACH ELEMENT TYPE IS CHARACTERIZED BY A RELATION BETWEEN VOLTAGE AND CURRENT LINEAR NON-LINEAR inductance: V = L di/dt diode: I=G(V) capacitance: resistance: I = C dv/dt V = R I transistor: s g d I ds = G(I gs,v ds, ) V ds I gs = 0 QUANTUM INFORMATION ECONOMY suppose a function f j { 0,1023} k = f ( j) { 0,1023} Classically, need bit registers (10,000 bits) to store information about this function and to work on it. Quantum-mechanically, a 20-qubit register can suffice! Ψ = 1 2 N /2 N 2 1 j= 0 ( ) j f j 10 q-bits 10 q-bits Function encoded in a single quantum state of small register! (but a highly entangled one) 4

5 QUESTION: CAN WE BUILD A COMPLETE SET OF QUANTUM INFORMATION PROCESSING PRIMITIVES OUT OF SIMPLE CIRCUITS THAT WE WOULD CONNECT TO PERFORM ANY DESIRED FUNCTION? QUANTUM OPTICS QUANTUM RF CIRCUITS FIBERS, BEAMS BEAM-SPLITTERS MIRRORS LASERS PHOTODETECTORS ATOMS ~ TRANSM. LINES, WIRES COUPLERS CAPACITORS GENERATORS AMPLIFIERS JOSEPHSON JUNCTIONS DRAWBACKS OF CIRCUITS: ADVANTAGES OF CIRCUITS: ARTIFICIAL ATOMS PRONE TO VARIATIONS - PARALLEL FABRICATION METHODS - LEGO BLOCK CONSTRUCTION OF HAMILTONIAN - ARBITRARILY LARGE ATOM-FIELD COUPLING 5

6 OUTLINE 1. Motivation: Josephson circuits and quantum information 2. Quantum-mechanical superconducting LC oscillator 3. A non-dissipative, non-linear element: the Josephson junction 4. The Cooper pair box artificial atom circuit 5. Readout of the Cooper pair box qubit 6. Coherence of Josephson circuits 7. Quantum bus concept A CIRCUIT BEHAVING QUANTUM-MECHANICALLY AT THE LEVEL OF CURRENTS AND VOLTAGES? SIMPLEST EXAMPLE: SUPERCONDUCTING LC OSCILLATOR CIRCUIT d ~ 0.5 mm 6

7 A CIRCUIT BEHAVING QUANTUM-MECHANICALLY AT THE LEVEL OF CURRENTS AND VOLTAGES? SIMPLEST EXAMPLE: SUPERCONDUCTING LC OSCILLATOR CIRCUIT d ~ 0.5 mm MICROFABRICATION L ~ 3nH, C ~ 1pF, ω r /2π ~ 5GHz d << λ: LUMPED ELEMENT REGIME A CIRCUIT BEHAVING QUANTUM-MECHANICALLY AT THE LEVEL OF CURRENTS AND VOLTAGES? SIMPLEST EXAMPLE: SUPERCONDUCTING LC OSCILLATOR CIRCUIT d ~ 0.5 mm MICROFABRICATION L ~ 3nH, C ~ 1pF, ω r /2π ~ 5GHz d << λ: LUMPED ELEMENT REGIME SUPERCONDUCTIVITY ONLY ONE COLLECTIVE VARIABLE INCOMPRESSIBLE ELECTRONIC FLUID SLOSHES BETWEEN PLATES. NO INTERNAL DEGREES OF FREEDOM. 7

8 DEGREE OF FREEDOM IN ATOM vs CIRCUIT: SEMI-CLASSICAL DESCRIPTION Rydberg atom Superconducting LC oscillator L C DEGREE OF FREEDOM IN ATOM vs CIRCUIT: SEMI-CLASSICAL DESCRIPTION Rydberg atom Superconducting LC oscillator L C 2 Possible correspondences: charge dynamics velocity of electron current through inductor force on electron voltage across capacitor field dynamics velocity of electron voltage across capacitor force on electron current through inductor 8

9 DEGREE OF FREEDOM IN ATOM vs CIRCUIT Rydberg atom semiclassical picture Superconducting LC oscillator L φ C 2 Possible correspondences: charge dynamics velocity of electron current through inductor force on electron voltage across capacitor field dynamics velocity of electron voltage across capacitor force on electron current through inductor FLUX AND CHARGE IN LC OSCILLATOR φ electrical world I +Q V -Q φ = LI -I Q = CV M mechanical world f X k 1 X X = eq k f P = MV position variable: φ X-X eq momentum variable: Q P gener alized force : Ι f gener alized velocity: V V gener alized mass : C M gener alized spring const ant : 1/L k 9

10 HAMILTONIAN FORMALISM electrical world mechanical world φ I +Q -Q V M f X k H charge on capacitor ( φ, Q) conjugate variables time-integral of voltage on capacitor ( φ φ ) 2 eq 2 Q = + 2C 2L momentum of mass (, ) H X P conjugate variables position of mass w/r wall ( ) 2 2 P k X X eq = + 2M 2 HAMILTON'S EQUATION OF MOTION electrical world mechanical world φ I +Q -Q V M f X k H Q φ = = Q C H δφ Q = = φ L ω = r 1 LC H P X = = P M H P = = kδ X X ω = r k M 10

11 FROM CLASSICAL TO QUANTUM PHYSICS: CORRESPONDENCE PRINCIPLE X Xˆ P Pˆ (, ) Hˆ ( Xˆ, Pˆ) H X P AB AB = { A, B} Aˆ, Bˆ / i PB X P P X Poisson bracket {, } 1 ˆ, ˆ X P = X P = i PB position operator momentum operator hamiltonian operator commutator position and momentum operators do not commute FLUX AND CHARGE DO NOT COMMUTE φ I +Q -Q V For every branch in the circuit: ˆ φ, Qˆ = i We have obtained this result thru correspondance principle after having recognized flux and charge as canonical conjugate coordinates. "Cannot quantize the equations of the stock market!" A.J. Leggett We can also obtain this result from quantum field theory thru the commutation relations of the electric and magnetic field. Tedious. 11

12 LC CIRCUIT AS QUANTUM HARMONIC OSCILLATOR E φ +Q -Q hω r ( aˆ aˆ ) Hˆ = ω 1 r + 2 ˆ φ Qˆ ˆ φ Qˆ ˆ ; ˆ φ Q φ Q a= + i a = i φ = r Q r = r r r r 2 ω L r 2 ω C r 0 φ annihilation and creation operators SUPPRESSION OF THERMAL EXCITATION OF LC CIRCUIT φ E I hω r φ Can place the circuit in its ground state ω r kt 5 GHz 10mK B 12

13 φ WAVEFUNCTIONS OF LC CIRCUIT E I hω r In every energy eigenstate, (photon state) current flows in opposite directions simultaneously! Ψ(φ) Ψ 1 2φ r 0 Ψ 0 φ φ EFFECT OF DAMPING E φ important: as little dissipation as possible φ dissipation broadens energy levels i 1 En = ωr n see Q more Q = RCω later r 13

14 ALL TRANSITIONS ARE DEGENERATE φ E hω r φ CANNOT STEER THE SYSTEM TO AN ARBITRARY STATE IF PERFECTLY LINEAR NEED NON-LINEARITY TO FULLY REVEAL QUANTUM MECHANICS Potential energy Position coordinate 14

15 OUTLINE 1. Motivation: Josephson circuits and quantum information 2. Quantum-mechanical superconducting LC oscillator 3. A non-dissipative, non-linear element: the Josephson junction 4. The Cooper pair box artificial atom circuit 5. Readout of the Cooper pair box qubit 6. Coherence of Josephson circuits 7. Quantum bus concept JOSEPHSON JUNCTION PROVIDES A NON-LINEAR INDUCTOR 1nm S I S superconductorinsulatorsuperconductor tunnel junction L J C j 15

16 JOSEPHSON JUNCTION PROVIDES A NON-LINEAR INDUCTOR 1nm S I S superconductorinsulatorsuperconductor tunnel junction L J C j Ι t ( ') φ = V t dt' JOSEPHSON JUNCTION PROVIDES A NON-LINEAR INDUCTOR 1nm S I S superconductorinsulatorsuperconductor tunnel junction L J C j Ι Ι Ι = φ / L J L J 2 φ0 φ0 = = E I J 0 t ( ') φ = V t dt' φ ( ) I = I sin φ / φ 0 0 φ 0 = 2e 16

17 COUPLING PARAMETERS OF THE JOSEPHSON JUNCTION "ATOM" REST OF CIRCUIT q ext I t φ = ˆ V ( t' ) dt' t Q ( ) = ˆ I t' dt' THE hamiltonian: (we mean it!) H j 1 ( ) 2 cos 2 eφ = Q qext EJ 2C j COUPLING PARAMETERS OF THE JOSEPHSON JUNCTION "ATOM" REST OF CIRCUIT q ext THE hamiltonian: (we mean it!) H j 1 ( ) 2 cos 2 eφ = Q qext EJ 2C j Comparable with lowest order model for hydrogen atom H 2 1 ea e 1 = pˆ 2m 4πε rˆ e

18 Two dimensionless variables: Hamiltonian becomes : TWO ENERGY SCALES H 2e ˆ φ ˆ ϕ = ˆ ˆ Q N = 2e j ˆ, ϕ Nˆ = i ( N N ) 2 ext = 8E cos ˆ C EJ ϕ 2 Coulomb charging energy for 1e Josephson energy E C 2 e = 2C j reduced offset charge q et x Next = 2e E J = valid for opaque barrier barrier transp cy 1 NT Δ 8 gap # cond ion channels LOW-LYING EXCITATIONS OF ISOLATED JUNCTION: CHARGE STATES + + +ne -ne 2Δ e tunneling CP tunneling E J n = N/2 = E C 18

19 MECHANICAL ANALOG OF JOSEPHSON COUPLING ENERGY rotating magnet angular velocity: 4E C N ext Ω= h compass needle ˆϕ needle angular momentum: Nh torque on needle due to magnet velocity of needle in magnet frame current through junction voltage across junction CHARGE STATES vs PHOTON STATES A 2 n N A 1 θ ϕ Hilbert spaces have different topologies 19

20 HARMONIC APPROXIMATION H j ( N N ) 2 ext = 8E cos ˆ C EJ ϕ 2 H jh, ( N N ) 2 2 ext ˆ ϕ = 8EC + EJ 2 2 Josephson plasma frequency ω = P 8 C E E J Spectrum independent of DC value of N ext credit I. Siddiqi and F.Pierre TUNNEL JUNCTIONS IN REAL LIFE credit L. Frunzio and D. Schuster E J ~ 50K ω p ~ 30-40GHz E J ~ 0.5K 100nm 20

21 OUTLINE 1. Motivation: Josephson circuits and quantum information 2. Quantum-mechanical superconducting LC oscillator 3. A non-dissipative, non-linear element: the Josephson junction 4. The Cooper pair box artificial atom circuit 5. Readout of the Cooper pair box qubit 6. Coherence of Josephson circuits 7. Quantum bus concept 3 TYPES OF BIASES charge flux current I 0 I 0 I 0 2C g C U 2C g L C Φ b C I b 21

22 EFFECTIVE POTENTIAL OF 3 BIAS SCHEMES charge bias flux bias phase bias ϕ 2eφ = 2π h CEA Saclay, Yale NEC, Chalmers, JPL,... 2eφ h TU Delft, NEC, NTT, MIT UC Berkeley, IBM, SUNY IPHT Jena... 2eφ h UC Berkeley, NIST, UCSB, U. Maryland, CRTBT Grenoble... EFFECTIVE POTENTIAL OF 3 BIAS SCHEMES charge bias flux bias -1 2eφ +1 phase bias h CEA Saclay, Yale NEC, Chalmers, JPL,... 2eφ h TU Delft, NEC, NTT, MIT UC Berkeley, IBM, SUNY IPHT Jena... 2eφ h UC Berkeley, NIST, UCSB, U. Maryland, CRTBT Grenoble... 22

23 U COOPER PAIR "BOX" Φ island U 2 control parameters C g U/2e and Φ/Φ 0 C g Φ Bouchiat et al. 97 Nakamura, Pashkin & Tsai 99 Vion et al ANHARMONICITY vs CHARGE SENSITIVITY Cooper pair box soluble in terms of Mathieu functions (A. Cottet, PhD thesis, Orsay, 2002) 23

24 ANHARMONICITY vs CHARGE SENSITIVITY IN THE LIMIT E C /E J << 1 ("TRANSMON") anharmonicity: ω12 ω01 EC /2 8EJ ( ω + ω ) peak-to-peak charge modulation amplitude of level m: J. Koch et al. 07 TRANSMON: SHUNT JUNCTION WITH CAPACITANCE 290 μm Courtesy of J. Schreier and R. Schoelkopf SPECTROSCOPY OF A COOPER PAIR BOX IN TRANSMON REGIME ω 12 J. Schreier et al. 07 ω 02 2 ω 12 ω 02 2 ω 01 ω 01 ω ω = Anharmonicity: MHz C Sufficient to control the junction as a two level system E Slide courtesy of J. Schreier and R. Schoelkopf T 1 > 2μs 24

25 ATOM IN SEMI-CLASSICAL REGIME: CIRCULAR RYDBERG ATOM 2r n old Bohr theory essentially exact! 2 meωr = n constraint Coulomb potential p+ ω n r n E = a n n (,, ) 2 Ψ n x yz 0 ωn n ± 1 = 3 d n n± 1 2 Ry = 2 n Ry 2 n ern = 2 valid when: ω ( E) 1 E TRANSMON AS ANALOG OF CIRCULAR RYDBERG ATOMS Josephson potential energy 2E J π Spectroscopic lines (high T): +π Junction phase ϕ ω ω ω ω 12ω 01 nn, + 1 n+ 1, n+ 2 nn, ω 25

26 TRANSMON AS ANALOG OF CIRCULAR RYDBERG ATOMS Josephson potential energy 2E J π +π Junction phase ϕ Spectroscopic lines (low T): ω OUTLINE 1. Motivation: Josephson circuits and quantum information 2. Quantum-mechanical superconducting LC oscillator 3. A non-dissipative, non-linear element: the Josephson junction 4. The Cooper pair box artificial atom circuit 5. Readout of the Cooper pair box qubit 6. Coherence of Josephson circuits 7. Quantum bus concept 26

27 THE READOUT PROBLEM QUBIT OFF ON READOUT or 1 THE READOUT PROBLEM QUBIT OFF ON READOUT QUBIT OFF ON READOUT 0 1 QUBIT OFF ON READOUT 0 1 WANT: 1) SWITCH WITH LARGE ON-OFF RATIO 2) FAITHFUL READOUT CIRCUIT 27

28 DIVERSITY OF CIRCUIT STRATEGIES SACLAY -- YALE (Quantronium) TU DELFT -- NEC -- NTT YALE (circuit-qed) NIST -- UCSB analogous to cavity QED expts by Haroche, Raimond, Brune et al. DISPERSIVE READOUT STRATEGY rf signal in ω ω 01 QUBIT CHIP 0 or 1 28

29 DISPERSIVE READOUT STRATEGY rf signal in rf signal out or QUBIT CHIP 0 or 1 QUBIT STATE ENCODED IN PHASE OF OUTGOING SIGNAL, NO ENERGY DISSIPATED ON-CHIP DISPERSIVE READOUT STRATEGY rf signal in rf signal out or 0 QUBIT CHIP or 1 Requirements: 1) low noise in detection 2) enough phase shift DO WITH ENOUGH PHOTONS TO GET 1 CLASSICAL BIT OF INFORMATION 29

30 DISPERSIVE READOUT STRATEGY rf signal in rf signal out or 0 QUBIT CHIP or 1 Requirements: 1) low noise in detection 2) enough phase shift DO WITH ENOUGH PHOTONS TO GET 1 CLASSICAL BIT OF INFORMATION PLACE QUBIT IN MICROWAVE CAVITY TO FILTER OUT IRRELEVANT PART OF SPECTRUM SUPERCONDUCTING MICROWAVE RESONATOR: ANALOG OF FABRY-PEROT CAVITY Al or Nb mirror = capacitors Si or Al2O3 length ~1cm, but photon propagation length ~ 10km! can get Q up to 10 6 ( in bulk: Q ~ ) COPLANAR WAVEGUIDE: 2D VERSION OF COAXIAL CABLE 30

31 SUPERCONDUCTING MICROWAVE RESONATOR: ANALOG OF FABRY-PEROT CAVITY Al or Nb RF GEN. ~ Si or Al2O3 length ~1cm, but photon propagation length ~ 10km! IN CHIP OUT can get Q up to 10 6 ( in bulk: Q ~ ) ADC SUPERCONDUCTING MICROWAVE RESONATOR: ANALOG OF FABRY-PEROT CAVITY ν ~ 10GHz w~20μm Al or Nb Si or Al2O3 length ~ 1cm, but photon decay length ~ 10km! can get Q up to 10 6 ( in bulk: Q ~ ) CHIP ~ IN OUT ADC VERY SMALL MODE VOLUME 1/2 photon: ~1nA ~100nV 31

32 SUPERCONDUCTING CAVITY = FABRY-PEROT 10mm 3mm Nb 100μm qubit goes here "QUANTRONIUM" IN MICROWAVE CAVITY CPW ground READOUT JUNCTION ISLAND 10µm CPW ground 32

33 HIGH FREQUENCIES, LOW TEMPERATURES 2-20 GHz mk QUANTRONIUM IN MICROWAVE CAVITY OFF-RESONANT NMR-TYPE PULSE SEQUENCE FOR QUBIT MANIPULATION 33

34 QUANTRONIUM IN MICROWAVE CAVITY READOUT PROBING PULSE or 0> 1> QUBIT STATE ENCODED IN PHASE OF TRANSMITTED PULSE QUANTRONIUM IN MICROWAVE CAVITY Metcalfe et al. Phys. Rev. B (2007) 0> 200ns 40ns 40ns t 1> t AWG ~ ADC IN OUT 34

35 QUANTRONIUM IN MICROWAVE CAVITY Metcalfe et al. Phys. Rev. B (2007) 0> 200ns 40ns 40ns t 1> t AWG ~ ADC IN OUT latching effect due to bifurcation of cavity mode CAVITY BIFURCATION : ANALOG OF OPTICAL BISTABILITY 35

36 HYSTERESIS 0 Ω/2π = 4.2GHz T=15mK 1 ms sweep 1 MEASUREMENT OF READOUT FIDELITY π pulse U rf Relaxation induced by readout Slope 3 times too small compared with thy U rf TOO MANY READOUT PHOTONS? 36

37 JOSEPHSON PARAMETRIC AMPLIFIER SIGNAL Bergeal et al. 08 Josephson ring modulator Φ 0 /2 180º hybrid coupler Design goals: T N < hf/k B Gain > 20 db Bandwidth > 5 MHz Dynamic range > 20 db chip IDLER OUTLINE 1. Motivation: Josephson circuits and quantum information 2. Quantum-mechanical superconducting LC oscillator 3. A non-dissipative, non-linear element: the Josephson junction 4. The Cooper pair box artificial atom circuit 5. Readout of the Cooper pair box qubit 6. Coherence of Josephson circuits 7. Quantum bus concept 37

38 CAVITY QUANTRONIUM RABI OSCILLATIONS 0 1 ν Larmor =14.5GHz M. Metcalfe et al. RAMSEY FRINGES 60% 40% 20% T2 =500ns ns 0 acquisition time (s) 1 38

39 DISTRIBUTION OF RAMSEY DATA method A of van Harlingen et al Lopsided frequency fluctuations (Karlsruhe) E J /E C = 3.6 SN g 1/f Charge noise amplitude 2 α 3 ( ω) =, α e ω value OK DISTRIBUTION OF RAMSEY DATA van Harlingen et al Lopsided frequency fluctuations (Karlsruhe) Need larger E J /E C SN g 1/f Charge noise amplitude 2 α 3 ( ω) =, α e ω value OK 39

40 DECOHERENCE TIME ( T 2 ) Δt ν Larmor =18.984GHz Q φ = ω Larmor T 2 '02 Vion et al. 50,000 '05 Siddiqi et al. 30,000 '05 Wallraff et al. 19,000 '06 Metcalfe et al. 70,000 '08 Houck et al. 100,000 Δt (ns) 1 param. fit T 2 = 300ns Siddiqi et al, 06 SENSITIVITY OF BIAS SCHEMES TO NOISE (EXP D ) CHARGED IMPURITY TUNNEL CHANNEL junction noises bias ΔQ off ΔE J ΔE C charge flux ELECTRIC DIPOLES phase charge qubit flux qubit phase qubit 40

41 OUTLINE 1. Motivation: Josephson circuits and quantum information 2. Quantum-mechanical superconducting LC oscillator 3. A non-dissipative, non-linear element: the Josephson junction 4. The Cooper pair box artificial atom circuit 5. Readout of the Cooper pair box qubit 6. Coherence of Josephson circuits 7. Quantum bus concept QUANTUM BUS CONCEPT FOR SOLID STATE QUBITS Nature, 27 Sept microwave transmission line resonator artificial atom coupling element 41

42 Msmt. of qubit-cavity avoided crossing cavity STRONG QUBIT-CAVITY COUPLING qubit vacuum Rabi splitting 2g = 250 MHz! ~ ~ ADC IN OUT CPB RESOLVING PHOTON NUMBER IN CAVITY P( n) = ( n) n! n e n Mean shifts Peaks are Poisson distributed Peaks get broader n Houck et al., Nature 07 42

43 RESOLVING PHOTON NUMBER IN CAVITY CONDITIONAL QUBIT ROTATION POSSIBLE! SCHEMATIC OF 2 COOPER PAIR BOXES IN A MICROWAVE CAVITY Blais A. et al., Phys. Rev. A 75,

44 SWAPPING INFORMATION BETWEEN QUBITS Nota Bene: (Using first generation transmon with short T2=100 ns.) Background due to off-resonant driving by the Stark tone J. Majer, J. M. Chow et al, Nature, 449, 443 (2007) Similar results with phase qubits: Sillanpaa et al, Nature, 449, 438 (2007) PERSPECTIVES QUANTUM COMPUTATION violation of Bell's inequalities teleportation error correction algorithms Q φ ~ 10 7 NEW MATERIALS? MEASUREMENTS AND CONTROL OF QUANTUM ENGINEERED SYSTEMS amplification at the quantum limit quantum noise squeezing (1-mode and 2-mode) quantum feedback single photon detection for radioastronomy charge counting for metrology Q φ ~ 10 4 OK 44

45 Circuit Quantum Electrodynamics Groups Depts. Applied Physics and Physics, Yale P.I.'s Grads Post-Docs Res. Sc. Undrgrds Collab. M. D. R. VIJAY C. RIGETTI M. METCALFE V. MANUCHARIAN I. SIDDIQI (UCB) E. BOAKNIN (Mtrl) N. BERGEAL P. HYAFIL S. FISSETTE D. ESTEVE (Saclay) R. SCHOELKOPF J. CHOW B. TUREK J. SCHREIER B. JOHNSON A. WALRAFF (ETH) H. MAJER (Vienna) A. HOUCK D. SCHUSTER L. FRUNZIO J. SCHWEDE P. ZOLLER (Innsbruck) S. GIRVIN T. YU L. BISHOP J. KOCH J. GAMBETTA F. MARQUARDT (Munich) A. BLAIS (Sherbrooke) A. CLERK (McGill) 45

JOSEPHSON QUBIT CIRCUITS AND THEIR READOUT

JOSEPHSON QUBIT CIRCUITS AND THEIR READOUT JOSEPHSON QUBIT CIRCUITS AND THEIR READOUT Michel DEVORET, Applied Physics and Physics, Yale University Sponsors: W.M. KECK Final version of this presentation available at http://qulab.eng.yale.edu/archives.htm

More information

CIRCUITS ET SIGNAUX QUANTIQUES QUANTUM SIGNALS AND CIRCUITS VISIT THE WEBSITE OF THE CHAIR OF MESOSCOPIC PHYSICS

CIRCUITS ET SIGNAUX QUANTIQUES QUANTUM SIGNALS AND CIRCUITS VISIT THE WEBSITE OF THE CHAIR OF MESOSCOPIC PHYSICS Chaire de Physique Mésoscopique Michel Devoret Année 2008, 13 mai - 24 juin CIRCUITS ET SIGNAUX QUANTIQUES QUANTUM SIGNALS AND CIRCUITS Première leçon / First Lecture This College de France document is

More information

Advances in Josephson Quantum Circuits

Advances in Josephson Quantum Circuits APS 00 March Meeting, Tutorial #3 Advances in Josephson Quantum Circuits Instructors: Michel Devoret, Yale University "Introduction to superconducting quantum circuits" Yasunobu Nakamura, NEC Japan "Superconducting

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University John Stewart Bell Prize Part 1: Michel Devoret, Yale University SUPERCONDUCTING ARTIFICIAL ATOMS: FROM TESTS OF QUANTUM MECHANICS TO QUANTUM COMPUTERS Part 2: Robert Schoelkopf, Yale University CIRCUIT

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Quantum computation and quantum optics with circuit QED

Quantum computation and quantum optics with circuit QED Departments of Physics and Applied Physics, Yale University Quantum computation and quantum optics with circuit QED Jens Koch filling in for Steven M. Girvin Quick outline Superconducting qubits overview

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

Lecture 2, March 1, 2018

Lecture 2, March 1, 2018 Lecture 2, March 1, 2018 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Lecture 2, March 2, 2017

Lecture 2, March 2, 2017 Lecture 2, March 2, 2017 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS

REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS IRFAN SIDDIQI YALE UNIVERSITY R. Vijay P. Hyafil E. Boaknin M. Metcalfe F. Pierre L. Frunzio C.M. Wilson C. Rigetti V. Manucharyan J. Gambetta

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Entanglement Control of Superconducting Qubit Single Photon System

Entanglement Control of Superconducting Qubit Single Photon System : Quantum omputing Entanglement ontrol of Superconducting Qubit Single Photon System Kouichi Semba Abstract If we could achieve full control of the entangled states of a quantum bit (qubit) interacting

More information

Introduction to Quantum Mechanics of Superconducting Electrical Circuits

Introduction to Quantum Mechanics of Superconducting Electrical Circuits Introduction to Quantum Mechanics of Superconducting lectrical Circuits What is superconductivity? What is a osephson junction? What is a Cooper Pair Box Qubit? Quantum Modes of Superconducting Transmission

More information

Introduction to Circuit QED

Introduction to Circuit QED Introduction to Circuit QED Michael Goerz ARL Quantum Seminar November 10, 2015 Michael Goerz Intro to cqed 1 / 20 Jaynes-Cummings model g κ γ [from Schuster. Phd Thesis. Yale (2007)] Jaynes-Cumming Hamiltonian

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Strong-coupling Circuit QED

Strong-coupling Circuit QED Departments of Physics and Applied Physics, Yale University Quantum Optics with Electrical Circuits: Strong-coupling Circuit QED Jens Koch Departments of Physics and Applied Physics, Yale University Circuit

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier

Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier PHYSICAL REVIEW B 76, 174516 27 Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier M. Metcalfe, E. Boaknin, V. Manucharyan, R. Vijay, I. Siddiqi, C. Rigetti, L. Frunzio,

More information

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

More information

Electrical Quantum Engineering with Superconducting Circuits

Electrical Quantum Engineering with Superconducting Circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 Electrical Quantum Engineering with Superconducting Circuits R. Heeres & P. Bertet SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400

More information

Topologicaly protected abelian Josephson qubits: theory and experiment.

Topologicaly protected abelian Josephson qubits: theory and experiment. Topologicaly protected abelian Josephson qubits: theory and experiment. B. Doucot (Jussieu) M.V. Feigelman (Landau) L. Ioffe (Rutgers) M. Gershenson (Rutgers) Plan Honest (pessimistic) review of the state

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft.

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft. Introduction to quantum computing (with superconducting circuits) Lecture 2 Version: 14/89 Frontiers of Condensed Matter San Sebastian, Aug. 28-3, 214 Dr. Leo DiCarlo l.dicarlo@tudelft.nl dicarlolab.tudelft.nl

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Ĥ = Ĥ(p, q : Λ), Λ: control parameter { e.g. charge qubit Λ = V g gate voltage phase qubit Λ = I bias current

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) 2) 3) Readout

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Entangled Macroscopic Quantum States in Two Superconducting Qubits

Entangled Macroscopic Quantum States in Two Superconducting Qubits Entangled Macroscopic Quantum States in Two Superconducting Qubits A. J. Berkley,H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, F. C. Wellstood

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Superconducting Circuits and Quantum Information

Superconducting Circuits and Quantum Information Superconducting Circuits and Quantum Information Superconducting circuits can behave like atoms making transitions between two levels. Such circuits can test quantum mechanics at macroscopic scales and

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island PHYSICAL REVIEW B, VOLUME 63, 054514 Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island Florian Marquardt* and C. Bruder Departement

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010 High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity arxiv:4.4323v2 [cond-mat.mes-hall] 9 Oct 2 M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster,

More information

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS Chaire de Physique Mésoscopique Michel Devoret Année 2007, Cours des 7 et 14 juin INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Entangled States and Quantum Algorithms in Circuit QED

Entangled States and Quantum Algorithms in Circuit QED Entangled States and Quantum Algorithms in Circuit QED Applied Physics + Physics Yale University PI s: Rob Schoelkopf Michel Devoret Steven Girvin Expt. Leo DiCarlo Andrew Houck David Schuster Hannes Majer

More information

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments 1 Instructor: Daryoush Shiri Postdoctoral fellow, IQC IQC, June 2015, WEEK-2 2 Parametric Amplifiers

More information

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS Michel Devoret, Yale University Acknowledgements to Yale quantum information team members:

More information

Quantum Optics and Quantum Informatics FKA173

Quantum Optics and Quantum Informatics FKA173 Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:30-1:30. Examiners: Jonas Bylander (070-53 44 39) and Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.

More information

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII Prospects for Superconducting ubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII uantum error correction and the future of solid state qubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007 Generating Single Microwave Photons in a Circuit arxiv:cond-mat/0702648v1 [cond-mat.mes-hall] 27 Feb 2007 A. A. Houck, 1 D. I. Schuster, 1 J. M. Gambetta, 1 J. A. Schreier, 1 B. R. Johnson, 1 J. M. Chow,

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011 Observation of quantum jumps in a superconducting artificial atom R. Vijay, D. H. Slichter, and I. Siddiqi Quantum Nanoelectronics Laboratory, Department of Physics, University of California, Berkeley

More information

Circuit quantum electrodynamics : beyond the linear dispersive regime

Circuit quantum electrodynamics : beyond the linear dispersive regime Circuit quantum electrodynamics : beyond the linear dispersive regime 1 Jay Gambetta 2 Alexandre Blais 1 1 Département de Physique et Regroupement Québécois sur les matériaux de pointe, 2 Institute for

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Nonlinear Oscillators and Vacuum Squeezing

Nonlinear Oscillators and Vacuum Squeezing Nonlinear Oscillators and Vacuum Squeezing David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts

More information

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung Braunschweiger Supraleiter-Seminar Seminar Qubits: Supraleitende Quantenschaltungen (i) Grundlagen und Messung Jens Könemann, Bundesallee 100, 38116 Braunschweig Q Φ 26. Mai 0/ 16 Braunschweiger Supraleiter-Seminar

More information

arxiv: v1 [quant-ph] 31 May 2010

arxiv: v1 [quant-ph] 31 May 2010 Single-shot qubit readout in circuit Quantum Electrodynamics François 1 Mallet, Florian R. 1 Ong, Agustin 1 Palacios-Laloy, François 1 Nguyen, Patrice 1 Bertet, Denis 1 Vion * and Daniel 1 Esteve 1 Quantronics

More information

Quantum optics and quantum information processing with superconducting circuits

Quantum optics and quantum information processing with superconducting circuits Quantum optics and quantum information processing with superconducting circuits Alexandre Blais Université de Sherbrooke, Canada Sherbrooke s circuit QED theory group Félix Beaudoin, Adam B. Bolduc, Maxime

More information

Introduction to Circuit QED Lecture 2

Introduction to Circuit QED Lecture 2 Departments of Physics and Applied Physics, Yale University Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓 Quantum Optics with Propagating Microwaves in Superconducting Circuits 許耀銓 Outline Motivation: Quantum network Introduction to superconducting circuits Quantum nodes The single-photon router The cross-kerr

More information

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting Jay Gambetta, 1 Alexandre Blais, 1,2 D. I. Schuster, 1 A. Wallraff, 1,3 L. Frunzio, 1 J. Majer, 1 M. H. Devoret,

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

SUPERCONDUCTING QUANTUM BITS

SUPERCONDUCTING QUANTUM BITS I0> SUPERCONDUCTING QUANTUM BITS I1> Hans Mooij Summer School on Condensed Matter Theory Windsor, August 18, 2004 quantum computer U quantum bits states l0>, l1> Ψ = αl0> + βl1> input - unitary transformations

More information

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris A three lecture course Goal of lectures Manipulating states of simple quantum systems has become an important

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Nathan K. Langford OVERVIEW Acknowledgements Ramiro Sagastizabal, Florian Luthi and the rest of the

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics Lecture 3: 2-qubit

More information

4-3 New Regime of Circuit Quantum Electro Dynamics

4-3 New Regime of Circuit Quantum Electro Dynamics 4-3 New Regime of Circuit Quantum Electro Dynamics Kouichi SEMBA, Fumiki YOSHIHARA, Tomoko FUSE, Sahel ASHHAB, Kosuke KAKUYANAGI, and Shiro SAITO Researchers at the National Institute of Information and

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator : A New Era in Quantum Information Processing Technologies Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator Yuichiro Matsuzaki, Kosuke Kakuyanagi, Hiraku Toida, Hiroshi

More information

Theory for investigating the dynamical Casimir effect in superconducting circuits

Theory for investigating the dynamical Casimir effect in superconducting circuits Theory for investigating the dynamical Casimir effect in superconducting circuits Göran Johansson Chalmers University of Technology Gothenburg, Sweden International Workshop on Dynamical Casimir Effect

More information

Condensed Matter Without Matter Quantum Simulation with Photons

Condensed Matter Without Matter Quantum Simulation with Photons Condensed Matter Without Matter Quantum Simulation with Photons Andrew Houck Princeton University Work supported by Packard Foundation, NSF, DARPA, ARO, IARPA Condensed Matter Without Matter Princeton

More information

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab Martin Weides, Karlsruhe Institute of Technology July 2 nd, 2014 100 mm Basic potentials

More information

Mechanical quantum resonators

Mechanical quantum resonators Mechanical quantum resonators A. N. Cleland and M. R. Geller Department of Physics, University of California, Santa Barbara CA 93106 USA Department of Physics and Astronomy, University of Georgia, Athens,

More information

Quantum non-demolition measurement of a superconducting two-level system

Quantum non-demolition measurement of a superconducting two-level system 1 Quantum non-demolition measurement of a superconducting two-level system A. Lupaşcu 1*, S. Saito 1,2, T. Picot 1, P. C. de Groot 1, C. J. P. M. Harmans 1 & J. E. Mooij 1 1 Quantum Transport Group, Kavli

More information

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Ceren Burçak Dağ Supervisors: Dr. Pol Forn-Díaz and Assoc. Prof. Christopher Wilson Institute

More information

Amplification, entanglement and storage of microwave radiation using superconducting circuits

Amplification, entanglement and storage of microwave radiation using superconducting circuits Amplification, entanglement and storage of microwave radiation using superconducting circuits Jean-Damien Pillet Philip Kim s group at Columbia University, New York, USA Work done in Quantum Electronics

More information

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation PHYSICAL REVIEW A 69, 062320 (2004) Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation Alexandre Blais, 1 Ren-Shou Huang, 1,2 Andreas Wallraff,

More information

Superconducting phase qubits

Superconducting phase qubits Quantum Inf Process (2009) 8:81 103 DOI 10.1007/s11128-009-0105-1 Superconducting phase qubits John M. Martinis Published online: 18 February 2009 The Author(s) 2009. This article is published with open

More information