JOSEPHSON QUBIT CIRCUITS AND THEIR READOUT

Size: px
Start display at page:

Download "JOSEPHSON QUBIT CIRCUITS AND THEIR READOUT"

Transcription

1 JOSEPHSON QUBIT CIRCUITS AND THEIR READOUT Michel DEVORET, Applied Physics and Physics, Yale University Sponsors: W.M. KECK Final version of this presentation available at APS March Meeting Pittsburgh, PA

2 QUANTUM INFORMATION PROCESSING # of atoms micro MACRO OPTICAL PHOTONS NUCLEAR SPINS IONS ATOMS MOLECULES QUANTUM DOTS SUPERCONDUCTING JOSEPHSON TUNNEL CIRCUITS coupling with env t. 10µm 50µm from A. O. Niskanen et al. Science 316, 723 (2007) courtesy of J. Martinis, 2009 from Metcalfe et al., 2007

3 ELECTROMAGNETIC SPECTRUM f (Hz) λ (m) AUDIO VIDEO RF / μw IR UV RX γ ELECTRICITY OPTICS 1 bit = RF signal with 0/1 photon? 10 GHz ~ 0.5K

4 HOW CAN A SUPERCONDUCTING CIRCUIT BEHAVE LIKE AN ATOM? SIMPLEST EXAMPLE: SUPERCONDUCTING LC OSCILLATOR CIRCUIT MICROFABRICATION L ~ 3nH, C ~ 10pF, ω r /2π ~ 2GHz ELECTRONIC FLUID SLOSHES BACK AND FORTH FROM ONE PLATE TO THE OTHER, INTERNAL MODES FROZEN, BEHAVES AS A SINGLE CHARGE CARRIER

5 DEGREE OF FREEDOM IN ATOM vs CIRCUIT Example of H atom with large principal quantum number Superconducting LC oscillator L C velocity of electron voltage across capacitor force on electron current through inductor

6 FLUX AND CHARGE DO NOT COMMUTE φ I +Q -Q V φˆ, Qˆ = i φ = LI Q= CV

7 LC CIRCUIT AS QUANTUM HARMONIC OSCILLATOR E φ +Q -Q hω r ( aˆ aˆ ) Hˆ = ω 1 r + 2 ˆ φ Qˆ ˆ φ Qˆ ˆ ; ˆ φ Q φ Q a = + i a = i φ = r Q r = r r r r 2 ω L r 2 ω C r φ annihilation and creation operators for mesoscopic excitation of circuit

8 φ WAVEFUNCTIONS OF LC CIRCUIT E I hω r In every energy eigenstate, (photon state) current flows in opposite directions simultaneously! Ψ(φ) Ψ 1 2φ r 0 Ψ 0 φ φ

9 EFFECT OF DAMPING E φ important: as little dissipation as possible φ dissipation broadens energy levels i 1 En = ωr n Q Q = RCω r

10 CAN PLACE CIRCUIT IN ITS GROUND STATE E φ hω r residual dissipation provides reset of circuit ω r kt 10 GHz 25mK B

11 PB: ALL TRANSITIONS ARE DEGENERATE! φ E hω r φ CANNOT STEER THE SYSTEM TO AN ARBITRARY STATE IF PERFECTLY LINEAR

12 NEED NON-LINEARITY TO FULLY REVEAL QUANTUM MECHANICS Potential energy Position coordinate

13 JOSEPHSON TUNNEL JUNCTION PROVIDES A NON-LINEAR INDUCTOR WITH NO DISSIPATION 1nm S I S superconductorinsulatorsuperconductor tunnel junction L J C J Ι Ι Ι = φ / L J L J 2 φ0 φ0 = = E I J 0 φ t ( ') = V t dt ' φ ( ) I = I sin φ / φ 0 0 φ 0 = 2e

14 JOSEPHSON TUNNEL JUNCTION PROVIDES A NON-LINEAR INDUCTOR WITH NO DISSIPATION 1nm S I S superconductorinsulatorsuperconductor tunnel junction L J C J Ι ( ) U = E cos φ / φ J 0 L J 2 φ0 φ0 = = E I J 0 φ t ( ') = V t dt ' φ bare Josephson potential φ 0 = 2e

15 COUPLING PARAMETERS OF THE JOSEPHSON "ATOM" REST OF CIRCUIT (CONT ROL & READ OUT ) THE Hamiltonian: (we mean it!) qˆext H J 1 ( ˆ ) 2 cos 2 eφ = Q qext EJ 2C J Josephson tunnel junction contribution to total circuit Hamiltonian Comparable with lowest order model for hydrogen atom H 1 eaˆ = pˆ 2m e 2 2 e 4πε 0 1 rˆ

16 Two dimensionless variables: Hamiltonian becomes : TWO ENERGY SCALES H 2e ˆ φ ˆ ϕ = ˆ ˆ Q N = 2e J ˆ, ϕ Nˆ = i ( N N ) 2 ext = 8E cos ˆ C EJ ϕ 2 Coulomb charging energy for 1e Josephson energy E C = 2 e 2C J reduced offset charge N ext = q et x 2e E J = valid for opaque barrier barrier transp cy 1 NT Δ 8 gap # cond ion channels

17 HARMONIC APPROXIMATION H J ( N N ) 2 ext = 8E cos ˆ C EJ ϕ 2 H Jh, ( N N ) 2 2 ext ˆ ϕ = 8EC + EJ 2 2 Josephson "plasma" frequency: ω = P 8 C E E J Josephson RF impedance: ( 2e) 2 Spectrum independent of DC value of N ext Z J = 8E E J C

18 credit I. Siddiqi and F.Pierre SOME JOSEPHSON TUNNEL JUNCTIONS IN REAL LIFE credit L. Frunzio and D. Schuster E J ~ 50K ω p ~ 30-40GHz E J ~ 0.5K 100nm

19 RF CONTROL & BIAS vs SENSITIVITY TO NOISE Devoret and Martinis, Quant. Inf. Proc see R. McDermot's tutorial "charge" qubit island "flux" qubit Φ = off Φ 2 0 "phase" qubit Φ > off Φ _ a.k.a. Cooper Pair Box Φ <Φ /2 off 0 THE MONSTERS WE FEAR: charged impurity unstable tunnel channel flavors ΔQ off noises ΔΦ off ΔE J "charge" "flux" freak electron spin loose elec. dipoles "phase"

20 EFFECTIVE POTENTIAL OF 3 MAIN BIAS SCHEMES see also proposals for topologically protected qubits, for example Feigelman et al. PRL 92, (2004) "charge" bias "flux" bias 1 2 ϕ = 2π 2eφ h "phase" bias in e g CEA Saclay, NEC, Yale Chalmers, JPL,... TU Delft, NEC, NTT, IBM, MIT, UC Berkeley, SUNY, IPHT Jena... 2eφ h 2eφ h UC Berkeley, NIST, UCSB, U. Maryland, I. Neel Grenoble...

21 HOW DO WE FIND THE HAMILTONIAN OF AN ARBITRARY CIRCUIT? Yurke B. and Denker J.S., Phys. Rev. A 29, 1419 (1984) Devoret M. H. in "Quantum Fluctuations", S. Reynaud, E. Giacobino, J. Zinn-Justin, Eds. (Elsevier, Amsterdam, 1997) p G. Burkard, R. H. Koch, and D. P. DiVincenzo, Phys. Rev. B 69, (2004) Example: 2 Josephson junctions capacitively coupled to 1 resonator mode C c C c L J C J L C L' J C' J

22 COOPER PAIR "BOX" U Φ U Φ island C g Φ controls E J, C g U/2e controls N g qbit space = Hilbert space of 0 or 1 quanta in this non-linear oscillator Bouchiat PhD Thesis 97, et al. Physica Scripta '98 Nakamura, Pashkin & Tsai, Nature '99

23 SCHEMATIC OF COOPER PAIR BOXES IN A MICROWAVE CAVITY Review by Blais et al., Phys. Rev. A 75, (2007)

24 TWO-QUBIT QUANTUM PROCESSOR slide courtesy of L. DiCarlo & Rob Schoelkopf V17.6 Thu. March 19 see also 1 qubit and 2 cavities: B. Johnson et al. V17.4

25 "FLUXONIUM QUBIT" V. Manucharyan et al. Q17.5 Wednesday resonator 50 Ω port 1 50 Ω port 2 small junction array junctions

26 A FEW USEFUL IDEAS FOR CIRCUIT HAMILTONIANS...

27 BRANCH VARIABLES I β banch β Introduce branch flux and charge rest of circuit V β φ β Q β t () t = V ( ') β t dt' t () t = I ( ') β t dt ' position variable: φ X momentum variable: Q P gener alized force : Ι f gener alized velocity: V V

28 BRANCH VARIABLES I β banch β Introduce branch flux and charge rest of circuit V β φ β Q β t () t = V ( ') β t dt' t () t = I ( ') β t dt ' For every branch β in the circuit: φˆ, Qˆ = i β β

29 PROBLEM: NOT ALL BRANCH VARIABLES ARE INDEPENDENT a KIRCHHOFF'S LAWS: b db b a c c bd branches λ around loop V λ = 0 branchesν tied to node I ν = 0 IMPOSE CONSTRAINTS ON BRANCH VARIABLES

30 TWO METHODS FOR DEFINING A COMPLETE SET OF INDEPENDENT VARIABLES Method of nodes Defines node fluxes Method of loops Defines loop charges 08-II-11a

31 EXAMPLE OF A COMPLETE SET OF INDEPENDENT VARIABLES Method of nodes Φ 2 Φ 3 Φ 7 Φ 1 φ f φ h Φ 6 φ g 1) Choose a reference electrode (ground) 2) Choose a spanning tree (accesses every node, no loop) 3) Select tree branch fluxes (closure branches left out) 4) Node flux Φ n is sum of branch fluxes to ground (closure branch fluxes are expressed as differences between node fluxes) φ d Φ 4 example: Φ = φ e Φ 5 Φ 7 = φ d + φ e + φ g φ h = Φ 7 - Φ 6 + cst n tree branches leading to n φ γ Φn γ = + ( ) Φ ( ) cst γ n + φ β β

32 INDUCTIVE vs CAPACITIVE ELEMENTS I φ Inductance : current I function only of flux φ t E I Vdt ' I φ ' dφ ' = = φ 0 ( ) Electrical equivalent of spring: φ X ; I f Q V Capacitance : voltage V function only of charge Q t E V Idt' V Q' dq' = = Q 0 ( ) Electrical equivalent of mass: Q P ; V V

33 NODE CHARGES The conjugate coordinates of node fluxes are node charges: they are the sum of all the charges going into capacitances linked to this node. Q n = capacitive branches exiting from n Q β n for each node: [ Φ Q ] n, n This can be demonstrated by writing the Lagrangian of the circuit from its dynamical equations and performing a Legendre transform to obtain the Hamiltonian = i Dynamical equations Lagrangian conjugate coordinates Hamiltonian (,, ) H( x, p, t) L x x t p = L x

34 HAMILTONIAN OF TWO CAPACITIVELY COUPLED RESONATOR MODES Φ 1 Φ 2 C c C b L a C a L b Reduced capacitance matrix: C C C + C C a c c = Cc Cb + C c Inverse of reduced capacitance matrix: 1 1 Cb Cc C + c = CC a b + CC a c + CC b c Cc Ca + C c ˆ ˆ ˆ ( ˆ ˆ ˆ ˆ ) Φ Φ H Φ1, Q1; Φ 2, Q2 = + 2L 2L Qˆ Qˆ QQ ˆ ˆ C 2C C a b

35 ANHARMONICITY vs CHARGE SENSITIVITY Cooper pair box levels are "exactly soluble" (A. Cottet, PhD thesis, Orsay, 2002)

36 ANHARMONICITY vs CHARGE SENSITIVITY IN THE LIMIT E J /E C >> 1 anharmonicity: ω12 ω01 E /2 8E ( ω + ω ) C J J. Koch et al. Phys. Rev. A '07 peak-to-peak charge modulation amplitude of level m: TRANSMON: SHUNT CPB JUNCTION WITH CAPACITANCE 290 μm Courtesy of J. Schreier and R. Schoelkopf

37 SPECTROSCOPY OF A JOSEPHSON ATOM J. Schreier et al., Phys. Rev. B '08 ω 12 ω 02 2 ω 12 ω 02 2 ω 01 ω 01 Anharmonicity: ω01 ω12 = 455MHz EC Sufficient to control the artificial atom as a two level system: Qubit Slide courtesy of J. Schreier and R. Schoelkopf

38 THE MEMORY READOUT PROBLEM QUBIT OFF READOUT 0 1 QUBIT OFF READOUT 0 1 or ON ON QUBIT OFF READOUT 0 1 ON 1 0 ε 1 ε FIDELITY: F = 1 ε ε 0 1 WANT: 1) SWITCH WITH ON/OFF RATIO AS LARGE AS POSSIBLE 2) READOUT WITH F AS CLOSE TO 1 AS POSSIBLE

39 STATE DECAY STRATEGY Martinis, Devoret and Clarke, PRL 55 (1985) Martinis, Nam, Aumentado and Urbina, PRL 89 (2002)

40 DISPERSIVE READOUT STRATEGY Blais et al. PRA 2004, Walraff et al., Nature 2004 rf signal in ω ω 01 or rf signal out QUBIT CIRCUIT 0 or 1 QUBIT STATE ENCODED IN PHASE OF OUTGOING SIGNAL, NO ENERGY DISSIPATED ON-CHIP A) FILTER OUT EVERYTHING ELSE THAN READOUT RF B) REPEAT WITH ENOUGH PHOTONS TO BEAT NOISE : USE THE BEST AMPLIFIER AS POSSIBLE (see whole sessions J3 & L17 + Q17.6& Y34.4)

41 SUPERCONDUCTING MICROWAVE RESONATOR: ANALOG OF FABRY-PEROT CAVITY FILTER ν ~ 10GHz w~20μm Al or Nb Si or Al 2 O 3 can get Q up to 10 6 ( in bulk: Q ~ ) length ~ 1cm, but photon decay length ~ 10km! CHIP ~ IN OUT ADC VERY SMALL MODE VOLUME 1/2 photon: ~1nA ~100nV

42 SUPERCONDUCTING CAVITY = FABRY-PEROT 10mm 3mm Nb 100μm qubit goes here (see slide 2, lower right, in this talk)

43 EXAMPLE OF QUANTRONIUM IN MICROWAVE CAVITY OFF-RESONANT NMR-TYPE PULSE SEQUENCE FOR QUBIT MANIPULATION

44 QUANTRONIUM IN MICROWAVE CAVITY READOUT PROBING PULSE or 0> 1> QUBIT STATE ENCODED IN PHASE OF TRANSMITTED PULSE

45 QUANTRONIUM IN MICROWAVE CAVITY Metcalfe et al. Phys. Rev. B (2007) 0> 200ns 40ns 40ns t 1> t AWG ~ ADC IN OUT latching effect due to bifurcation of cavity mode

46 IN-LINE TRANSMON WITH BIFURCATING MICROWAVE CAVITY READOUT See V17.6 M. Brink et al. Thursday morning, and also recent Saclay group results (in preparation) C in ~200aF qubit C couple ~6fF readout junction C out ~20fF 50Ω qubit cavity readout cavity 50Ω

47 P.I.'s Grads Post-Docs Res. Sc. Undrgrds Collab. Acknowledgements: Circuit Quantum Electrodynamics Groups Depts. Applied Physics and Physics, Yale M. D. R. VIJAY (UCB) C. RIGETTI M. METCALFE (NIST) V. MANUCHARIAN F. SCHAKERT N. MASLUK A. KAMAL I. SIDDIQI (UCB) C. WILSON (Chalmers) E. BOAKNIN (McK) N. BERGEAL (ESPCI) M. BRINK A. MARBLESTONE D. ESTEVE et coll. (Saclay) B. HUARD (LPA/ENS) R. SCHOELKOPF J. CHOW B. TUREK (MIT) J. SCHREIER B. JOHNSON A. SEARS M. READ A. WALRAFF (ETH) H. MAJER (Vienna) A. HOUCK (Princeton) D. SCHUSTER L. DiCARLO L. FRUNZIO J. SCHWEDE P. ZOLLER (Innsbruck) S. GIRVIN T. YU L. BISHOP J. KOCH J. GAMBETTA (U. Waterloo) E. GINOSSAR A. NUNNENKAMP F. MARQUARDT (Munich) A. BLAIS (Sherbrooke) A. CLERK (McGill) W.M. KECK

48 P.I.'s Grads Post-Docs Res. Sc. Undrgrds Collab. Acknowledgements: Circuit Quantum Electrodynamics Groups Depts. Applied Physics and Physics, Yale M. D. R. VIJAY (UCB) C. RIGETTI M. METCALFE (NIST) V. MANUCHARIAN F. SCHAKERT N. MASLUK A. KAMAL I. SIDDIQI (UCB) C. WILSON (Chalmers) E. BOAKNIN (McK) N. BERGEAL (ESPCI) M. BRINK A. MARBLESTONE D. ESTEVE et coll. (Saclay) B. HUARD (LPA/ENS) R. SCHOELKOPF (Keithley Award, T3) J. CHOW B. TUREK (MIT) J. SCHREIER B. JOHNSON A. SEARS M. READ A. WALRAFF (ETH) H. MAJER (Vienna) A. HOUCK (Princeton) D. SCHUSTER L. DiCARLO L. FRUNZIO J. SCHWEDE P. ZOLLER (Innsbruck) S. GIRVIN T. YU L. BISHOP J. KOCH J. GAMBETTA (U. Waterloo) E. GINOSSAR A. NUNNENKAMP F. MARQUARDT (Munich) A. BLAIS (Sherbrooke) A. CLERK (McGill) W.M. KECK

Advances in Josephson Quantum Circuits

Advances in Josephson Quantum Circuits APS 00 March Meeting, Tutorial #3 Advances in Josephson Quantum Circuits Instructors: Michel Devoret, Yale University "Introduction to superconducting quantum circuits" Yasunobu Nakamura, NEC Japan "Superconducting

More information

QUANTUM COHERENCE OF JOSEPHSON RADIO-FREQUENCY CIRCUITS OUTLINE

QUANTUM COHERENCE OF JOSEPHSON RADIO-FREQUENCY CIRCUITS OUTLINE INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" QUANTUM COHERENCE IN SOLID STATE SYSTEMS QUANTUM COHERENCE OF JOSEPHSON RADIO-FREQUENCY CIRCUITS Michel Devoret, Applied Physics, Yale University, USA and

More information

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University John Stewart Bell Prize Part 1: Michel Devoret, Yale University SUPERCONDUCTING ARTIFICIAL ATOMS: FROM TESTS OF QUANTUM MECHANICS TO QUANTUM COMPUTERS Part 2: Robert Schoelkopf, Yale University CIRCUIT

More information

CIRCUITS ET SIGNAUX QUANTIQUES QUANTUM SIGNALS AND CIRCUITS VISIT THE WEBSITE OF THE CHAIR OF MESOSCOPIC PHYSICS

CIRCUITS ET SIGNAUX QUANTIQUES QUANTUM SIGNALS AND CIRCUITS VISIT THE WEBSITE OF THE CHAIR OF MESOSCOPIC PHYSICS Chaire de Physique Mésoscopique Michel Devoret Année 2008, 13 mai - 24 juin CIRCUITS ET SIGNAUX QUANTIQUES QUANTUM SIGNALS AND CIRCUITS Première leçon / First Lecture This College de France document is

More information

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Lecture 2, March 1, 2018

Lecture 2, March 1, 2018 Lecture 2, March 1, 2018 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

Lecture 2, March 2, 2017

Lecture 2, March 2, 2017 Lecture 2, March 2, 2017 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Quantum computation and quantum optics with circuit QED

Quantum computation and quantum optics with circuit QED Departments of Physics and Applied Physics, Yale University Quantum computation and quantum optics with circuit QED Jens Koch filling in for Steven M. Girvin Quick outline Superconducting qubits overview

More information

REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS

REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS REALIZING QUANTUM MEASUREMENTS WITH SUPERCONDUCTING NANOCIRCUITS IRFAN SIDDIQI YALE UNIVERSITY R. Vijay P. Hyafil E. Boaknin M. Metcalfe F. Pierre L. Frunzio C.M. Wilson C. Rigetti V. Manucharyan J. Gambetta

More information

Strong-coupling Circuit QED

Strong-coupling Circuit QED Departments of Physics and Applied Physics, Yale University Quantum Optics with Electrical Circuits: Strong-coupling Circuit QED Jens Koch Departments of Physics and Applied Physics, Yale University Circuit

More information

Introduction to Quantum Mechanics of Superconducting Electrical Circuits

Introduction to Quantum Mechanics of Superconducting Electrical Circuits Introduction to Quantum Mechanics of Superconducting lectrical Circuits What is superconductivity? What is a osephson junction? What is a Cooper Pair Box Qubit? Quantum Modes of Superconducting Transmission

More information

Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier

Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier PHYSICAL REVIEW B 76, 174516 27 Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier M. Metcalfe, E. Boaknin, V. Manucharyan, R. Vijay, I. Siddiqi, C. Rigetti, L. Frunzio,

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII Prospects for Superconducting ubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII uantum error correction and the future of solid state qubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

Topologicaly protected abelian Josephson qubits: theory and experiment.

Topologicaly protected abelian Josephson qubits: theory and experiment. Topologicaly protected abelian Josephson qubits: theory and experiment. B. Doucot (Jussieu) M.V. Feigelman (Landau) L. Ioffe (Rutgers) M. Gershenson (Rutgers) Plan Honest (pessimistic) review of the state

More information

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft.

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft. Introduction to quantum computing (with superconducting circuits) Lecture 2 Version: 14/89 Frontiers of Condensed Matter San Sebastian, Aug. 28-3, 214 Dr. Leo DiCarlo l.dicarlo@tudelft.nl dicarlolab.tudelft.nl

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments 1 Instructor: Daryoush Shiri Postdoctoral fellow, IQC IQC, June 2015, WEEK-2 2 Parametric Amplifiers

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) 2) 3) Readout

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007 Generating Single Microwave Photons in a Circuit arxiv:cond-mat/0702648v1 [cond-mat.mes-hall] 27 Feb 2007 A. A. Houck, 1 D. I. Schuster, 1 J. M. Gambetta, 1 J. A. Schreier, 1 B. R. Johnson, 1 J. M. Chow,

More information

Theory for investigating the dynamical Casimir effect in superconducting circuits

Theory for investigating the dynamical Casimir effect in superconducting circuits Theory for investigating the dynamical Casimir effect in superconducting circuits Göran Johansson Chalmers University of Technology Gothenburg, Sweden International Workshop on Dynamical Casimir Effect

More information

Entanglement Control of Superconducting Qubit Single Photon System

Entanglement Control of Superconducting Qubit Single Photon System : Quantum omputing Entanglement ontrol of Superconducting Qubit Single Photon System Kouichi Semba Abstract If we could achieve full control of the entangled states of a quantum bit (qubit) interacting

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Quantize electrical circuits

Quantize electrical circuits Quantize electrical circuits a lecture in Quantum Informatics the 4th and 7th of September 017 Thilo Bauch and Göran Johansson In this lecture we will discuss how to derive the quantum mechanical hamiltonian

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Electrical Quantum Engineering with Superconducting Circuits

Electrical Quantum Engineering with Superconducting Circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 Electrical Quantum Engineering with Superconducting Circuits R. Heeres & P. Bertet SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400

More information

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island PHYSICAL REVIEW B, VOLUME 63, 054514 Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island Florian Marquardt* and C. Bruder Departement

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

arxiv: v1 [cond-mat.mes-hall] 16 Oct 2009

arxiv: v1 [cond-mat.mes-hall] 16 Oct 2009 Coherent oscillations between classically separable quantum states of a superconducting loop Vladimir E. Manucharyan, 1 Jens Koch, 1 Markus Brink, 1 Leonid I. Glazman, 1 and Michel H. Devoret 1 1 Departments

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Ĥ = Ĥ(p, q : Λ), Λ: control parameter { e.g. charge qubit Λ = V g gate voltage phase qubit Λ = I bias current

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

Superconducting Circuits and Quantum Information

Superconducting Circuits and Quantum Information Superconducting Circuits and Quantum Information Superconducting circuits can behave like atoms making transitions between two levels. Such circuits can test quantum mechanics at macroscopic scales and

More information

Entangled Macroscopic Quantum States in Two Superconducting Qubits

Entangled Macroscopic Quantum States in Two Superconducting Qubits Entangled Macroscopic Quantum States in Two Superconducting Qubits A. J. Berkley,H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, F. C. Wellstood

More information

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Josephson junction team Olivier Buisson, Bernard Pannetier,

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung Braunschweiger Supraleiter-Seminar Seminar Qubits: Supraleitende Quantenschaltungen (i) Grundlagen und Messung Jens Könemann, Bundesallee 100, 38116 Braunschweig Q Φ 26. Mai 0/ 16 Braunschweiger Supraleiter-Seminar

More information

arxiv: v1 [quant-ph] 31 May 2010

arxiv: v1 [quant-ph] 31 May 2010 Single-shot qubit readout in circuit Quantum Electrodynamics François 1 Mallet, Florian R. 1 Ong, Agustin 1 Palacios-Laloy, François 1 Nguyen, Patrice 1 Bertet, Denis 1 Vion * and Daniel 1 Esteve 1 Quantronics

More information

Quantum Spectrometers of Electrical Noise

Quantum Spectrometers of Electrical Noise Quantum Spectrometers of Electrical Noise Rob Schoelkopf Applied Physics Yale University Gurus: Michel Devoret, Steve Girvin, Aash Clerk And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven,

More information

Quantum Optics and Quantum Informatics FKA173

Quantum Optics and Quantum Informatics FKA173 Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:30-1:30. Examiners: Jonas Bylander (070-53 44 39) and Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.

More information

Entangled States and Quantum Algorithms in Circuit QED

Entangled States and Quantum Algorithms in Circuit QED Entangled States and Quantum Algorithms in Circuit QED Applied Physics + Physics Yale University PI s: Rob Schoelkopf Michel Devoret Steven Girvin Expt. Leo DiCarlo Andrew Houck David Schuster Hannes Majer

More information

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS Michel Devoret, Yale University Acknowledgements to Yale quantum information team members:

More information

Fluxonium: single Cooper pair circuit free of charge offsets

Fluxonium: single Cooper pair circuit free of charge offsets Fluxonium: single Cooper pair circuit free of charge offsets Vladimir E. Manucharyan, 1 Jens Koch, 1 Leonid I. Glazman, 1 Michel H. Devoret 1 arxiv:0906.0831v2 [cond-mat.mes-hall] 20 Oct 2009 1 Departments

More information

Introduction to Circuit QED

Introduction to Circuit QED Introduction to Circuit QED Michael Goerz ARL Quantum Seminar November 10, 2015 Michael Goerz Intro to cqed 1 / 20 Jaynes-Cummings model g κ γ [from Schuster. Phd Thesis. Yale (2007)] Jaynes-Cumming Hamiltonian

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Demonstration of conditional gate operation using superconducting charge qubits

Demonstration of conditional gate operation using superconducting charge qubits Demonstration of conditional gate operation using superconducting charge qubits T. Yamamoto, Yu. A. Pashkin, * O. Astafiev, Y. Nakamura, & J. S. Tsai NEC Fundamental Research Laboratories, Tsukuba, Ibaraki

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011 Observation of quantum jumps in a superconducting artificial atom R. Vijay, D. H. Slichter, and I. Siddiqi Quantum Nanoelectronics Laboratory, Department of Physics, University of California, Berkeley

More information

Quantization of inductively shunted superconducting circuits

Quantization of inductively shunted superconducting circuits PHYSICAL EVIEW B 94, 44507 (206) Quantization of inductively shunted superconducting circuits W. C. Smith, A. Kou, U. Vool, I. M. Pop,,2 L. Frunzio,. J. Schoelkopf, and M. H. Devoret Department of Applied

More information

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010 High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity arxiv:4.4323v2 [cond-mat.mes-hall] 9 Oct 2 M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster,

More information

SUPERCONDUCTING QUANTUM BITS

SUPERCONDUCTING QUANTUM BITS I0> SUPERCONDUCTING QUANTUM BITS I1> Hans Mooij Summer School on Condensed Matter Theory Windsor, August 18, 2004 quantum computer U quantum bits states l0>, l1> Ψ = αl0> + βl1> input - unitary transformations

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

More information

Josephson-Junction Qubits

Josephson-Junction Qubits Josephson-Junction Qubits John Martinis Kristine Lang, Ray Simmonds, Robert McDermott, Sae Woo Nam, Jose Aumentado, Dustin Hite, Dave Pappas, NST Boulder Cristian Urbina, (CNRS/CEA Saclay) Qubit 8µm Atom

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics Lecture 3: 2-qubit

More information

Routes towards quantum information processing with superconducting circuits

Routes towards quantum information processing with superconducting circuits Routes towards quantum information processing with superconducting circuits? 0 1 1 0 U 2 1 0? 0 1 U 1 U 1 Daniel Estève Quantronics SPEC CEA Saclay Quantum Mechanics: resources for information processing

More information

Circuit quantum electrodynamics : beyond the linear dispersive regime

Circuit quantum electrodynamics : beyond the linear dispersive regime Circuit quantum electrodynamics : beyond the linear dispersive regime 1 Jay Gambetta 2 Alexandre Blais 1 1 Département de Physique et Regroupement Québécois sur les matériaux de pointe, 2 Institute for

More information

Physical mechanisms of low frequency noises in superconducting qubits

Physical mechanisms of low frequency noises in superconducting qubits Physical mechanisms of low frequency noises in superconducting qubits Lara Faoro LPTHE and Rutgers University (USA) Lev Ioffe (Rutgers) and Alexei Kitaev (CalTech) Exp. Collaborators: O. Astafiev, Y. Pashkin,

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab Martin Weides, Karlsruhe Institute of Technology July 2 nd, 2014 100 mm Basic potentials

More information

Condensed Matter Without Matter Quantum Simulation with Photons

Condensed Matter Without Matter Quantum Simulation with Photons Condensed Matter Without Matter Quantum Simulation with Photons Andrew Houck Princeton University Work supported by Packard Foundation, NSF, DARPA, ARO, IARPA Condensed Matter Without Matter Princeton

More information

Quantum non-demolition measurement of a superconducting two-level system

Quantum non-demolition measurement of a superconducting two-level system 1 Quantum non-demolition measurement of a superconducting two-level system A. Lupaşcu 1*, S. Saito 1,2, T. Picot 1, P. C. de Groot 1, C. J. P. M. Harmans 1 & J. E. Mooij 1 1 Quantum Transport Group, Kavli

More information

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS Chaire de Physique Mésoscopique Michel Devoret Année 2007, Cours des 7 et 14 juin INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

More information

Mechanical quantum resonators

Mechanical quantum resonators Mechanical quantum resonators A. N. Cleland and M. R. Geller Department of Physics, University of California, Santa Barbara CA 93106 USA Department of Physics and Astronomy, University of Georgia, Athens,

More information

Rabi oscillations, Ramsey fringes and spin echoes in an electrical circuit

Rabi oscillations, Ramsey fringes and spin echoes in an electrical circuit Fortschr. Phys. 51, No. 4 5, 462 468 (2003) / DOI 10.1002/prop.200310063 Rabi oscillations, Ramsey fringes and spin echoes in an electrical circuit D. Vion 1, A. Aassime 1, A. Cottet 1,P.Joyez 1, H. Pothier

More information

Tunable Resonators for Quantum Circuits

Tunable Resonators for Quantum Circuits J Low Temp Phys (2008) 151: 1034 1042 DOI 10.1007/s10909-008-9774-x Tunable Resonators for Quantum Circuits A. Palacios-Laloy F. Nguyen F. Mallet P. Bertet D. Vion D. Esteve Received: 26 November 2007

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Nathan K. Langford OVERVIEW Acknowledgements Ramiro Sagastizabal, Florian Luthi and the rest of the

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Quantum optics and quantum information processing with superconducting circuits

Quantum optics and quantum information processing with superconducting circuits Quantum optics and quantum information processing with superconducting circuits Alexandre Blais Université de Sherbrooke, Canada Sherbrooke s circuit QED theory group Félix Beaudoin, Adam B. Bolduc, Maxime

More information

From SQUID to Qubit Flux 1/f Noise: The Saga Continues

From SQUID to Qubit Flux 1/f Noise: The Saga Continues From SQUID to Qubit Flux 1/f Noise: The Saga Continues Fei Yan, S. Gustavsson, A. Kamal, T. P. Orlando Massachusetts Institute of Technology, Cambridge, MA T. Gudmundsen, David Hover, A. Sears, J.L. Yoder,

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

Nonlinear Oscillators and Vacuum Squeezing

Nonlinear Oscillators and Vacuum Squeezing Nonlinear Oscillators and Vacuum Squeezing David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts

More information

nano Josephson junctions Quantum dynamics in

nano Josephson junctions Quantum dynamics in Permanent: Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Cécile Naud Bernard Pannetier Quantum dynamics in nano Josephson junctions CNRS Université Joseph Fourier Institut Néel- LP2MC GRENOBLE

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information