SUPERCONDUCTING QUANTUM BITS

Size: px
Start display at page:

Download "SUPERCONDUCTING QUANTUM BITS"

Transcription

1 I0> SUPERCONDUCTING QUANTUM BITS I1> Hans Mooij Summer School on Condensed Matter Theory Windsor, August 18, 2004

2 quantum computer U quantum bits states l0>, l1> Ψ = αl0> + βl1> input - unitary transformations - output N qubits, 2 N states quantum algorithms factorization (Shor) searching (Grover) initialization controlled operations interaction large number individual readout non-trivial two-bit gates controlled-not, swap error correction

3 quantum bit: two level quantum system I1> Ψ = α I0> + β I1> E = ħω o I0> IαI 2 + IβI 2 = 1 α = cos θ β = e iφ sin θ latitude: angle θ content l0> and l1> measured in readout θ I0> I1> longitude: phase φ irrelevant in readout dφ/dt = E/ħ φ

4 quantum manipulations resonant electromagnetic wave ν= E/h Rabi oscillation π I1> Ψ=αI0>+βI1> I0> π/2 2π α(t)=cos(θ o +ω R t) β(t)=sin(θ o +ω R t) length of microwave pulse determines final state

5 measurement quantum system environment

6 well-established quantum technologies - nuclear magnetic resonance - photons - ions / atoms basic manipulations well-controlled in present form not scalable

7 NMR identical molecules in liquid each molecule has N identifiable spins parallel N-qubit computers ensemble-properties represent qubits readout: measurement of spin magnetic moments E 2 nuclear spins E 1 E 2 -E 1 proportional to magnetic field strength weak interaction between the spins in the same molecule no interaction between molecules

8 Deutsch-Jozsa 7-spin coherence D H C N O O D C O F H 3 C H C H C C O OH Order-finding F F C C F C Fe (CH) 5 (CO) 2 C F F

9 factoring 15 with nuclear spins 2 F 12 C 6 13 C F 1 7 F 3 Vandersypen et al., Nature 414, 883 (2001) 15 3 x 5 4 F Fe 13 C 12 C F 5 C 5 H 5 CO CO

10 photons 'free' single photons beam splitters polarizers non-linear Kerr cells single photon detectors photons in a cavity interaction through an atom

11 ions in an ion trap c. monroe et al. PRL trapped ions 0.2 mm Courtesy D. Wineland, NIST

12 new scalable quantum technologies - ion traps with micro-control electrodes 'atom chip' - superconducting systems - single spins in semiconductors - x x x x

13

14 single spins in a semiconductor h X X - e X S L S R Gammon et al Imamoglu et al, PRL 1999 Loss & DiVincenzo, PRA nm

15 mesoscopic Josephson junction circuits Josephson coupling energy U J = E J ( 1 - cosφ ) E J = 2 (h/e 2 ) / (8R n) Coulomb charging energy U C = E C 4n 2 E C = e 2 / 2C E J /E C >>1 phase excitations fluxons n, φ δnδφ>1 E C /E J >>1 charge excitations V g Φ m

16 n=1 E p ext n=0 charge qubit p ext = V g C g /2e = E J n : Cooper pairs flux qubit p ext = Φ/Φ o : exp{ -(E J /E c ) 1/2 } n : fluxons

17 Nakamura, Pashkin, Tsai Nature 398, 786 (1999)

18 Yamamoto, Pashkin, Astaflev, Nakamura, Tsai Nature 425, 941 (2003) CNOT

19 charge qubit with phase read-out D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M.H. Devoret, Science 296, 886 (2002) U circulating current in squid loop depends on charge state Ι b current pulse switch or no switch

20 'magic point'

21 persistent-current quantum bit flux qubit with three junctions, small geometric loop inductance E Φ 0 2t H = hσ z + tσ x with h=(φ/φ o -0.5) Φ o I p I circ 1 0 +I p Φ/Φ o -I p Science 285, 1036 (1999)

22 Φ/Φo

23 SQUID: Ι s max (Φ) Ι s max /Ι c maximum supercurrent 1 Ι bias Φ/Φ o Ι circulating 1 circulating current at f=0.5 Ι circ /Ι c Ι bias /Ι c

24 SQUID measurement I bias qubit generates flux ±LI p 10-3 Φ o measured with hysteretic (unshunted) SQUID maximum supercurrent depends on flux in the SQUID loop GHz I switch Φ/Φ o measurement switching current: (RF 9 GHz applied) ramps

25 SQUID I c 200 na underdamped, no ohmic shunt measurement of I switch by repeated ramping histogram of 5,000-10,000 points average value recorded

26 superposition of states with clockwise and anti-clockwise-current switching current Ι SW (0.4 na per division) ~ GHz GHz GHz GHz GHz GHz GHz GHz GHz 10 f GHz f (GHz) Φ ext (Φ 0 ) Φ/Φ o GHz 0 x10-3 Φ/Φ o Φ res (10-3 Φ 0 ) Van der Wal et al., Science 290, 773 (2000) also SUNY (Friedman, Lukens et al.)

27 Friedman, Patel, Chen, Tolpygo, Lukens: Nature 406, 43 (2000) E and E B manipulated with flux E J =76 K (cosφ xdc /Φ o ), E C = 9 mk U o = 9 K

28 quantum system environment

29 Decoherence relaxation T 1 τ relax dephasing T 2 τ φ - pseudospin - boson bath (harmonic oscillators) Milena Grifoni, Frank Wilhelm, Gerd Schon et al τ relax determined by spectral density at E τ φ determined by spectral density at low ω measurement circuit designed to optimize - pseudospin - spin bath? Phil Stamp - 1/f type noise: flux, charge, critical current

30 1/f noise charge noise: - charge noise: charged defects in barrier, substrate or surface lead to non-integer induced charge. Static offset, 1/f noise. - critical current noise: neutral defects in barrier. - flux noise: trapped vortices, magnetic domains, magnetic impurities, nuclear spins

31 Delft flux qubits Kees Harmans Alexander ter Haar Irinel Chiorescu Adrian Lupascu Floor Pauw Patrice Bertet Jelle Plantenga Jonathan Eroms Yasunobu Nakamura (NEC) Kouichi Semba (NTT) funding: FOM, EU ARO, Kavli

32 h set by external flux t set by fabrication H = hσ z + tσ x 6 excitation, measurement σ z E t (here t=1) H hσ z -6 h H hσ z H = tσ x

33 DC, RF drives quantum system environment SQUID measurement

34 300K DC, RF drives qubit SQUID circulating current SQUID bias current 300K variations of q, E J, Φ SQUID voltage 300K

35 -42 E / E C shift -50 operation point read-out point total flux (Φ intended principle: 0 ) - quantum operations at symmetry point where de/dφ=0 (but also qubit circulating currents are zero) - use changing SQUID circulating current for automatic shift to a read-out bias where there is qubit current to measure

36 well-designed electromagnetic environment calculated T 1 = 100 µs T 2 = 20 µs operation time 1 ns SQUID shunted by large capacitance on chip

37 SQUID readout: reference trigger quantum operations pulsed bias current ~ 30 ns rise/fall time time only two possible outputs: SQUID switched to gap voltage SQUID still at V=0 pulse height adjusted to give ~50% switching switching probability (%)100 Isw pulse AW generator (V)

38 F (GHz) Φ ext / Φ 0

39 Rabi: microwave pulse with varying length trigger pulse length RF I b pulse ~50ns rise/fall time time

40 90 60 switching probability (%) A = 9 db A = 3 db Rabi frequency (MHz) A = -3 db RF pulse length (ns) RF amplitude, 10 A/20 (a.u.)

41 Switching probability (%) Psw (%) Psw (%) RF pulse length (ns) RF pulse length (ns) RF pulse length (ns)

42 measurement of relaxation time observed values: 40 ns to 300 µs one π pulse and read-out pulse delayed trigger π delay time Ib pulse time operation read-out switching probability (%) delay time (µs) 8.3 ns, A=-12dBm 6 ns, A=-9dBm 4.5 ns, A=-6dBm 3.2 ns, A=-3dBm ns, A=0 dbm exp fit of A=-12dBm T 1 = 870 ns

43 measurement T 2 time Ramsey 90 trigger π/2 π/2 I b pulse 80 Switching probability (%) A = 9 db F 0 = GHz f = 250 MHz time between two π/2 pulses (ns)

44 spin echo switching probability (%) π/2 π π/ position of π pulse (ns) E 10 =5.7 GHz δf=220 MHz T π =4.5 ns fixed time between π/2 pulses, π pulse shifting 30 ns decay of maximum spin echo signal versus time between π/2 pulses T 2 (higher frequencies) 30 ns Techo (ns)

45 Rabi with low number of measurements, single shot contains some information F=6.512 GHz A=-3 dbm switching probability (%) N- number of averaged events N=1 N=10 N= RF pulse length (ns)

46 switching probability [ % ] B=4.55 Gs F=5.63GHz 1 µs pulse No RF π-pulse (3 ns) pulse AWG TE3362 [ V ] dp/di b [ %/V ] No RF 1 µs pulse π-pulse (3 ns) pulse AWG TE3362 [ V ] Kouichi Semba, NTT, Delft TE3362 AWG

47 inductive readout, circuit MW in I MW M MW F M Φ q V DC 30 mk 4.2 K 300 K DC out R L m R b s M sq F squid R Rl l V out G 1 G 2 RF out L J C L J (Φ sq ) V in (RF+ +DC) ) in G 1 G 2 RF out in circuit parameters C = 12 pf L s ~ 2.5 nh R L = 820 W R b = 5.6 kw R m = 11 kw Q~40 Adrian Lupascu, Kees Harmans, Raymond Schouten

48 resonance curve at B=0: F res = MHz, Q = 33 V (mv) F (MHz) Phase (deg)

49 Typical spectroscopy curve A, mv B, mgs Measurements at step s1 Measurement scheme: 1µs MW followed by 2 µs readout pulse F MW =17 GHz, F IM =855 MHz, F res =838 MHz SQUID excitation: current amplitude less that 1/2I c Estimated sub-peaks period:750 MHz

50 relaxation The measurement is done with F=855 MHz T p =1µs, t mw =9.9 µs, F mw =17 GHz, A=9 dbm T r =86 +/- 12 us U, mv td, m s (preliminary) conclusion: relaxation time about 60 µs

51 T 1 T 2 (ns) τ φ and τ r (ns) T T field (Gs) Larmor frequency (GHz) E 1 -E o (GHz)

52 influence of bias current on T 1 and T 2 1 T 2 = 1 2T T ϕ T1 T2 Tphi T φ calculated from measured T 1 and T 2 time (ns) black: T 1 red: T Ibias (µa)

53 Ramsey in presence of transport current 90 Ib=2.841µA Ib=2.976µA 85 Ib=2.565µA 120 F=5.675GHz Pswitch (%) Pswitch (%) F=5.685GHz F=5.695GHz delay (microseconds) T 1 =70ns T 2 =120 ns delay btwn pulses (µs)

54 Patrice Bertet, Irinel Chiorescu

55 Larmor frequency (GHz) = GHz I q = 272 na spectroscopy peaks fit: E J /E C = E C =7.281 GHz α= Φ/Φ 0 gap GHz persistent current 272 na switching probability (%) (Q+3) /2 Q/2 Q/3 Q-3 3 Q Q+3 spectroscopy peaks Q: qubit 1,2,3 fotons 3: ω p squid 2.91 GHz Q±3: sidebands frequency (GHz)

56 60 55 ONE-PHOTON F mw =7.16GHz TWO-PHOTON F mw =3.62 GHz THREE-PHOTON F mw =2.40 GHz Switching probability (%) A = -14 dbm A = -18 dbm A = -15 dbm A = -17 dbm A = 0 dbm A = -1 dbm A = -22 dbm A = -19 dbm MW pulse length (ns) A = -2 dbm

57 0.30 One-photon Rabi frequency (GHz) one-photon Rabi frequency J 1 (b10 A/20 ) with b=0.92, =5.344 GHz A/20 (a.u.) Two-photon Rabi frequency (GHz) two-photon Rabi frequency J 2 (b10 A/20 ) with =5.344 GHz, b= A/20 (a.u.)

58 Switching probability (%) A Rabi oscillations A = 9.5 dbm A = -1 dbm A = -17 dbm MW pulse length (ns) Rabi frequency (GHz) B ω p A/20 (a.u.) C ω 1 (GHz)

59 flux qubit coupled to harmonic oscillator harmonic oscillator: measurement SQUID shunted by large external capacitance; Q about 150 strong coupling accidental ω p E 1 -E o

60 frequency [GHz] blue sideband red sideband squid resonance Φ/Φ ο

61 coherent oscillations of the coupled system qubit Larmor frequency 7.16 GHz plasma frequency : 2.91 GHz coupled system at GHz (blue sideband) switching probability (%) Rabi oscillations F=10.15 GHz, A=-5dBm 26 qubit: F 24 L =7.16 GHz squid: ω pl =2.91 GHz pulse length (ns) switching probability (%) Rabi oscillations F=10.15 GHz, A=3dBm qubit: F L =7.16 GHz squid: ω pl =2.91 GHz pulse length (ns)

62 1 0 switching probability (%) after a π pulse 00> 10> A after a 2π pulse 00> 00> B red-side band 3.58 GHz F L = 6.48 GHz blue-side band 9.48 GHz +13 dbm MW frequency (GHz) Rabi oscillations at F L =6.48 GHz 30 00> 10> 01> 11> pulse length (ns)

63 SQUID readout with qubit-dependent resonant pulse Rabi pulse bias current Switching probability (%) readout pulse 2 time Pulse 1 length (µs) improved visibility Switching probability(%) Frequency (GHz) increasing length of Rabi pulse

64 coupling of qubits 0.01 ph 4 MHz 2 ph 0.8 GHz 0.3 ph 0.1 GHz 10 ph 4 GHz 1D qubit chain

65 Hannes Majer Floor Pauw Alexander ter Haar

66 H = h 1 σ z1 + t 1 σ x1 + h 2 σ z2 + t 2 σ x2 +jσ z1 σ z 1 asymmetry in h: E J and area (shift of f=0.5) asymmetry t: E J, junction ratio α Energy (GHz) Energy (GHz) Φ-1/2Φ 0 (mφ 0 ) symmetric qubits Φ-1/2Φ 0 (mφ 0 ) asymmetric qubits

67 SQUID signal (a.u.) GHz 12 GHz 10 GHz 8 GHz 6 GHz Φ-1/2Φ 0 (mφ 0 )

68 20 Energy (GHz) Φ-1/2Φ 0 (mφ 0 )

69 results of fit I p1 = 512 na ± 6nA t 1 = 0.45 GHz ± 0.2 GHz I p2 = 392nA ± 5nA t 2 = 1.9 GHz ± 0.1 GHz sigma = % ± 0.004% (difference areas) j = 0.50 GHz ± 0.03 GHz (coupling strength) no transitions to 3rd excited state: low transition probability Matrix element T if T 01 T 02 T Φ-1/2Φ 0 (mφ 0 )

70 conclusions - flux qubit behaves quantum mechanically - coherent driving possible (to a certain extent) - decoherence partly due to circuit, partly to defects - coherent driving observed of 2-level system +harmonic oscillator

71 Delft flux qubits Kees Harmans Alexander ter Haar Irinel Chiorescu Adrian Lupascu Floor Pauw Patrice Bertet Jelle Plantenga Jonathan Eroms Yasunobu Nakamura (NEC) Kouichi Semba (NTT) funding: FOM, EU ARO, Kavli

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Demonstration of conditional gate operation using superconducting charge qubits

Demonstration of conditional gate operation using superconducting charge qubits Demonstration of conditional gate operation using superconducting charge qubits T. Yamamoto, Yu. A. Pashkin, * O. Astafiev, Y. Nakamura, & J. S. Tsai NEC Fundamental Research Laboratories, Tsukuba, Ibaraki

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Quantum non-demolition measurement of a superconducting two-level system

Quantum non-demolition measurement of a superconducting two-level system 1 Quantum non-demolition measurement of a superconducting two-level system A. Lupaşcu 1*, S. Saito 1,2, T. Picot 1, P. C. de Groot 1, C. J. P. M. Harmans 1 & J. E. Mooij 1 1 Quantum Transport Group, Kavli

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Introduction to Quantum Mechanics of Superconducting Electrical Circuits

Introduction to Quantum Mechanics of Superconducting Electrical Circuits Introduction to Quantum Mechanics of Superconducting lectrical Circuits What is superconductivity? What is a osephson junction? What is a Cooper Pair Box Qubit? Quantum Modes of Superconducting Transmission

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Decoherence in Josephson and Spin Qubits. Lecture 3: 1/f noise, two-level systems

Decoherence in Josephson and Spin Qubits. Lecture 3: 1/f noise, two-level systems Decoherence in Josephson and Spin Qubits Alexander Shnirman University of Innsbruck Lecture 3: 1/f noise, two-level systems 1. Phenomenology of 1/f noise 2. Microscopic models 3. Relation between T1 relaxation

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Entangled Macroscopic Quantum States in Two Superconducting Qubits

Entangled Macroscopic Quantum States in Two Superconducting Qubits Entangled Macroscopic Quantum States in Two Superconducting Qubits A. J. Berkley,H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, F. C. Wellstood

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Entanglement Control of Superconducting Qubit Single Photon System

Entanglement Control of Superconducting Qubit Single Photon System : Quantum omputing Entanglement ontrol of Superconducting Qubit Single Photon System Kouichi Semba Abstract If we could achieve full control of the entangled states of a quantum bit (qubit) interacting

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Superconducting Circuits and Quantum Information

Superconducting Circuits and Quantum Information Superconducting Circuits and Quantum Information Superconducting circuits can behave like atoms making transitions between two levels. Such circuits can test quantum mechanics at macroscopic scales and

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Rabi oscillations, Ramsey fringes and spin echoes in an electrical circuit

Rabi oscillations, Ramsey fringes and spin echoes in an electrical circuit Fortschr. Phys. 51, No. 4 5, 462 468 (2003) / DOI 10.1002/prop.200310063 Rabi oscillations, Ramsey fringes and spin echoes in an electrical circuit D. Vion 1, A. Aassime 1, A. Cottet 1,P.Joyez 1, H. Pothier

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

From SQUID to Qubit Flux 1/f Noise: The Saga Continues

From SQUID to Qubit Flux 1/f Noise: The Saga Continues From SQUID to Qubit Flux 1/f Noise: The Saga Continues Fei Yan, S. Gustavsson, A. Kamal, T. P. Orlando Massachusetts Institute of Technology, Cambridge, MA T. Gudmundsen, David Hover, A. Sears, J.L. Yoder,

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier

Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier PHYSICAL REVIEW B 76, 174516 27 Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier M. Metcalfe, E. Boaknin, V. Manucharyan, R. Vijay, I. Siddiqi, C. Rigetti, L. Frunzio,

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Josephson charge qubits: a brief review

Josephson charge qubits: a brief review Quantum Inf Process (2009) 8:55 80 DOI 10.1007/s11128-009-0101-5 Josephson charge qubits: a brief review Yu. A. Pashkin O. Astafiev T. Yamamoto Y. Nakamura J. S. Tsai Published online: 13 February 2009

More information

State tomography of capacitively shunted phase qubits with high fidelity. Abstract

State tomography of capacitively shunted phase qubits with high fidelity. Abstract State tomography of capacitively shunted phase qubits with high fidelity Matthias Steffen, M. Ansmann, R. McDermott, N. Katz, Radoslaw C. Bialczak, Erik Lucero, Matthew Neeley, E.M. Weig, A.N. Cleland,

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Topologicaly protected abelian Josephson qubits: theory and experiment.

Topologicaly protected abelian Josephson qubits: theory and experiment. Topologicaly protected abelian Josephson qubits: theory and experiment. B. Doucot (Jussieu) M.V. Feigelman (Landau) L. Ioffe (Rutgers) M. Gershenson (Rutgers) Plan Honest (pessimistic) review of the state

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay 400 nm Solid State Qubits (1) S D Daniel Esteve QUAN UM ELECT RONICS GROUP SPEC, CEA-Saclay From the Copenhagen school (1937) Max Planck front row, L to R : Bohr, Heisenberg, Pauli,Stern, Meitner, Ladenburg,

More information

dc measurements of macroscopic quantum levels in a superconducting qubit structure with a time-ordered meter

dc measurements of macroscopic quantum levels in a superconducting qubit structure with a time-ordered meter dc measurements of macroscopic quantum levels in a superconducting qubit structure with a time-ordered meter D. S. Crankshaw, K. Segall, D. Nakada, and T. P. Orlando Department of Electrical Engineering

More information

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

Single Microwave-Photon Detector based on Superconducting Quantum Circuits 17 th International Workshop on Low Temperature Detectors 19/July/2017 Single Microwave-Photon Detector based on Superconducting Quantum Circuits Kunihiro Inomata Advanced Industrial Science and Technology

More information

Superconducting phase qubits

Superconducting phase qubits Quantum Inf Process (2009) 8:81 103 DOI 10.1007/s11128-009-0105-1 Superconducting phase qubits John M. Martinis Published online: 18 February 2009 The Author(s) 2009. This article is published with open

More information

nano Josephson junctions Quantum dynamics in

nano Josephson junctions Quantum dynamics in Permanent: Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Cécile Naud Bernard Pannetier Quantum dynamics in nano Josephson junctions CNRS Université Joseph Fourier Institut Néel- LP2MC GRENOBLE

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Josephson-Junction Qubits

Josephson-Junction Qubits Josephson-Junction Qubits John Martinis Kristine Lang, Ray Simmonds, Robert McDermott, Sae Woo Nam, Jose Aumentado, Dustin Hite, Dave Pappas, NST Boulder Cristian Urbina, (CNRS/CEA Saclay) Qubit 8µm Atom

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 1 Apr 1999

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 1 Apr 1999 Coherent control of macroscopic quantum states in a single-cooper-pair box arxiv:cond-mat/9904003v1 [cond-mat.mes-hall] 1 Apr 1999 Y. Nakamura, Yu. A. Pashkin & J. S. Tsai NEC Fundamental Research Laboratories,

More information

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung Braunschweiger Supraleiter-Seminar Seminar Qubits: Supraleitende Quantenschaltungen (i) Grundlagen und Messung Jens Könemann, Bundesallee 100, 38116 Braunschweig Q Φ 26. Mai 0/ 16 Braunschweiger Supraleiter-Seminar

More information

Process Tomography of Quantum Memory in a Josephson Phase Qubit coupled to a Two-Level State

Process Tomography of Quantum Memory in a Josephson Phase Qubit coupled to a Two-Level State Process Tomography of Quantum Memory in a Josephson Phase Qubit coupled to a Two-Level State Matthew Neeley, M. Ansmann, Radoslaw C. Bialczak, M. Hofheinz, N. Katz, Erik Lucero, A. O Connell, H. Wang,

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Ĥ = Ĥ(p, q : Λ), Λ: control parameter { e.g. charge qubit Λ = V g gate voltage phase qubit Λ = I bias current

More information

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

Superconducting qubits

Superconducting qubits Superconducting qubits Franco Nori Physics Dept., The University of Michigan, Ann Arbor, USA Group members: Frontier Research System, RIKEN, Japan Yu-xi Liu, L.F. Wei, S. Ashhab, J.R. Johansson Collaborators:

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII Prospects for Superconducting ubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII uantum error correction and the future of solid state qubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII

More information

Implementation of a combined charge-phase quantum bit in a superconducting circuit

Implementation of a combined charge-phase quantum bit in a superconducting circuit Physica C 367 (2002) 197 203 www.elsevier.com/locate/physc Implementation of a combined charge-phase quantum bit in a superconducting circuit A. Cottet, D. Vion, A. Aassime, P. Joyez, D. Esteve *, M.H.

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics Lecture 3: 2-qubit

More information

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Quantum Integrated Circuits Quantum currents & voltages Microfabricated atoms Digital to Analog Converter

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

Magnetic Resonance in Quantum Information

Magnetic Resonance in Quantum Information Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

Ramsey fringe measurement of decoherence in a novel superconducting quantum bit based on the Cooper pair box

Ramsey fringe measurement of decoherence in a novel superconducting quantum bit based on the Cooper pair box Ramsey fringe measurement of decoherence in a novel superconducting quantum bit based on the Cooper pair box D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve and M.H. Devoret

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Josephson junction team Olivier Buisson, Bernard Pannetier,

More information

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France QUANTUM COMPUTING Part II Jean V. Bellissard Georgia Institute of Technology & Institut Universitaire de France QUANTUM GATES: a reminder Quantum gates: 1-qubit gates x> U U x> U is unitary in M 2 ( C

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Lecture 2, March 1, 2018

Lecture 2, March 1, 2018 Lecture 2, March 1, 2018 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

Lecture 2, March 2, 2017

Lecture 2, March 2, 2017 Lecture 2, March 2, 2017 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

arxiv: v1 [quant-ph] 31 May 2010

arxiv: v1 [quant-ph] 31 May 2010 Single-shot qubit readout in circuit Quantum Electrodynamics François 1 Mallet, Florian R. 1 Ong, Agustin 1 Palacios-Laloy, François 1 Nguyen, Patrice 1 Bertet, Denis 1 Vion * and Daniel 1 Esteve 1 Quantronics

More information

Decoherence in Josephson-junction qubits due to critical-current fluctuations

Decoherence in Josephson-junction qubits due to critical-current fluctuations PHYSICAL REVIEW B 70, 064517 (2004) Decoherence in Josephson-junction qubits due to critical-current fluctuations D. J. Van Harlingen, 1 T. L. Robertson, 2 B. L. T. Plourde, 2 P. A. Reichardt, 2 T. A.

More information

University of Groningen

University of Groningen University of Groningen Quantum Superposition of Macroscopic Persistent-Current States van der Wal, Caspar; Haar, ACJ ter; Wilhelm, FK; Schouten, RN; Harmans, CJPM; Orlando, TP; Lloyd, Seth; Mooij, JE

More information

Magnetic Resonance in Quantum

Magnetic Resonance in Quantum Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Quantum bits with Josephson junctions

Quantum bits with Josephson junctions Fizika Nizkikh Temperatur, 007, v. 33, No. 9, p. 957 98 Quantum bits with Josephson junctions (Review Article) G. Wendin and V.S. Shumeiko Department of Microtechnology and Nanoscience, Chalmers University

More information

Decoherence of a Quantum Bit Circuit

Decoherence of a Quantum Bit Circuit Séminaire Poincaré 1 (2005) 95 113 Séminaire Poincaré Decoherence of a Quantum Bit Circuit G. Ithier, F. Nguyen, E. Collin, N. Boulant, P.J. Meeson, P. Joyez, D. Vion, and D. Esteve Quantronics, SPEC,

More information

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations. QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING Philippe Grangier, Institut d'optique, Orsay 1. Quantum cryptography : from basic principles to practical realizations. 2. Quantum computing : a conceptual revolution

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Nathan K. Langford OVERVIEW Acknowledgements Ramiro Sagastizabal, Florian Luthi and the rest of the

More information

arxiv: v1 [cond-mat.mes-hall] 16 Oct 2009

arxiv: v1 [cond-mat.mes-hall] 16 Oct 2009 Coherent oscillations between classically separable quantum states of a superconducting loop Vladimir E. Manucharyan, 1 Jens Koch, 1 Markus Brink, 1 Leonid I. Glazman, 1 and Michel H. Devoret 1 1 Departments

More information

What is it all about?

What is it all about? Dephasing, decoherence,... What is it all about? Consider a spinor (total phase is irrelevant) Ê Y = y eij ˆ Á Ë y Ø e -ij Average components of the spin can be expressed through the absolute values of

More information

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology Towards quantum metrology with N00N states enabled by ensemble-cavity interaction Hao Zhang Monika Schleier-Smith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MIT-Harvard

More information

Synthesising arbitrary quantum states in a superconducting resonator

Synthesising arbitrary quantum states in a superconducting resonator Synthesising arbitrary quantum states in a superconducting resonator Max Hofheinz 1, H. Wang 1, M. Ansmann 1, Radoslaw C. Bialczak 1, Erik Lucero 1, M. Neeley 1, A. D. O Connell 1, D. Sank 1, J. Wenner

More information

Quantum Optics and Quantum Informatics FKA173

Quantum Optics and Quantum Informatics FKA173 Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:30-1:30. Examiners: Jonas Bylander (070-53 44 39) and Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) 2) 3) Readout

More information

Φ / Resonant frequency (GHz) exp. theory Supplementary Figure 2: Resonant frequency ω PO

Φ / Resonant frequency (GHz) exp. theory Supplementary Figure 2: Resonant frequency ω PO 1 a 1 mm b d SQUID JJ c 30 µm 30 µm 10 µm Supplementary Figure 1: Images of the parametric phase-locked oscillator. a, Optical image of the device. The λ/4-type coplanar waveguide resonator is made of

More information