FYS Vår 2016 (Kondenserte fasers fysikk)

Size: px
Start display at page:

Download "FYS Vår 2016 (Kondenserte fasers fysikk)"

Transcription

1 FYS Vår 2016 (Kodeserte fasers fysikk) Pesum: Itroductio to Solid State Physics by Charles Kittel (Chapters 1-9 ad 17, 18, 20) Adrej Kuzetsov delivery address: Departmet of Physics, PB 1048 Blider, 0316 OSLO Tel: , e-post: adrej.kuzetsov@fys.uio.o visitig address: MiNaLab, Gaustadalee 23a

2

3 Lecture: P-N juctio Repetitio: itrisic ad extrisic semicoductors Charge carrier trasport mechaisms diffusio ad drift Bad bedig as a fuctio of carrier cocetratio P-N juctio i equilibrium Gauss ad Poisso equatios for the depletio regio P-N juctio with applied exteral bias

4 Lecture: P-N juctio Repetitio: itrisic ad extrisic semicoductors Charge carrier trasport mechaisms diffusio ad drift Bad bedig as a fuctio of carrier cocetratio P-N juctio i equilibrium Gauss ad Poisso equatios for the depletio regio P-N juctio with applied exteral bias

5 Itrisic ad extrisic semicoductors

6 Summary of Charge Carriers Itrisic ad extrisic semicoductors CH2 Basic Physics of Semicoductors 6

7 Lecture: P-N juctio Repetitio: itrisic ad extrisic semicoductors Charge carrier trasport mechaisms diffusio ad drift Bad bedig as a fuctio of carrier cocetratio P-N juctio i equilibrium Gauss ad Poisso equatios for the depletio regio P-N juctio with applied exteral bias

8 Diffusio of charge carriers Particles diffuse from regios of higher cocetratio to regios of lower cocetratio regio, due to radom thermal motio.

9 Diffusio of charge carriers J,diff qd d dx J p,diff qd p dp dx D is the diffusio costat, or diffusivity.

10 Drift of charge carriers v h p v e The process i which charge particles move because of a electric field is called drift. Charge particles will move at a velocity that is proportioal to the electric field.

11 Diffusio drift of charge carriers J J J p J J, drift J, diff q ε qd d dx J p J p, drift J p, diff qp ε p qd p dp dx

12 Lecture: P-N juctio Repetitio: itrisic ad extrisic semicoductors Charge carrier trasport mechaisms diffusio ad drift Bad bedig as a fuctio of carrier cocetratio P-N juctio i equilibrium Gauss ad Poisso equatios for the depletio regio P-N juctio with applied exteral bias

13 Bad bedig as a fuctio of carrier cocetratio The positio of F relative to the bad edges is determied by the carrier cocetratios, which is determied by the et dopat cocetratio. I equilibrium F is costat; therefore, the bad-edge eergies vary with positio i a o-uiformly doped semicoductor: c (x) F v (x)

14 The ratio of carrier desities at two poits depeds expoetially o the potetial differece betwee these poits: 1 2 i2 i i 1 i 2 i2 i1 i 2 F i2 i 1 F i1 i 1 i1 F l 1 l l l Therefore l Similarly, l l q kt q V V kt kt kt kt kt Bad bedig as a fuctio of carrier cocetratio

15 Bad bedig as a fuctio of carrier cocetratio N e c ( c F )/ kt c (x) d dx Nc kt e ( c F ) / kt dc dx F v (x) kt d dx c kt qε

16 Lecture: P-N juctio Repetitio: itrisic ad extrisic semicoductors Charge carrier trasport mechaisms diffusio ad drift Bad bedig as a fuctio of carrier cocetratio P-N juctio i equilibrium Gauss ad Poisso equatios for the depletio regio P-N juctio with applied exteral bias

17 P-N juctios i equilibrium <= N-type, high F <= P-type, low F - = fixed ioized acceptors = fixed ioized doors = mobile holes, p - = mobile electros, What happes whe these badstructures come ito cotact? Fermi eergy must be costat at equilibrium, so bads must bed ear the iterface Far from the iterface, badstructures are coserved

18 P-N juctios Time < 0i equilibrium P-type piece N-type piece Time < 0, i.e. before the cotact is established

19 P-N juctios i equilibrium At time = 0, slam the two pieces together Time =0, the cotact is just established

20 P-N juctios i equilibrium Hole gradiet Questio: How l J p, diffusio = -qd p dp/dx = curret right, holes right lectro gradiet J,diffusio = -qd d/dx = curret right, electros right left

21 P-N juctios i equilibrium Hole gradiet Questio: How log the diffusio J p, diffusio = -qd p dp/dx = curret right, holes right will og o!? lectro gradiet J,diffusio = -qd d/dx = curret right, electros right left

22 P-N juctios i equilibrium Whe the juctio is first formed, mobile carriers diffuse across the juctio (due to the cocetratio gradiets) Holes diffuse from the p side to the side, leavig behid egatively charged immobile acceptor ios lectros diffuse from the side to the p side, leavig behid positively charged immobile door ios acceptor ios p A regio depleted of mobile carriers is formed at the juctio. The space charge due to immobile ios i the depletio regio establishes a electric field that opposes carrier diffusio. door ios

23 P-N juctios i equilibrium

24 P-N juctios i equilibrium

25 P-N juctios i equilibrium

26 P-N juctios i equilibrium Depletio Regio

27 How big is the built-i voltage? Right i F Left F i bi qv ) ( ) ( P side N side i a Left F i kt i a a N kt e N N p F i l ) ( ) ( i d Right i F kt i d d N kt e N N i F l ) ( ) ( P-N juctios i equilibrium

28 P-N juctios i equilibrium How big is the built-i voltage? V bi kt q N l a i kt q N l d i V bi kt q NaN l 2 i d N a acceptor level o the p side N d door level o the side

29 Oe side of the juctio is heavily doped, so that the Fermi level is close to the bad edge. e.g. p - juctio (heavy B implat ito lightly doped Si substrate) i d G bi i D Right i F G V i Left F i N q kt q V N kt l 2 l ) ( 2 / ) ( P-N juctios i equilibrium

30 P-N juctios i equilibrium "P - N" => N a >> N d "P - N " => N a << N d

31 P-N juctios i equilibrium Thermal geeratio p-type ND J p, drift J, drift J, diff J p, diff -type N A Thermal geeratio q bi

32 Lecture: P-N juctio Repetitio: itrisic ad extrisic semicoductors Charge carrier trasport mechaisms diffusio ad drift Bad bedig as a fuctio of carrier cocetratio P-N juctio i equilibrium Gauss ad Poisso equatios for the depletio regio P-N juctio with applied exteral bias

33 Gauss ad Poisso equatios for the depletio regio Charge is stored i the depletio regio. acceptor ios door ios p eutral p regio depletio regio eutral regio charge desity (C/cm 3 ) distace

34 Gauss ad Poisso equatios for the depletio regio Gauss s law describes the relatioship betwee the charge desity ad the electric field. S 1 ecl da dv V Q d dx 1 x ( x) ( x0 ) ( x) dx x0 Poisso s equatio describes the relatioship betwee the electric field distributio ad the electric potetial x 0 x ( x) ( x ) ( x) dx Gauss ad Poisso equatios i oe dimesio 2 d x d x x ( ) ( ) ( ) 2 dx dx 0

35 Gauss ad Poisso equatios for the depletio regio 0 x qn qn a d x p0 0 x x 0 x 0 ad 0 x 0 x x, x x p 0 0 ρ o (x) p qn d ( ) qna ( ) ( 0) 0 x x xpo xpo x s x o ( x) qnd ( x) dx ( xo) ( xo x) x 0 s qnd 0 ( x) ( x xo) (0 x x ) o s s p -x po -x po -qn a 0 (x) x o x o x Gauss s Law x (0) 0 qn a s x po qnd x s o

36 Gauss ad Poisso equatios for the depletio regio p 0 (x) -x po x o x Poisso s quatio 0 ( 0 ) qn a x s po qn d s x o qn 2 d s x 2 o qn a x 2 s 2 po 0 (x) -x po x o x

37 Lecture: P-N juctio Repetitio: itrisic ad extrisic semicoductors Charge carrier trasport mechaisms diffusio ad drift Bad bedig as a fuctio of carrier cocetratio P-N juctio i equilibrium Gauss ad Poisso equatios for the depletio regio P-N juctio with applied exteral bias

38 P-N juctio with applied exteral bias V D p The quasi-eutral p ad regios have low resistivity, whereas the depletio regio has high resistivity. Thus, whe a exteral voltage V D is applied across the diode, almost all of this voltage is dropped across the depletio regio. If V D > 0 (forward bias), the potetial barrier to carrier diffusio is reduced by the applied voltage. If V D < 0 (reverse bias), the potetial barrier to carrier diffusio is icreased by the applied voltage.

39 P-N juctio with applied exteral bias p 0 (x) -x po x o -x p x x Built-i potetial bi = qn d x 2 s 2 o qn a x 2 s 2 po 0 (x) 0 ( 0 ) qn a x Higher barrier leads to less curret! s po bi -qv D qn d x s o bi -x p -x po x o x x

40 P-N juctio with applied exteral bias p 0 (x) -x po -x p x x o x Built-i potetial bi = qn d x 2 s 2 o qn a x 2 s 2 po 0 ( 0 ) qn a x Lower barrier lead to more curret! 0 (x) s po qn d x s o bi -qv D bi -x po -x p x x o x

41 P-N juctio with applied exteral bias As V D icreases, the potetial barrier to carrier diffusio across the juctio decreases*, ad curret icreases expoetially. V D > 0 p The carriers that diffuse across the juctio become miority carriers i the quasi-eutral regios; they the recombie with majority carriers, dyig out with distace. I D (Amperes) I I e D S qvd kt ( 1) V D (Volts) * Hece, the width of the depletio regio decreases.

42 P-N juctio with applied exteral bias As V D icreases, the potetial barrier to carrier diffusio across the juctio icreases*; thus, o carriers diffuse across the juctio. V D < 0 p A very small amout of reverse curret (I D < 0) does flow, due to miority carriers diffusig from the quasi-eutral regios ito the depletio regio ad driftig across the juctio. I D (Amperes) V D (Volts) * Hece, the width of the depletio regio icreases.

43 P-N juctio with applied exteral bias Diode I-V Curve I I d s I ( V ) I d d S Id IS e qv d kt 1 1 qv d kt Diode IV relatio is a expoetial fuctio This expoetial is due to the Boltzma distributio of carriers versus eergy For reverse bias the curret saturatios to the drift curret due to miority carriers

44 P-N juctio with applied exteral bias Whe a large reverse bias voltage is applied, breakdow occurs ad curret flows through the diode icreases dramatically.

45 P-N juctio with applied exteral bias Whe a large reverse bias voltage is applied, breakdow occurs ad curret flows through the diode icreases dramatically. Zeer breakdow or tuelig mechaism, occurs i a highly doped p- juctio, while the coductio ad valace bads o opposite sides of the juctio become so close durig the reverse-bias that the electros o the p-side ca tuel from directly VB ito the CB o the -side. Avalache breakdow mechaism occurs whe electros ad holes movig through the depletio regio ad acquire sufficiet eergy from the electric field to break a bod i.e. create electro-hole pairs by collidig with atomic electros withi the depletio regio. These ewly created electros ad holes move i opposite directios due to the electric field ad thereby add to the existig reverse bias curret.

Semiconductors a brief introduction

Semiconductors a brief introduction Semicoductors a brief itroductio Bad structure from atom to crystal Fermi level carrier cocetratio Dopig Readig: (Sedra/Smith 7 th editio) 1.7-1.9 Trasport (drift-diffusio) Hyperphysics (lik o course homepage)

More information

Lecture 10: P-N Diodes. Announcements

Lecture 10: P-N Diodes. Announcements EECS 15 Sprig 4, Lecture 1 Lecture 1: P-N Diodes EECS 15 Sprig 4, Lecture 1 Aoucemets The Thursday lab sectio will be moved a hour later startig this week, so that the TA s ca atted lecture i aother class

More information

1. pn junction under bias 2. I-Vcharacteristics

1. pn junction under bias 2. I-Vcharacteristics Lecture 10 The p Juctio (II) 1 Cotets 1. p juctio uder bias 2. I-Vcharacteristics 2 Key questios Why does the p juctio diode exhibit curret rectificatio? Why does the juctio curret i forward bias icrease

More information

The aim of the course is to give an introduction to semiconductor device physics. The syllabus for the course is:

The aim of the course is to give an introduction to semiconductor device physics. The syllabus for the course is: Semicoductor evices Prof. Rb Robert tat A. Taylor The aim of the course is to give a itroductio to semicoductor device physics. The syllabus for the course is: Simple treatmet of p- juctio, p- ad p-i-

More information

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context EECS 5 Sprig 4, Lecture 9 Lecture 9: Diffusio, Electrostatics review, ad Capacitors EECS 5 Sprig 4, Lecture 9 Cotext I the last lecture, we looked at the carriers i a eutral semicoductor, ad drift currets

More information

5.1 Introduction 5.2 Equilibrium condition Contact potential Equilibrium Fermi level Space charge at a junction 5.

5.1 Introduction 5.2 Equilibrium condition Contact potential Equilibrium Fermi level Space charge at a junction 5. 5.1 troductio 5.2 Equilibrium coditio 5.2.1 Cotact otetial 5.2.2 Equilibrium Fermi level 5.2.3 Sace charge at a juctio 5.3 Forward- ad Reverse-biased juctios; steady state coditios 5.3.1 Qualitative descritio

More information

Chapter 2 Motion and Recombination of Electrons and Holes

Chapter 2 Motion and Recombination of Electrons and Holes Chapter 2 Motio ad Recombiatio of Electros ad Holes 2.1 Thermal Eergy ad Thermal Velocity Average electro or hole kietic eergy 3 2 kt 1 2 2 mv th v th 3kT m eff 3 23 1.38 10 JK 0.26 9.1 10 1 31 300 kg

More information

Introduction to Solid State Physics

Introduction to Solid State Physics Itroductio to Solid State Physics Class: Itegrated Photoic Devices Time: Fri. 8:00am ~ 11:00am. Classroom: 資電 206 Lecturer: Prof. 李明昌 (Mig-Chag Lee) Electros i A Atom Electros i A Atom Electros i Two atoms

More information

Chapter 2 Motion and Recombination of Electrons and Holes

Chapter 2 Motion and Recombination of Electrons and Holes Chapter 2 Motio ad Recombiatio of Electros ad Holes 2.1 Thermal Motio 3 1 2 Average electro or hole kietic eergy kt mv th 2 2 v th 3kT m eff 23 3 1.38 10 JK 0.26 9.1 10 1 31 300 kg K 5 7 2.310 m/s 2.310

More information

Basic Physics of Semiconductors

Basic Physics of Semiconductors Chater 2 Basic Physics of Semicoductors 2.1 Semicoductor materials ad their roerties 2.2 PN-juctio diodes 2.3 Reverse Breakdow 1 Semicoductor Physics Semicoductor devices serve as heart of microelectroics.

More information

Two arbitrary semiconductors generally have different electron affinities, bandgaps, and effective DOSs. An arbitrary example is shown below.

Two arbitrary semiconductors generally have different electron affinities, bandgaps, and effective DOSs. An arbitrary example is shown below. 9. Heterojuctios Semicoductor heterojuctios A heterojuctio cosists of two differet materials i electrical equilibrium separated by a iterface. There are various reasos these are eeded for solar cells:

More information

Basic Physics of Semiconductors

Basic Physics of Semiconductors Chater 2 Basic Physics of Semicoductors 2.1 Semicoductor materials ad their roerties 2.2 PN-juctio diodes 2.3 Reverse Breakdow 1 Semicoductor Physics Semicoductor devices serve as heart of microelectroics.

More information

Diode in electronic circuits. (+) (-) i D

Diode in electronic circuits. (+) (-) i D iode i electroic circuits Symbolic reresetatio of a iode i circuits ode Cathode () (-) i ideal diode coducts the curret oly i oe directio rrow shows directio of the curret i circuit Positive olarity of

More information

Intrinsic Carrier Concentration

Intrinsic Carrier Concentration Itrisic Carrier Cocetratio I. Defiitio Itrisic semicoductor: A semicoductor material with o dopats. It electrical characteristics such as cocetratio of charge carriers, deped oly o pure crystal. II. To

More information

Schottky diodes: I-V characteristics

Schottky diodes: I-V characteristics chottky diodes: - characteristics The geeral shape of the - curve i the M (-type) diode are very similar to that i the p + diode. However the domiat curret compoets are decidedly differet i the two diodes.

More information

Semiconductors. PN junction. n- type

Semiconductors. PN junction. n- type Semicoductors. PN juctio We have reviously looked at the electroic roerties of itrisic, - tye ad - time semicoductors. Now we will look at what haes to the electroic structure ad macroscoic characteristics

More information

Doped semiconductors: donor impurities

Doped semiconductors: donor impurities Doped semicoductors: door impurities A silico lattice with a sigle impurity atom (Phosphorus, P) added. As compared to Si, the Phosphorus has oe extra valece electro which, after all bods are made, has

More information

Electrical Resistance

Electrical Resistance Electrical Resistace I + V _ W Material with resistivity ρ t L Resistace R V I = L ρ Wt (Uit: ohms) where ρ is the electrical resistivity Addig parts/billio to parts/thousad of dopats to pure Si ca chage

More information

IV. COMPARISON of CHARGE-CARRIER POPULATION at EACH SIDE of the JUNCTION V. FORWARD BIAS, REVERSE BIAS

IV. COMPARISON of CHARGE-CARRIER POPULATION at EACH SIDE of the JUNCTION V. FORWARD BIAS, REVERSE BIAS Fall-2003 PH-31 A. La Rosa JUNCTIONS I. HARNESSING ELECTRICAL CONDUCTIVITY IN SEMICONDUCTOR MATERIALS Itrisic coductivity (Pure silico) Extrisic coductivity (Silico doed with selected differet atoms) II.

More information

Lecture 2. Dopant Compensation

Lecture 2. Dopant Compensation Lecture 2 OUTLINE Bac Semicoductor Phycs (cot d) (cotd) Carrier ad uo PN uctio iodes Electrostatics Caacitace Readig: Chater 2.1 2.2 EE105 Srig 2008 Lecture 1, 2, Slide 1 Prof. Wu, UC Berkeley oat Comesatio

More information

Nonequilibrium Excess Carriers in Semiconductors

Nonequilibrium Excess Carriers in Semiconductors Lecture 8 Semicoductor Physics VI Noequilibrium Excess Carriers i Semicoductors Noequilibrium coditios. Excess electros i the coductio bad ad excess holes i the valece bad Ambiolar trasort : Excess electros

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fudametals ENS 345 Lecture Course by Alexader M. Zaitsev alexader.zaitsev@csi.cuy.edu Tel: 718 982 2812 4N101b 1 Thermal motio of electros Average kietic eergy of electro or hole (thermal

More information

Nanomaterials for Photovoltaics (v11) 6. Homojunctions

Nanomaterials for Photovoltaics (v11) 6. Homojunctions Naomaterials for Photovoltaics (v11) 1 6. Homojuctios / juctio diode The most imortat device cocet for the coversio of light ito electrical curret is the / juctio diode. We first cosider isolated ad regios

More information

Solar Photovoltaic Technologies

Solar Photovoltaic Technologies Solar Photovoltaic Techologies ecture-17 Prof. C.S. Solaki Eergy Systems Egieerig T Bombay ecture-17 Cotets Brief summary of the revious lecture Total curret i diode: Quatitative aalysis Carrier flow uder

More information

Semiconductor Electronic Devices

Semiconductor Electronic Devices Semicoductor lectroic evices Course Codes: 3 (UG) 818 (PG) Lecturer: Professor thoy O eill mail: athoy.oeill@cl.ac.uk ddress: 4.31, Merz Court ims: To provide a specialist kowledge of semicoductor devices.

More information

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium Lecture 6 Semicoductor physics IV The Semicoductor i Equilibrium Equilibrium, or thermal equilibrium No exteral forces such as voltages, electric fields. Magetic fields, or temperature gradiets are actig

More information

EE105 Fall 2015 Microelectronic Devices and Circuits. pn Junction

EE105 Fall 2015 Microelectronic Devices and Circuits. pn Junction EE105 Fall 015 Microelectroic Devices ad Circuits Prof. Mig C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH 6-1 Juctio -tye semicoductor i cotact with -tye Basic buildig blocks of semicoductor devices

More information

Complementi di Fisica Lecture 24

Complementi di Fisica Lecture 24 Comlemeti di Fisica - Lecture 24 18-11-2015 Comlemeti di Fisica Lecture 24 Livio Laceri Uiversità di Trieste Trieste, 18-11-2015 I this lecture Cotets Drift of electros ad holes i ractice (umbers ): coductivity

More information

2.CMOS Transistor Theory

2.CMOS Transistor Theory CMOS LSI esig.cmos rasistor heory Fu yuzhuo School of microelectroics,sju Itroductio omar fadhil,baghdad outlie PN juctio priciple CMOS trasistor itroductio Ideal I- characteristics uder static coditios

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fudametals ES 345 Lecture ourse by Alexader M. Zaitsev alexader.zaitsev@csi.cuy.edu Tel: 718 98 81 4101b ollege of State Islad / UY Dopig semicoductors Doped semicoductors are semicoductors,

More information

p/n junction Isolated p, n regions: no electric contact, not in equilibrium E vac E i E A E F E V E C E D

p/n junction Isolated p, n regions: no electric contact, not in equilibrium E vac E i E A E F E V E C E D / juctio Isolated, regios: o electric cotact, ot i equilibrium E vac E C E C E E F E i E i E F E E V E V / juctio I equilibrium, the Fermi level must be costat. Shift the eergy levels i ad regios u/dow

More information

ECEN Microelectronics. Semiconductor Physics and P/N junctions 2/05/19

ECEN Microelectronics. Semiconductor Physics and P/N junctions 2/05/19 ECEN 3250 Microelectroics Semicoductor Physics ad P/N juctios 2/05/19 Professor J. Gopiath Professor J. Gopiath Uiversity of Colorado at Boulder Microelectroics Sprig 2014 Overview Eergy bads Atomic eergy

More information

Overview of Silicon p-n Junctions

Overview of Silicon p-n Junctions Overview of Silico - Juctios r. avid W. Graham West irgiia Uiversity Lae eartmet of omuter Sciece ad Electrical Egieerig 9 avid W. Graham 1 - Juctios (iodes) - Juctios (iodes) Fudametal semicoductor device

More information

Semiconductor Statistical Mechanics (Read Kittel Ch. 8)

Semiconductor Statistical Mechanics (Read Kittel Ch. 8) EE30 - Solid State Electroics Semicoductor Statistical Mechaics (Read Kittel Ch. 8) Coductio bad occupatio desity: f( E)gE ( ) de f(e) - occupatio probability - Fermi-Dirac fuctio: g(e) - desity of states

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistor (JT) was iveted i 948 at ell Telephoe Laboratories Sice 97, the high desity ad low power advatage of the MOS techology steadily eroded the JT s early domiace.

More information

Lecture 5: HBT DC Properties. Basic operation of a (Heterojunction) Bipolar Transistor

Lecture 5: HBT DC Properties. Basic operation of a (Heterojunction) Bipolar Transistor Lecture 5: HT C Properties asic operatio of a (Heterojuctio) ipolar Trasistor Abrupt ad graded juctios ase curret compoets Quasi-Electric Field Readig Guide: 143-16: 17-177 1 P p ++.53 Ga.47 As.53 Ga.47

More information

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8 CS 15 Fall 23, Lecture 8 Lecture 8: Capacitor ad PN Juctio Prof. Nikejad Lecture Outlie Review of lectrotatic IC MIM Capacitor No-Liear Capacitor PN Juctio Thermal quilibrium lectrotatic Review 1 lectric

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Itegrated Circuit Devices Professor Ali Javey 9/04/2007 Semicoductor Fudametals Lecture 3 Readig: fiish chapter 2 ad begi chapter 3 Aoucemets HW 1 is due ext Tuesday, at the begiig of the class.

More information

Heterojunctions. Heterojunctions

Heterojunctions. Heterojunctions Heterojuctios Heterojuctios Heterojuctio biolar trasistor SiGe GaAs 4 96, 007-008, Ch. 9 3 Defiitios eφ s eχ s lemet Ge, germaium lectro affiity, χ (ev) 4.13 Si, silico 4.01 GaAs, gallium arseide 4.07

More information

Lecture 3. Electron and Hole Transport in Semiconductors

Lecture 3. Electron and Hole Transport in Semiconductors Lecture 3 lectro ad Hole Trasort i Semicoductors I this lecture you will lear: How electros ad holes move i semicoductors Thermal motio of electros ad holes lectric curret via lectric curret via usio Semicoductor

More information

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite Basic Cocepts of Electricity oltage E Curret I Ohm s Law Resistace R E = I R 1 Electric Fields A electric field applies a force to a charge Force o positive charge is i directio of electric field, egative

More information

SOLUTIONS: ECE 606 Homework Week 7 Mark Lundstrom Purdue University (revised 3/27/13) e E i E T

SOLUTIONS: ECE 606 Homework Week 7 Mark Lundstrom Purdue University (revised 3/27/13) e E i E T SOUIONS: ECE 606 Homework Week 7 Mark udstrom Purdue Uiversity (revised 3/27/13) 1) Cosider a - type semicoductor for which the oly states i the badgap are door levels (i.e. ( E = E D ). Begi with the

More information

Carriers in a semiconductor diffuse in a carrier gradient by random thermal motion and scattering from the lattice and impurities.

Carriers in a semiconductor diffuse in a carrier gradient by random thermal motion and scattering from the lattice and impurities. Diffusio of Carriers Wheever there is a cocetratio gradiet of mobile articles, they will diffuse from the regios of high cocetratio to the regios of low cocetratio, due to the radom motio. The diffusio

More information

Digital Integrated Circuit Design

Digital Integrated Circuit Design Digital Itegrated Circuit Desig Lecture 4 PN Juctio -tye -tye Adib Abrishamifar EE Deartmet IUST Diffusio (Majority Carriers) Cotets PN Juctio Overview PN Juctios i Equilibrium Forward-biased PN Juctios

More information

Summary of pn-junction (Lec )

Summary of pn-junction (Lec ) Lecture #12 OUTLNE Diode aalysis ad applicatios cotiued The MOFET The MOFET as a cotrolled resistor Pich-off ad curret saturatio Chael-legth modulatio Velocity saturatio i a short-chael MOFET Readig Howe

More information

Electrical conductivity in solids. Electronics and Microelectronics AE4B34EM. Splitting of discrete levels (Si) Covalent bond. Chemical Atomic bonds

Electrical conductivity in solids. Electronics and Microelectronics AE4B34EM. Splitting of discrete levels (Si) Covalent bond. Chemical Atomic bonds Electrical coductivity i solids Eergy bad structure lico atoms (the most commo semicoductor material) Electroics ad Microelectroics AE4B34EM 3. lecture Semicoductors N juctio Diodes Electros otetial eergy

More information

MOSFET IC 3 V DD 2. Review of Lecture 1. Transistor functions: switching and modulation.

MOSFET IC 3 V DD 2. Review of Lecture 1. Transistor functions: switching and modulation. Review of Lecture Lecture / Trasistor fuctios: switchig ad modulatio. MOSFT 3 Si I 3 DD How voltage alied to Gate cotrols curret betwee Source ad Drai? 3 Source Gate Drai 3 oltage? urret? -Si Al -Si -Si*

More information

EE3310 Class notes Part 3. Solid State Electronic Devices - EE3310 Class notes Transistors

EE3310 Class notes Part 3. Solid State Electronic Devices - EE3310 Class notes Transistors EE3310 Class otes Part 3 Versio: Fall 2002 These class otes were origially based o the hadwritte otes of Larry Overzet. It is expected that they will be modified (improved?) as time goes o. This versio

More information

Quiz #3 Practice Problem Set

Quiz #3 Practice Problem Set Name: Studet Number: ELEC 3908 Physical Electroics Quiz #3 Practice Problem Set? Miutes March 11, 2016 - No aids excet a o-rogrammable calculator - ll questios must be aswered - ll questios have equal

More information

Introduction to Semiconductor Devices and Circuit Model

Introduction to Semiconductor Devices and Circuit Model Itroductio to Semicoductor Devices ad Circuit Model Readig: Chater 2 of Howe ad Sodii Electrical Resistace I + V _ W homogeeous samle t L Resistace R V I L = ρ Wt (Uits: Ω) where ρ is the resistivity (Uits:

More information

ECE 442. Spring, Lecture - 4

ECE 442. Spring, Lecture - 4 ECE 44 Power Semicoductor Devices ad Itegrated circuits Srig, 6 Uiversity of Illiois at Chicago Lecture - 4 ecombiatio, geeratio, ad cotiuity equatio 1. Geeratio thermal, electrical, otical. ecombiatio

More information

Nanostructured solar cell

Nanostructured solar cell aostructured solar cell bulk heterojuctio hybrid/dssc/dsh/et 3D cell e - coductor h + coductor TiO dye or Ps h + coductor TiO orgaic hybrid solar cell: polymer/dye/tio iorgaic polymer/polymer: MDMO-PPV/PCEPV

More information

Valence band (VB) and conduction band (CB) of a semiconductor are separated by an energy gap E G = ev.

Valence band (VB) and conduction band (CB) of a semiconductor are separated by an energy gap E G = ev. 9.1 Direct ad idirect semicoductors Valece bad (VB) ad coductio bad (CB) of a semicoductor are searated by a eergy ga E G = 0.1... 4 ev. Direct semicoductor (e.g. GaAs): Miimum of the CB ad maximum of

More information

Monolithic semiconductor technology

Monolithic semiconductor technology Moolithic semicoductor techology 1 Ageda Semicoductor techology: Backgroud o Silico ad Gallium Arseide (GaAs) roerties. Diode, BJT ad FET devices. Secod order effect ad High frequecy roerties. Modelig

More information

ECE606: Solid State Devices Lecture 19 Bipolar Transistors Design

ECE606: Solid State Devices Lecture 19 Bipolar Transistors Design 606: Solid State Devices Lecture 9 ipolar Trasistors Desig Gerhard Klimeck gekco@purdue.edu Outlie ) urret gai i JTs ) osideratios for base dopig 3) osideratios for collector dopig 4) termediate Summary

More information

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University Mark udstrom Sprig 2015 SOUTIONS: ECE 305 Homework: Week 5 Mark udstrom Purdue Uiversity The followig problems cocer the Miority Carrier Diffusio Equatio (MCDE) for electros: Δ t = D Δ + G For all the

More information

ECE606: Solid State Devices Lecture 14 Electrostatics of p-n junctions

ECE606: Solid State Devices Lecture 14 Electrostatics of p-n junctions ECE606: Solid State evices Lecture 14 Electrostatics of - juctios Gerhard Klimeck gekco@urdue.edu Outlie 1) Itroductio to - juctios ) rawig bad-diagrams 3) ccurate solutio i equilibrium 4) Bad-diagram

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 006 Microelectroic Devices ad Circuits Prof. Ja M. Rabaey (ja@eecs) Lecture 3: Semicoductor Basics (ctd) Semicoductor Maufacturig Overview Last lecture Carrier velocity ad mobility Drift currets

More information

Lecture #1 Nasser S. Alzayed.

Lecture #1 Nasser S. Alzayed. Lecture #1 Nasser S. Alzayed alzayed@ksu.edu.sa Chapter 6: Free Electro Fermi Gas Itroductio We ca uderstad may physical properties of metals, ad ot oly of the simple metals, i terms of the free electro

More information

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it. Benha University Faculty of Engineering Shoubra Electrical Engineering Department First Year communications. Answer all the following questions Illustrate your answers with sketches when necessary. The

More information

Introduction to Microelectronics

Introduction to Microelectronics The iolar Juctio Trasistor Physical Structure of the iolar Trasistor Oeratio of the NPN Trasistor i the Active Mode Trasit Time ad Diffusio aacitace Ijectio fficiecy ad ase Trasort Factor The bers-moll

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/18/2007 P Junctions Lecture 1 Reading: Chapter 5 Announcements For THIS WEEK OLY, Prof. Javey's office hours will be held on Tuesday, Sept 18 3:30-4:30

More information

Photodiodes. 1. Current and Voltage in an Illuminated Junction 2. Solar Cells

Photodiodes. 1. Current and Voltage in an Illuminated Junction 2. Solar Cells Photodiodes 1. Curret ad Voltae i a llumiated Juctio 2. olar Cells Diode Equatio D (e.) ( e qv / kt 1) V D o ( e qv / kt 1) Particle Flow uder Reversed Bias Particle Flow uder llumiatio W -tye -tye Otical

More information

There are 7 crystal systems and 14 Bravais lattices in 3 dimensions.

There are 7 crystal systems and 14 Bravais lattices in 3 dimensions. EXAM IN OURSE TFY40 Solid State Physics Moday 0. May 0 Time: 9.00.00 DRAFT OF SOLUTION Problem (0%) Itroductory Questios a) () Primitive uit cell: The miimum volume cell which will fill all space (without

More information

Photo-Voltaics and Solar Cells. Photo-Voltaic Cells

Photo-Voltaics and Solar Cells. Photo-Voltaic Cells Photo-Voltaics ad Solar Cells this lecture you will lear: Photo-Voltaic Cells Carrier Trasort, Curret, ad Efficiecy Solar Cells Practical Photo-Voltaics ad Solar Cells ECE 407 Srig 009 Farha aa Corell

More information

Micron School of Materials Science and Engineering. Problem Set 7 Solutions

Micron School of Materials Science and Engineering. Problem Set 7 Solutions Problem Set 7 Solutios 1. I class, we reviewed several dispersio relatios (i.e., E- diagrams or E-vs- diagrams) of electros i various semicoductors ad a metal. Fid a dispersio relatio that differs from

More information

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1 Diodes mplest nonlinear circuit element Basic operation sets the foundation for Bipolar Junction Transistors (BJTs) Also present in Field Effect Transistors (FETs) Ideal diode characteristic anode cathode

More information

Metal Gate. Insulator Semiconductor

Metal Gate. Insulator Semiconductor MO Capacitor MO Metal- Oxide- emicoductor MO actually refers to Metal ilico Diide ilico Other material systems have similar MI structures formed by Metal Isulator emicoductor The capacitor itself forms

More information

Bohr s Atomic Model Quantum Mechanical Model

Bohr s Atomic Model Quantum Mechanical Model September 7, 0 - Summary - Itroductio to Atomic Theory Bohr s Atomic Model Quatum Mechaical Model 3- Some Defiitio 3- Projects Temperature Pressure Website Subject Areas Plasma is a Mixture of electros,

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 emiconductor Device Physics Lecture 8 http://zitompul.wordpress.com 2 0 1 3 emiconductor Device Physics 2 M Contacts and chottky Diodes 3 M Contact The metal-semiconductor (M) contact plays a very important

More information

ELECTRICAL PROPEORTIES OF SOLIDS

ELECTRICAL PROPEORTIES OF SOLIDS DO PHYSICS ONLINE ELECTRICAL PROPEORTIES OF SOLIDS ATOMIC STRUCTURE ucleus: rotos () & electros electros (-): electro cloud h h DE BROGLIE wave model of articles mv ELECTRONS IN ATOMS eergy levels i atoms

More information

ECE606: Solid State Devices Lecture 12 (from17) High Field, Mobility Hall Effect, Diffusion

ECE606: Solid State Devices Lecture 12 (from17) High Field, Mobility Hall Effect, Diffusion ECE66: Solid State Devices Lecture 1 (from17) High Field, Mobility Hall Effect, Diffusio Gerhard Klimeck gekco@purdue.edu Outlie 1) High Field Mobility effects ) Measuremet of mobility 3) Hall Effect for

More information

MODULE 1.2 CARRIER TRANSPORT PHENOMENA

MODULE 1.2 CARRIER TRANSPORT PHENOMENA MODULE 1.2 CARRIER TRANSPORT PHENOMENA Carrier Trasort Pheoeo Carrier drift: obility, coductivity ad velocity saturatio Carrier Diffusio: diffusio curret desity, total curret desity The Eistei relatio

More information

Monograph On Semi Conductor Diodes

Monograph On Semi Conductor Diodes ISSN (ONLINE) : 395-695X ISSN (PRINT) : 395-695X Available olie at www.ijarbest.com Iteratioal Joural of Advaced Research i Biology, Ecology, Sciece ad Techology (IJARBEST) Vol. 1, Issue 3, Jue 015 Moograh

More information

Forward and Reverse Biased Junctions

Forward and Reverse Biased Junctions TEMARIO DEL CURSO DE FUNDAMENTOS DE FÍSICA DE SEMICONDUCTORES 1. Itroducció a Física Electróica 1.1 Proiedades de cristales y crecimieto de semicoductores 1. Átomos y electroes 1.3 Badas de eergía y ortadores

More information

Applied Electronic I. Lecture Note By Dereje K. Information: Critical. Source: Apple. Ref.: Apple. Ref.

Applied Electronic I. Lecture Note By Dereje K. Information:   Critical. Source: Apple. Ref.: Apple. Ref. Applied Electroic I Lecture Note By Dereje K. Iformatio: http://www.faculty.iubreme.de/dkipp/ Source: Apple Ref.: Apple Ref.: IBM Critical 10-8 10-7 10-6 10-5 10-4 10-3 10-10 -1 1 10 1 dimesio (m) Ref.:

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon

More information

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

EE415/515 Fundamentals of Semiconductor Devices Fall 2012 11/18/1 EE415/515 Fudametals of Semicoductor Devices Fall 1 ecture 16: PVs, PDs, & EDs Chater 14.1-14.6 Photo absortio Trasaret or oaque Photo eergy relatioshis c hc 1.4 m E E E i ev 11/18/1 ECE 415/515

More information

Lecture-4 Junction Diode Characteristics

Lecture-4 Junction Diode Characteristics 1 Lecture-4 Junction Diode Characteristics Part-II Q: Aluminum is alloyed into n-type Si sample (N D = 10 16 cm 3 ) forming an abrupt junction of circular cross-section, with an diameter of 0.02 in. Assume

More information

( )! N D ( x) ) and equilibrium

( )! N D ( x) ) and equilibrium ECE 66: SOLUTIONS: ECE 66 Homework Week 8 Mark Lundstrom March 7, 13 1) The doping profile for an n- type silicon wafer ( N D = 1 15 cm - 3 ) with a heavily doped thin layer at the surface (surface concentration,

More information

Chapter 5 Carrier transport phenomena

Chapter 5 Carrier transport phenomena Chater 5 Carrier trasort heomea W.K. Che lectrohysics, NCTU Trasort The et flow of electros a holes i material is calle trasort Two basic trasort mechaisms Drift: movemet of charge ue to electric fiels

More information

Lecture 15 - The pn Junction Diode (I) I-V Characteristics. November 1, 2005

Lecture 15 - The pn Junction Diode (I) I-V Characteristics. November 1, 2005 6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 15-1 Lecture 15 - The pn Junction Diode (I) I-V Characteristics November 1, 2005 Contents: 1. pn junction under bias 2. I-V characteristics

More information

Lecture III-2: Light propagation in nonmagnetic

Lecture III-2: Light propagation in nonmagnetic A. La Rosa Lecture Notes ALIED OTIC Lecture III2: Light propagatio i omagetic materials 2.1 urface ( ), volume ( ), ad curret ( j ) desities produced by arizatio charges The objective i this sectio is

More information

Diffusivity and Mobility Quantization. in Quantum Electrical Semi-Ballistic. Quasi-One-Dimensional Conductors

Diffusivity and Mobility Quantization. in Quantum Electrical Semi-Ballistic. Quasi-One-Dimensional Conductors Advaces i Applied Physics, Vol., 014, o. 1, 9-13 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/aap.014.3110 Diffusivity ad Mobility Quatizatio i Quatum Electrical Semi-Ballistic Quasi-Oe-Dimesioal

More information

Excess carrier behavior in semiconductor devices

Excess carrier behavior in semiconductor devices Ecess carrier behavior i semicoductor devices Virtually all semicoductor devices i active mode ivolve the geeratio, decay, or movemet of carriers from oe regio to aother Carrier oulatio (, ) that is differet

More information

Solids - types. correlates with bonding energy

Solids - types. correlates with bonding energy Solids - types MOLCULAR. Set of sigle atoms or molecules boud to adjacet due to weak electric force betwee eutral objects (va der Waals). Stregth depeds o electric dipole momet No free electros poor coductors

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Lecture 17 - p-n Junction. October 11, Ideal p-n junction in equilibrium 2. Ideal p-n junction out of equilibrium

Lecture 17 - p-n Junction. October 11, Ideal p-n junction in equilibrium 2. Ideal p-n junction out of equilibrium 6.72J/3.43J - Integrated Microelectronic Devices - Fall 22 Lecture 17-1 Lecture 17 - p-n Junction October 11, 22 Contents: 1. Ideal p-n junction in equilibrium 2. Ideal p-n junction out of equilibrium

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 Semiconductor Device Physics Lecture 3 http://zitompul.wordpress.com 2 0 1 3 Semiconductor Device Physics 2 Three primary types of carrier action occur inside a semiconductor: Drift: charged particle

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

Parasitic Resistance L R W. Polysilicon gate. Drain. contact L D. V GS,eff R S R D. Drain

Parasitic Resistance L R W. Polysilicon gate. Drain. contact L D. V GS,eff R S R D. Drain Parasitic Resistace G Polysilico gate rai cotact V GS,eff S R S R S, R S, R + R C rai Short Chael Effects Chael-egth Modulatio Equatio k ( V V ) GS T suggests that the trasistor i the saturatio mode acts

More information

International Journal of Advance Engineering and Research Development APPLICATION OF MONTE CARLO METHOD FOR DEVICES SIMULATION

International Journal of Advance Engineering and Research Development APPLICATION OF MONTE CARLO METHOD FOR DEVICES SIMULATION Scietific Joural of Impact Factor (SJIF): 5.71 Iteratioal Joural of Advace Egieerig ad Research Developmet Volume 5, Issue 05, May -2018 e-issn (O): 2348-4470 p-issn (P): 2348-6406 APPLICATION OF MONTE

More information

Complementi di Fisica Lectures 25-26

Complementi di Fisica Lectures 25-26 Comlemeti di Fisica Lectures 25-26 Livio Laceri Uiversità di Trieste Trieste, 14/15-12-2015 i these lectures Itroductio No or quasi-equilibrium: excess carriers ijectio Processes for geeratio ad recombiatio

More information

Lecture 7 - Carrier Drift and Diffusion (cont.) February 20, Non-uniformly doped semiconductor in thermal equilibrium

Lecture 7 - Carrier Drift and Diffusion (cont.) February 20, Non-uniformly doped semiconductor in thermal equilibrium 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 7-1 Lecture 7 - Carrier Drift and Diffusion (cont.) February 20, 2007 Contents: 1. Non-uniformly doped semiconductor in thermal equilibrium

More information

Lecture 8 - Carrier Drift and Diffusion (cont.) September 21, 2001

Lecture 8 - Carrier Drift and Diffusion (cont.) September 21, 2001 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 8-1 Lecture 8 - Carrier Drift and Diffusion (cont.) September 21, 2001 Contents: 1. Non-uniformly doped semiconductor in thermal equilibrium

More information

SECTION 2 Electrostatics

SECTION 2 Electrostatics SECTION Electrostatics This sectio, based o Chapter of Griffiths, covers effects of electric fields ad forces i static (timeidepedet) situatios. The topics are: Electric field Gauss s Law Electric potetial

More information

ELECTRONICS AND COMMUNICATION ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-I

ELECTRONICS AND COMMUNICATION ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-I ELECTRONICS AND COMMUNICATION ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-I From (1991 018) Office : F-16, (Lower Basemet), Katwaria Sarai, New Delhi-110016 Phoe : 011-65064 Mobile : 81309090, 9711853908

More information

Lecture 2. OUTLINE Basic Semiconductor Physics (cont d) PN Junction Diodes. Reading: Chapter Carrier drift and diffusion

Lecture 2. OUTLINE Basic Semiconductor Physics (cont d) PN Junction Diodes. Reading: Chapter Carrier drift and diffusion Lecture 2 OUTLIE Basic Semiconductor Physics (cont d) Carrier drift and diffusion P unction Diodes Electrostatics Caacitance Reading: Chater 2.1 2.2 EE105 Sring 2008 Lecture 1, 2, Slide 1 Prof. Wu, UC

More information

CHAPTER 3 DIODES. NTUEE Electronics L.H. Lu 3-1

CHAPTER 3 DIODES. NTUEE Electronics L.H. Lu 3-1 CHPTER 3 OES Chater Outlie 3.1 The deal iode 3. Termial Characteristics of Juctio iodes 3.3 Modelig the iode Forward Characteristics 3.4 Oeratio i the Reverse Breakdow Regio-Zeer iodes 3.5 Rectifier Circuits

More information

PN Junction and MOS structure

PN Junction and MOS structure PN Junction and MOS structure Basic electrostatic equations We will use simple one-dimensional electrostatic equations to develop insight and basic understanding of how semiconductor devices operate Gauss's

More information