Lecture 3. Electron and Hole Transport in Semiconductors

Size: px
Start display at page:

Download "Lecture 3. Electron and Hole Transport in Semiconductors"

Transcription

1 Lecture 3 lectro ad Hole Trasort i Semicoductors I this lecture you will lear: How electros ad holes move i semicoductors Thermal motio of electros ad holes lectric curret via lectric curret via usio Semicoductor resistors Review: lectros ad Holes i Semicoductors holes + electros A Silico crystal lattice + As + + As + Door imurity atoms + There are two tyes of mobile charges i semicoductors: electros ad holes I a itrisic (or udoed) semicoductor electro desity equals hole desity Semicoductors ca be doed i two ways: N-doig: to icrease the electro desity P-doig: to icrease the hole desity 1

2 Thermal Motio of lectros ad Holes I thermal equilibrium carriers (i.e. electros or holes) are ot stadig still but are movig aroud i the crystal lattice because of their thermal eergy The root-mea-square velocity of electros ca be foud by equatig their kietic eergy to the thermal eergy: 1 mvth v th 1 KT KT m I ure Silico at room temerature: 7 v th ~ 10 cm s Thermal Motio of lectros ad Holes I thermal equilibrium carriers (i.e. electros or holes) are ot stadig still but are movig aroud i the crystal lattice ad udergoig collisios with: vibratig Silico atoms with other electros ad holes with doat atoms (doors or accetors) ad other imurity atoms Mea time betwee collisios = c I betwee two successive collisios electros (or holes) move with a average velocity which is called the thermal velocity = v th I ure Silico, v c th cm s s 0. 1 s Browia Motio Mea distace traveled betwee collisios is called the mea free ath vth c I ure Silico, cm 0.01m

3 Drift: Motio of lectros Uder a Alied lectric Field Silico slab L + - V V L Force o a electro because of the electric field = F = -q The electro moves i the directio oosite to the alied field with a costat velocity equal to v d The electro velocity v d is roortioal to the electric field stregth vd vd The costat is called the electro mobility. It has uits: cm cm I ure Silico, 1500 Drift: Motio of Holes Uder a Alied lectric Field Silico slab L + - V V L Force o a hole because of the electric field = F = q The hole moves i the directio of the alied field with a costat velocity equal to v d The hole velocity v d is roortioal to the electric field stregth vd vd The costat is called the hole mobility. It has uits: cm I ure Silico, 500 cm 3

4 Derivatio of xressios for Mobility lectros: Force o a electro because of the electric field F q F Acceleratio of the electro q a m m Sice the mea time betwee collisios is c, the acceleratio lasts oly for a time eriod of c before a collisio comletely destroys electro s velocity q So i time c electro s velocity reaches a value a c c m This is the average velocity of the electro, i.e. Comarig with vd we get, Holes: Similarly for holes oe gets, q c m q c m v d q c m Secial ote: Masses of electros ad holes (m ad m ) i Solids are ot the 31 same as the mass of electros i free sace which equals kg Mobility Vs Doig More doig (-tye of -tye) meas more frequet collisios with charged door ad accetor imurity atoms ad this lowers the carrier mobility Mobility (cm /V-s) Doat cocetratio (1/cm 3 ) Note: Doig i the above figure ca either be -tye or -tye 4

5 Drift Curret Desity of lectros Cosider electros movig uder a alied electric field: v d Flux Desity: Flux desity is the umber of articles crossig a uit area surface er secod It has uits cm - -s -1 Desity: Velocity: v d Uit area surface Flux desity: v d Area Time Volume = 1 x (v d x 1) Drift Curret Desity of lectros lectros Drift Curret Desity: lectro flux desity from v d lectro curret desity J is, Check directios v d J J q electro flux desity q v d q vd J q J has uits: Coulombs Ams cm - s cm 5

6 Drift Curret Desity of Holes Holes Drift Curret Desity: The hole curret desity is J, J q hole flux q v d q Check directios vd v d J J q J has uits: Coulombs Ams cm - s cm Coductivity ad Resistivity Total Drift Curret Desity: The total curret desity J is the sum of J ad J J J q J The quatity is the coductivity of the semicoductor: q Coductivity describes how much curret flows whe a electric field is alied. Aother related quatity is the resistivity which is the iverse of the coductivity, 1 Uits of coductivity are: Ohm -1 -cm -1 or -1 -cm -1 or S-cm -1 Uits of resistivity are: Ohm-cm or -cm or S -1 -cm 6

7 For a resistor we kow that, V I R We also kow that, I J A A V A A V L L xamle: A Semicoductor Resistor 1 Area A L L 1 R where 1 q A A L I Silico slab - V + Lessos: Kowig electro ad hole desities ad mobilities, oe ca calculate the electrical resistace of semicoductors -doig or -doig ca be used to chage the coductivity of semicoductors by orders of magitudes Diffusio Diffusio of ik i a glass beaker Why does usio hae? 7

8 Diffusio ad Diffusivity There is aother mechaism by which curret flows i semicoductors. Suose the electro desity iside a semicoductor is ot uiform i sace, as show below (x) electro flux i +x directio electro flux i -x directio d x sloe x Sice the electros move about radomly i all directios (Browia motio), as time goes o more electros will move from regios of higher electro desity to regios of lower electro desity tha the electros that move from regios of lower electro desity to regios of higher electro desity d x Net electro flux desity i +x directio d x D The costat D is called the usivity of electros (uits: cm -s -1 ) Diffusio Curret Desity lectros Diffusio Curret Desity: lectro flux desity from usio lectro usio curret desity J J q electro flux desity d x q D d D is, Holes Diffusio Curret Desity: d x Hole flux desity from usio D Hole usio curret desity J q hole flux d x q D J is, x Check directios x lec. flux Check directios x Hole flux J x J x J ad J Coulombs Ams has uits cm - s cm 8

9 istei Relatios istei worked o other thigs besides the theory of relativity.. We itroduced two material costats related to carrier trasort: 1) Mobility ) Diffusivity Both are coected with the trasort of carriers (electros or holes) It turs out that their values are related by the istei relatioshis istei Relatio for lectros: D K T q istei Relatio for Holes: D K T q xamle: I ure Silico, 1500 cm 500 cm This imlies, D 37.5 cm s D 1.5 cm s K is the Boltzma costat ad its value is: 1.38x10-3 Joules K KT has a value equal to Volts at room temerature (at 300 o K) q Total lectro ad Hole Curret Desities Total electro ad hole curret desities is the sum of ad usive comoets J lectros: x J x J x q x x q D d x Holes: J x J x J x q x x q D d x lectric currets are drive by electric fields ad also by carrier desity gradiets 9

10 Thermal quilibrium - I There caot be ay et electro curret or et hole curret i thermal equilibrium what does this imly?? Cosider electros first: x J x J x q x x q D J 0 d o x o d log ca also be writte as: o x q x KT Sice the electric field is mius the gradiet of the otetial: x We have: d logo x q KT qx The solutio of the above eretial equatio is: o x costat e KT But what is that costat i the above equatio??? We have: o x Thermal quilibrium - II qx costat e KT Note: oe ca oly measure otetial ereces ad ot the absolute values of otetials Covetio: The otetial of ure itrisic Silico is used as the referece value ad assumed to be equal to zero. q x So for itrisic Silico, costat KT o x e costat x But we already kow that i itrisic Silico, o i So it must be that, costat i Ad we get the fial aswer, o x qx KT i e Cosider Holes Now: Oe ca reeat the above aalysis for holes ad obtai: o x qx KT i e Check: o x o x i 10

11 Potetial of Doed Semicoductors What are the values of otetials i N-doed ad P-doed semicoductors?? N-doed Semicoductors (doig desity is N d ): The otetial i -doed semicoductors is deoted by: x o Nd q x Nd i e KT KT N d log q i P-doed Semicoductors (doig desity is N a ): KT N a log q i xamle: Suose, 17-3 N d 10 cm ad 10 i 10 cm KT N log d 0.4 Volts q i The otetial i -doed semicoductors is deoted by: o x N xamle: a q x Suose, N KT 17-3 a i e N a 10 cm ad i cm KT N log a 0.4 Volts q i

Complementi di Fisica Lecture 24

Complementi di Fisica Lecture 24 Comlemeti di Fisica - Lecture 24 18-11-2015 Comlemeti di Fisica Lecture 24 Livio Laceri Uiversità di Trieste Trieste, 18-11-2015 I this lecture Cotets Drift of electros ad holes i ractice (umbers ): coductivity

More information

Introduction to Semiconductor Devices and Circuit Model

Introduction to Semiconductor Devices and Circuit Model Itroductio to Semicoductor Devices ad Circuit Model Readig: Chater 2 of Howe ad Sodii Electrical Resistace I + V _ W homogeeous samle t L Resistace R V I L = ρ Wt (Uits: Ω) where ρ is the resistivity (Uits:

More information

Nonequilibrium Excess Carriers in Semiconductors

Nonequilibrium Excess Carriers in Semiconductors Lecture 8 Semicoductor Physics VI Noequilibrium Excess Carriers i Semicoductors Noequilibrium coditios. Excess electros i the coductio bad ad excess holes i the valece bad Ambiolar trasort : Excess electros

More information

Basic Physics of Semiconductors

Basic Physics of Semiconductors Chater 2 Basic Physics of Semicoductors 2.1 Semicoductor materials ad their roerties 2.2 PN-juctio diodes 2.3 Reverse Breakdow 1 Semicoductor Physics Semicoductor devices serve as heart of microelectroics.

More information

Carriers in a semiconductor diffuse in a carrier gradient by random thermal motion and scattering from the lattice and impurities.

Carriers in a semiconductor diffuse in a carrier gradient by random thermal motion and scattering from the lattice and impurities. Diffusio of Carriers Wheever there is a cocetratio gradiet of mobile articles, they will diffuse from the regios of high cocetratio to the regios of low cocetratio, due to the radom motio. The diffusio

More information

Basic Physics of Semiconductors

Basic Physics of Semiconductors Chater 2 Basic Physics of Semicoductors 2.1 Semicoductor materials ad their roerties 2.2 PN-juctio diodes 2.3 Reverse Breakdow 1 Semicoductor Physics Semicoductor devices serve as heart of microelectroics.

More information

Semiconductors. PN junction. n- type

Semiconductors. PN junction. n- type Semicoductors. PN juctio We have reviously looked at the electroic roerties of itrisic, - tye ad - time semicoductors. Now we will look at what haes to the electroic structure ad macroscoic characteristics

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fudametals ENS 345 Lecture Course by Alexader M. Zaitsev alexader.zaitsev@csi.cuy.edu Tel: 718 982 2812 4N101b 1 Thermal motio of electros Average kietic eergy of electro or hole (thermal

More information

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context EECS 5 Sprig 4, Lecture 9 Lecture 9: Diffusio, Electrostatics review, ad Capacitors EECS 5 Sprig 4, Lecture 9 Cotext I the last lecture, we looked at the carriers i a eutral semicoductor, ad drift currets

More information

Chapter 2 Motion and Recombination of Electrons and Holes

Chapter 2 Motion and Recombination of Electrons and Holes Chapter 2 Motio ad Recombiatio of Electros ad Holes 2.1 Thermal Eergy ad Thermal Velocity Average electro or hole kietic eergy 3 2 kt 1 2 2 mv th v th 3kT m eff 3 23 1.38 10 JK 0.26 9.1 10 1 31 300 kg

More information

IV. COMPARISON of CHARGE-CARRIER POPULATION at EACH SIDE of the JUNCTION V. FORWARD BIAS, REVERSE BIAS

IV. COMPARISON of CHARGE-CARRIER POPULATION at EACH SIDE of the JUNCTION V. FORWARD BIAS, REVERSE BIAS Fall-2003 PH-31 A. La Rosa JUNCTIONS I. HARNESSING ELECTRICAL CONDUCTIVITY IN SEMICONDUCTOR MATERIALS Itrisic coductivity (Pure silico) Extrisic coductivity (Silico doed with selected differet atoms) II.

More information

Chapter 2 Motion and Recombination of Electrons and Holes

Chapter 2 Motion and Recombination of Electrons and Holes Chapter 2 Motio ad Recombiatio of Electros ad Holes 2.1 Thermal Motio 3 1 2 Average electro or hole kietic eergy kt mv th 2 2 v th 3kT m eff 23 3 1.38 10 JK 0.26 9.1 10 1 31 300 kg K 5 7 2.310 m/s 2.310

More information

MODULE 1.2 CARRIER TRANSPORT PHENOMENA

MODULE 1.2 CARRIER TRANSPORT PHENOMENA MODULE 1.2 CARRIER TRANSPORT PHENOMENA Carrier Trasort Pheoeo Carrier drift: obility, coductivity ad velocity saturatio Carrier Diffusio: diffusio curret desity, total curret desity The Eistei relatio

More information

Intrinsic Carrier Concentration

Intrinsic Carrier Concentration Itrisic Carrier Cocetratio I. Defiitio Itrisic semicoductor: A semicoductor material with o dopats. It electrical characteristics such as cocetratio of charge carriers, deped oly o pure crystal. II. To

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Itegrated Circuit Devices Professor Ali Javey 9/04/2007 Semicoductor Fudametals Lecture 3 Readig: fiish chapter 2 ad begi chapter 3 Aoucemets HW 1 is due ext Tuesday, at the begiig of the class.

More information

Electrical Resistance

Electrical Resistance Electrical Resistace I + V _ W Material with resistivity ρ t L Resistace R V I = L ρ Wt (Uit: ohms) where ρ is the electrical resistivity Addig parts/billio to parts/thousad of dopats to pure Si ca chage

More information

Chapter 5 Carrier transport phenomena

Chapter 5 Carrier transport phenomena Chater 5 Carrier trasort heomea W.K. Che lectrohysics, NCTU Trasort The et flow of electros a holes i material is calle trasort Two basic trasort mechaisms Drift: movemet of charge ue to electric fiels

More information

Lecture 10: P-N Diodes. Announcements

Lecture 10: P-N Diodes. Announcements EECS 15 Sprig 4, Lecture 1 Lecture 1: P-N Diodes EECS 15 Sprig 4, Lecture 1 Aoucemets The Thursday lab sectio will be moved a hour later startig this week, so that the TA s ca atted lecture i aother class

More information

Doped semiconductors: donor impurities

Doped semiconductors: donor impurities Doped semicoductors: door impurities A silico lattice with a sigle impurity atom (Phosphorus, P) added. As compared to Si, the Phosphorus has oe extra valece electro which, after all bods are made, has

More information

5.1 Introduction 5.2 Equilibrium condition Contact potential Equilibrium Fermi level Space charge at a junction 5.

5.1 Introduction 5.2 Equilibrium condition Contact potential Equilibrium Fermi level Space charge at a junction 5. 5.1 troductio 5.2 Equilibrium coditio 5.2.1 Cotact otetial 5.2.2 Equilibrium Fermi level 5.2.3 Sace charge at a juctio 5.3 Forward- ad Reverse-biased juctios; steady state coditios 5.3.1 Qualitative descritio

More information

Lecture 2. Dopant Compensation

Lecture 2. Dopant Compensation Lecture 2 OUTLINE Bac Semicoductor Phycs (cot d) (cotd) Carrier ad uo PN uctio iodes Electrostatics Caacitace Readig: Chater 2.1 2.2 EE105 Srig 2008 Lecture 1, 2, Slide 1 Prof. Wu, UC Berkeley oat Comesatio

More information

Diode in electronic circuits. (+) (-) i D

Diode in electronic circuits. (+) (-) i D iode i electroic circuits Symbolic reresetatio of a iode i circuits ode Cathode () (-) i ideal diode coducts the curret oly i oe directio rrow shows directio of the curret i circuit Positive olarity of

More information

ELECTRICAL PROPEORTIES OF SOLIDS

ELECTRICAL PROPEORTIES OF SOLIDS DO PHYSICS ONLINE ELECTRICAL PROPEORTIES OF SOLIDS ATOMIC STRUCTURE ucleus: rotos () & electros electros (-): electro cloud h h DE BROGLIE wave model of articles mv ELECTRONS IN ATOMS eergy levels i atoms

More information

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University Mark udstrom Sprig 2015 SOUTIONS: ECE 305 Homework: Week 5 Mark udstrom Purdue Uiversity The followig problems cocer the Miority Carrier Diffusio Equatio (MCDE) for electros: Δ t = D Δ + G For all the

More information

EE105 Fall 2015 Microelectronic Devices and Circuits. pn Junction

EE105 Fall 2015 Microelectronic Devices and Circuits. pn Junction EE105 Fall 015 Microelectroic Devices ad Circuits Prof. Mig C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH 6-1 Juctio -tye semicoductor i cotact with -tye Basic buildig blocks of semicoductor devices

More information

MOSFET IC 3 V DD 2. Review of Lecture 1. Transistor functions: switching and modulation.

MOSFET IC 3 V DD 2. Review of Lecture 1. Transistor functions: switching and modulation. Review of Lecture Lecture / Trasistor fuctios: switchig ad modulatio. MOSFT 3 Si I 3 DD How voltage alied to Gate cotrols curret betwee Source ad Drai? 3 Source Gate Drai 3 oltage? urret? -Si Al -Si -Si*

More information

Electrical conductivity in solids. Electronics and Microelectronics AE4B34EM. Splitting of discrete levels (Si) Covalent bond. Chemical Atomic bonds

Electrical conductivity in solids. Electronics and Microelectronics AE4B34EM. Splitting of discrete levels (Si) Covalent bond. Chemical Atomic bonds Electrical coductivity i solids Eergy bad structure lico atoms (the most commo semicoductor material) Electroics ad Microelectroics AE4B34EM 3. lecture Semicoductors N juctio Diodes Electros otetial eergy

More information

Photo-Voltaics and Solar Cells. Photo-Voltaic Cells

Photo-Voltaics and Solar Cells. Photo-Voltaic Cells Photo-Voltaics ad Solar Cells this lecture you will lear: Photo-Voltaic Cells Carrier Trasort, Curret, ad Efficiecy Solar Cells Practical Photo-Voltaics ad Solar Cells ECE 407 Srig 009 Farha aa Corell

More information

FYS Vår 2016 (Kondenserte fasers fysikk)

FYS Vår 2016 (Kondenserte fasers fysikk) FYS3410 - Vår 2016 (Kodeserte fasers fysikk) http://www.uio.o/studier/emer/matat/fys/fys3410/v16/idex.html Pesum: Itroductio to Solid State Physics by Charles Kittel (Chapters 1-9 ad 17, 18, 20) Adrej

More information

SOLUTIONS: ECE 606 Homework Week 7 Mark Lundstrom Purdue University (revised 3/27/13) e E i E T

SOLUTIONS: ECE 606 Homework Week 7 Mark Lundstrom Purdue University (revised 3/27/13) e E i E T SOUIONS: ECE 606 Homework Week 7 Mark udstrom Purdue Uiversity (revised 3/27/13) 1) Cosider a - type semicoductor for which the oly states i the badgap are door levels (i.e. ( E = E D ). Begi with the

More information

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium Lecture 6 Semicoductor physics IV The Semicoductor i Equilibrium Equilibrium, or thermal equilibrium No exteral forces such as voltages, electric fields. Magetic fields, or temperature gradiets are actig

More information

Hole Drift Mobility, Hall Coefficient and Coefficient of Transverse Magnetoresistance in Heavily Doped p-type Silicon

Hole Drift Mobility, Hall Coefficient and Coefficient of Transverse Magnetoresistance in Heavily Doped p-type Silicon Iteratioal Joural of Pure ad Alied Physics ISSN 973-776 Volume 6 Number (). 9 Research Idia Publicatios htt://www.riublicatio.com/ija.htm Hole Drift Mobility Hall Coefficiet ad Coefficiet of rasverse Magetoresistace

More information

Monograph On Semi Conductor Diodes

Monograph On Semi Conductor Diodes ISSN (ONLINE) : 395-695X ISSN (PRINT) : 395-695X Available olie at www.ijarbest.com Iteratioal Joural of Advaced Research i Biology, Ecology, Sciece ad Techology (IJARBEST) Vol. 1, Issue 3, Jue 015 Moograh

More information

Overview of Silicon p-n Junctions

Overview of Silicon p-n Junctions Overview of Silico - Juctios r. avid W. Graham West irgiia Uiversity Lae eartmet of omuter Sciece ad Electrical Egieerig 9 avid W. Graham 1 - Juctios (iodes) - Juctios (iodes) Fudametal semicoductor device

More information

ECE 442. Spring, Lecture - 4

ECE 442. Spring, Lecture - 4 ECE 44 Power Semicoductor Devices ad Itegrated circuits Srig, 6 Uiversity of Illiois at Chicago Lecture - 4 ecombiatio, geeratio, ad cotiuity equatio 1. Geeratio thermal, electrical, otical. ecombiatio

More information

Solar Photovoltaic Technologies

Solar Photovoltaic Technologies Solar Photovoltaic Techologies ecture-17 Prof. C.S. Solaki Eergy Systems Egieerig T Bombay ecture-17 Cotets Brief summary of the revious lecture Total curret i diode: Quatitative aalysis Carrier flow uder

More information

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite Basic Cocepts of Electricity oltage E Curret I Ohm s Law Resistace R E = I R 1 Electric Fields A electric field applies a force to a charge Force o positive charge is i directio of electric field, egative

More information

Valence band (VB) and conduction band (CB) of a semiconductor are separated by an energy gap E G = ev.

Valence band (VB) and conduction band (CB) of a semiconductor are separated by an energy gap E G = ev. 9.1 Direct ad idirect semicoductors Valece bad (VB) ad coductio bad (CB) of a semicoductor are searated by a eergy ga E G = 0.1... 4 ev. Direct semicoductor (e.g. GaAs): Miimum of the CB ad maximum of

More information

Semiconductors a brief introduction

Semiconductors a brief introduction Semicoductors a brief itroductio Bad structure from atom to crystal Fermi level carrier cocetratio Dopig Readig: (Sedra/Smith 7 th editio) 1.7-1.9 Trasport (drift-diffusio) Hyperphysics (lik o course homepage)

More information

SPEC/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS PAPER 1 SPECIMEN PAPER. 45 minutes INSTRUCTIONS TO CANDIDATES

SPEC/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS PAPER 1 SPECIMEN PAPER. 45 minutes INSTRUCTIONS TO CANDIDATES SPEC/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS STANDARD LEVEL PAPER 1 SPECIMEN PAPER 45 miutes INSTRUCTIONS TO CANDIDATES Do ot ope this examiatio paper util istructed to do so. Aswer all the questios. For each questio,

More information

ELECTRONICS AND COMMUNICATION ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-I

ELECTRONICS AND COMMUNICATION ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-I ELECTRONICS AND COMMUNICATION ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-I From (1991 018) Office : F-16, (Lower Basemet), Katwaria Sarai, New Delhi-110016 Phoe : 011-65064 Mobile : 81309090, 9711853908

More information

1. pn junction under bias 2. I-Vcharacteristics

1. pn junction under bias 2. I-Vcharacteristics Lecture 10 The p Juctio (II) 1 Cotets 1. p juctio uder bias 2. I-Vcharacteristics 2 Key questios Why does the p juctio diode exhibit curret rectificatio? Why does the juctio curret i forward bias icrease

More information

Exercises and Problems

Exercises and Problems HW Chapter 4: Oe-Dimesioal Quatum Mechaics Coceptual Questios 4.. Five. 4.4.. is idepedet of. a b c mu ( E). a b m( ev 5 ev) c m(6 ev ev) Exercises ad Problems 4.. Model: Model the electro as a particle

More information

Heterojunctions. Heterojunctions

Heterojunctions. Heterojunctions Heterojuctios Heterojuctios Heterojuctio biolar trasistor SiGe GaAs 4 96, 007-008, Ch. 9 3 Defiitios eφ s eχ s lemet Ge, germaium lectro affiity, χ (ev) 4.13 Si, silico 4.01 GaAs, gallium arseide 4.07

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 006 Microelectroic Devices ad Circuits Prof. Ja M. Rabaey (ja@eecs) Lecture 3: Semicoductor Basics (ctd) Semicoductor Maufacturig Overview Last lecture Carrier velocity ad mobility Drift currets

More information

Physics Supplement to my class. Kinetic Theory

Physics Supplement to my class. Kinetic Theory Physics Supplemet to my class Leaers should ote that I have used symbols for geometrical figures ad abbreviatios through out the documet. Kietic Theory 1 Most Probable, Mea ad RMS Speed of Gas Molecules

More information

There are 7 crystal systems and 14 Bravais lattices in 3 dimensions.

There are 7 crystal systems and 14 Bravais lattices in 3 dimensions. EXAM IN OURSE TFY40 Solid State Physics Moday 0. May 0 Time: 9.00.00 DRAFT OF SOLUTION Problem (0%) Itroductory Questios a) () Primitive uit cell: The miimum volume cell which will fill all space (without

More information

Schottky diodes: I-V characteristics

Schottky diodes: I-V characteristics chottky diodes: - characteristics The geeral shape of the - curve i the M (-type) diode are very similar to that i the p + diode. However the domiat curret compoets are decidedly differet i the two diodes.

More information

CHAPTER 8 SYSTEMS OF PARTICLES

CHAPTER 8 SYSTEMS OF PARTICLES CHAPTER 8 SYSTES OF PARTICLES CHAPTER 8 COLLISIONS 45 8. CENTER OF ASS The ceter of mass of a system of particles or a rigid body is the poit at which all of the mass are cosidered to be cocetrated there

More information

Quiz #3 Practice Problem Set

Quiz #3 Practice Problem Set Name: Studet Number: ELEC 3908 Physical Electroics Quiz #3 Practice Problem Set? Miutes March 11, 2016 - No aids excet a o-rogrammable calculator - ll questios must be aswered - ll questios have equal

More information

Key Questions. ECE 340 Lecture 36 : MOSFET II 4/28/14

Key Questions. ECE 340 Lecture 36 : MOSFET II 4/28/14 Thigs you should kow whe you leae C 40 Lecture 6 : MOSFT Class Outlie: Short Chael ffects Key Questios Why is the mobility i the chael lower tha i the bulk? Why do strog electric fields degrade chael mobility?

More information

Monolithic semiconductor technology

Monolithic semiconductor technology Moolithic semicoductor techology 1 Ageda Semicoductor techology: Backgroud o Silico ad Gallium Arseide (GaAs) roerties. Diode, BJT ad FET devices. Secod order effect ad High frequecy roerties. Modelig

More information

p/n junction Isolated p, n regions: no electric contact, not in equilibrium E vac E i E A E F E V E C E D

p/n junction Isolated p, n regions: no electric contact, not in equilibrium E vac E i E A E F E V E C E D / juctio Isolated, regios: o electric cotact, ot i equilibrium E vac E C E C E E F E i E i E F E E V E V / juctio I equilibrium, the Fermi level must be costat. Shift the eergy levels i ad regios u/dow

More information

x a x a Lecture 2 Series (See Chapter 1 in Boas)

x a x a Lecture 2 Series (See Chapter 1 in Boas) Lecture Series (See Chapter i Boas) A basic ad very powerful (if pedestria, recall we are lazy AD smart) way to solve ay differetial (or itegral) equatio is via a series expasio of the correspodig solutio

More information

Semiconductor Electronic Devices

Semiconductor Electronic Devices Semicoductor lectroic evices Course Codes: 3 (UG) 818 (PG) Lecturer: Professor thoy O eill mail: athoy.oeill@cl.ac.uk ddress: 4.31, Merz Court ims: To provide a specialist kowledge of semicoductor devices.

More information

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8 CS 15 Fall 23, Lecture 8 Lecture 8: Capacitor ad PN Juctio Prof. Nikejad Lecture Outlie Review of lectrotatic IC MIM Capacitor No-Liear Capacitor PN Juctio Thermal quilibrium lectrotatic Review 1 lectric

More information

SECTION 2 Electrostatics

SECTION 2 Electrostatics SECTION Electrostatics This sectio, based o Chapter of Griffiths, covers effects of electric fields ad forces i static (timeidepedet) situatios. The topics are: Electric field Gauss s Law Electric potetial

More information

Digital Integrated Circuit Design

Digital Integrated Circuit Design Digital Itegrated Circuit Desig Lecture 4 PN Juctio -tye -tye Adib Abrishamifar EE Deartmet IUST Diffusio (Majority Carriers) Cotets PN Juctio Overview PN Juctios i Equilibrium Forward-biased PN Juctios

More information

Lecture III-2: Light propagation in nonmagnetic

Lecture III-2: Light propagation in nonmagnetic A. La Rosa Lecture Notes ALIED OTIC Lecture III2: Light propagatio i omagetic materials 2.1 urface ( ), volume ( ), ad curret ( j ) desities produced by arizatio charges The objective i this sectio is

More information

Excess carrier behavior in semiconductor devices

Excess carrier behavior in semiconductor devices Ecess carrier behavior i semicoductor devices Virtually all semicoductor devices i active mode ivolve the geeratio, decay, or movemet of carriers from oe regio to aother Carrier oulatio (, ) that is differet

More information

CHAPTER 3 DIODES. NTUEE Electronics L.H. Lu 3-1

CHAPTER 3 DIODES. NTUEE Electronics L.H. Lu 3-1 CHPTER 3 OES Chater Outlie 3.1 The deal iode 3. Termial Characteristics of Juctio iodes 3.3 Modelig the iode Forward Characteristics 3.4 Oeratio i the Reverse Breakdow Regio-Zeer iodes 3.5 Rectifier Circuits

More information

The aim of the course is to give an introduction to semiconductor device physics. The syllabus for the course is:

The aim of the course is to give an introduction to semiconductor device physics. The syllabus for the course is: Semicoductor evices Prof. Rb Robert tat A. Taylor The aim of the course is to give a itroductio to semicoductor device physics. The syllabus for the course is: Simple treatmet of p- juctio, p- ad p-i-

More information

EXPERIMENT OF SIMPLE VIBRATION

EXPERIMENT OF SIMPLE VIBRATION EXPERIMENT OF SIMPLE VIBRATION. PURPOSE The purpose of the experimet is to show free vibratio ad damped vibratio o a system havig oe degree of freedom ad to ivestigate the relatioship betwee the basic

More information

Kinetics of Complex Reactions

Kinetics of Complex Reactions Kietics of Complex Reactios by Flick Colema Departmet of Chemistry Wellesley College Wellesley MA 28 wcolema@wellesley.edu Copyright Flick Colema 996. All rights reserved. You are welcome to use this documet

More information

Forward and Reverse Biased Junctions

Forward and Reverse Biased Junctions TEMARIO DEL CURSO DE FUNDAMENTOS DE FÍSICA DE SEMICONDUCTORES 1. Itroducció a Física Electróica 1.1 Proiedades de cristales y crecimieto de semicoductores 1. Átomos y electroes 1.3 Badas de eergía y ortadores

More information

x 2 x x x x x + x x +2 x

x 2 x x x x x + x x +2 x Math 5440: Notes o particle radom walk Aaro Fogelso September 6, 005 Derivatio of the diusio equatio: Imagie that there is a distributio of particles spread alog the x-axis ad that the particles udergo

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

Introduction to Solid State Physics

Introduction to Solid State Physics Itroductio to Solid State Physics Class: Itegrated Photoic Devices Time: Fri. 8:00am ~ 11:00am. Classroom: 資電 206 Lecturer: Prof. 李明昌 (Mig-Chag Lee) Electros i A Atom Electros i A Atom Electros i Two atoms

More information

Lecture 9. NMOS Field Effect Transistor (NMOSFET or NFET)

Lecture 9. NMOS Field Effect Transistor (NMOSFET or NFET) ecture 9 MOS Field ffect Trasistor (MOSFT or FT) this lecture you will lear: The oeratio ad workig of the MOS trasistor A MOS aacitor with a hael otact ( Si) metal cotact Si Si GB B versio layer PSi substrate

More information

True Nature of Potential Energy of a Hydrogen Atom

True Nature of Potential Energy of a Hydrogen Atom True Nature of Potetial Eergy of a Hydroge Atom Koshu Suto Key words: Bohr Radius, Potetial Eergy, Rest Mass Eergy, Classical Electro Radius PACS codes: 365Sq, 365-w, 33+p Abstract I cosiderig the potetial

More information

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30.

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30. Miscellaeous Notes The ed is ear do t get behid. All Excuses must be take to 233 Loomis before 4:15, Moday, April 30. The PHYS 213 fial exam times are * 8-10 AM, Moday, May 7 * 8-10 AM, Tuesday, May 8

More information

Introduction to Microelectronics

Introduction to Microelectronics The iolar Juctio Trasistor Physical Structure of the iolar Trasistor Oeratio of the NPN Trasistor i the Active Mode Trasit Time ad Diffusio aacitace Ijectio fficiecy ad ase Trasort Factor The bers-moll

More information

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30.

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30. Miscellaeous Notes The ed is ear do t get behid. All Excuses must be take to 233 Loomis before 4:15, Moday, April 30. The PYS 213 fial exam times are * 8-10 AM, Moday, May 7 * 8-10 AM, Tuesday, May 8 ad

More information

MATH Exam 1 Solutions February 24, 2016

MATH Exam 1 Solutions February 24, 2016 MATH 7.57 Exam Solutios February, 6. Evaluate (A) l(6) (B) l(7) (C) l(8) (D) l(9) (E) l() 6x x 3 + dx. Solutio: D We perform a substitutio. Let u = x 3 +, so du = 3x dx. Therefore, 6x u() x 3 + dx = [

More information

A. Much too slow. C. Basically about right. E. Much too fast

A. Much too slow. C. Basically about right. E. Much too fast Geeral Questio 1 t this poit, we have bee i this class for about a moth. It seems like this is a good time to take stock of how the class is goig. g I promise ot to look at idividual resposes, so be cadid!

More information

Complementi di Fisica Lectures 25-26

Complementi di Fisica Lectures 25-26 Comlemeti di Fisica Lectures 25-26 Livio Laceri Uiversità di Trieste Trieste, 14/15-12-2015 i these lectures Itroductio No or quasi-equilibrium: excess carriers ijectio Processes for geeratio ad recombiatio

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Chapter 2 Exercise 2A

Chapter 2 Exercise 2A Chapter Eercise A Q. 1. (i) u 0, v 10, t 5, a? 10 0 + 5a a m/s (ii) u 0, a, t 5, s? s ut + at s (0)(5) + ()(5) 5 m Q.. (i) u 0, v 4, a 3, t? 4 0 + 3t t 8 s (ii) u 0, a 3, t 8, s? s ut + at s (0)(8) + (3)(64)

More information

Nanomaterials for Photovoltaics (v11) 6. Homojunctions

Nanomaterials for Photovoltaics (v11) 6. Homojunctions Naomaterials for Photovoltaics (v11) 1 6. Homojuctios / juctio diode The most imortat device cocet for the coversio of light ito electrical curret is the / juctio diode. We first cosider isolated ad regios

More information

Summary of pn-junction (Lec )

Summary of pn-junction (Lec ) Lecture #12 OUTLNE Diode aalysis ad applicatios cotiued The MOFET The MOFET as a cotrolled resistor Pich-off ad curret saturatio Chael-legth modulatio Velocity saturatio i a short-chael MOFET Readig Howe

More information

Areas and Distances. We can easily find areas of certain geometric figures using well-known formulas:

Areas and Distances. We can easily find areas of certain geometric figures using well-known formulas: Areas ad Distaces We ca easily fid areas of certai geometric figures usig well-kow formulas: However, it is t easy to fid the area of a regio with curved sides: METHOD: To evaluate the area of the regio

More information

Regenerative Property

Regenerative Property DESIGN OF LOGIC FAMILIES Some desirable characteristics to have: 1. Low ower dissiatio. High oise margi (Equal high ad low margis) 3. High seed 4. Low area 5. Low outut resistace 6. High iut resistace

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

LECTURE 14. Non-linear transverse motion. Non-linear transverse motion

LECTURE 14. Non-linear transverse motion. Non-linear transverse motion LETURE 4 No-liear trasverse motio Floquet trasformatio Harmoic aalysis-oe dimesioal resoaces Two-dimesioal resoaces No-liear trasverse motio No-liear field terms i the trajectory equatio: Trajectory equatio

More information

Diffusivity and Mobility Quantization. in Quantum Electrical Semi-Ballistic. Quasi-One-Dimensional Conductors

Diffusivity and Mobility Quantization. in Quantum Electrical Semi-Ballistic. Quasi-One-Dimensional Conductors Advaces i Applied Physics, Vol., 014, o. 1, 9-13 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/aap.014.3110 Diffusivity ad Mobility Quatizatio i Quatum Electrical Semi-Ballistic Quasi-Oe-Dimesioal

More information

ECE606: Solid State Devices Lecture 9 Recombination Processes and Rates

ECE606: Solid State Devices Lecture 9 Recombination Processes and Rates ECE606: Solid State Devices Lecture 9 Recombiatio Processes ad Rates Gerhard Klimeck gekco@urdue.edu Outlie ) No-equilibrium systems ) Recombiatio geeratio evets 3) Steady-state ad trasiet resose ) Motivatio

More information

1. Collision Theory 2. Activation Energy 3. Potential Energy Diagrams

1. Collision Theory 2. Activation Energy 3. Potential Energy Diagrams Chemistry 12 Reactio Kietics II Name: Date: Block: 1. Collisio Theory 2. Activatio Eergy 3. Potetial Eergy Diagrams Collisio Theory (Kietic Molecular Theory) I order for two molecules to react, they must

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistor (JT) was iveted i 948 at ell Telephoe Laboratories Sice 97, the high desity ad low power advatage of the MOS techology steadily eroded the JT s early domiace.

More information

ECE606: Solid State Devices Lecture 8

ECE606: Solid State Devices Lecture 8 ECE66: Solid State evices Lecture 8 Gerhard Klimeck gekco@urdue.edu Remider:»Basic cocets of doors ad accetors»statistics of doors ad accetor levels»itrisic carrier cocetratio Temerature deedece of carrier

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Sequeces ad 6 Sequeces Ad SEQUENCES AND SERIES Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives rise to what is called a sequece. Sequeces

More information

Synopsis of Euler s paper. E Memoire sur la plus grande equation des planetes. (Memoir on the Maximum value of an Equation of the Planets)

Synopsis of Euler s paper. E Memoire sur la plus grande equation des planetes. (Memoir on the Maximum value of an Equation of the Planets) 1 Syopsis of Euler s paper E105 -- Memoire sur la plus grade equatio des plaetes (Memoir o the Maximum value of a Equatio of the Plaets) Compiled by Thomas J Osler ad Jase Adrew Scaramazza Mathematics

More information

INF-GEO Solutions, Geometrical Optics, Part 1

INF-GEO Solutions, Geometrical Optics, Part 1 INF-GEO430 20 Solutios, Geometrical Optics, Part Reflectio by a symmetric triagular prism Let be the agle betwee the two faces of a symmetric triagular prism. Let the edge A where the two faces meet be

More information

Microscopic Theory of Transport (Fall 2003) Lecture 6 (9/19/03) Static and Short Time Properties of Time Correlation Functions

Microscopic Theory of Transport (Fall 2003) Lecture 6 (9/19/03) Static and Short Time Properties of Time Correlation Functions .03 Microscopic Theory of Trasport (Fall 003) Lecture 6 (9/9/03) Static ad Short Time Properties of Time Correlatio Fuctios Refereces -- Boo ad Yip, Chap There are a umber of properties of time correlatio

More information

September 2012 C1 Note. C1 Notes (Edexcel) Copyright - For AS, A2 notes and IGCSE / GCSE worksheets 1

September 2012 C1 Note. C1 Notes (Edexcel) Copyright   - For AS, A2 notes and IGCSE / GCSE worksheets 1 September 0 s (Edecel) Copyright www.pgmaths.co.uk - For AS, A otes ad IGCSE / GCSE worksheets September 0 Copyright www.pgmaths.co.uk - For AS, A otes ad IGCSE / GCSE worksheets September 0 Copyright

More information

Miscellaneous Notes. Lecture 19, p 1

Miscellaneous Notes. Lecture 19, p 1 Miscellaeous Notes The ed is ear do t get behid. All Excuses must be take to 233 Loomis before oo, Thur, Apr. 25. The PHYS 213 fial exam times are * 8-10 AM, Moday, May 6 * 1:30-3:30 PM, Wed, May 8 The

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Physics 7440, Solutions to Problem Set # 8

Physics 7440, Solutions to Problem Set # 8 Physics 7440, Solutios to Problem Set # 8. Ashcroft & Mermi. For both parts of this problem, the costat offset of the eergy, ad also the locatio of the miimum at k 0, have o effect. Therefore we work with

More information

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka)

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka) 7 Phoos ad coductio electros i solids Hiroshi Matsuoa I this chapter we will discuss a miimal microscopic model for phoos i a solid ad a miimal microscopic model for coductio electros i a simple metal.

More information

Nernst Equation. Nernst Equation. Electric Work and Gibb's Free Energy. Skills to develop. Electric Work. Gibb's Free Energy

Nernst Equation. Nernst Equation. Electric Work and Gibb's Free Energy. Skills to develop. Electric Work. Gibb's Free Energy Nerst Equatio Skills to develop Eplai ad distiguish the cell potetial ad stadard cell potetial. Calculate cell potetials from kow coditios (Nerst Equatio). Calculate the equilibrium costat from cell potetials.

More information

2.CMOS Transistor Theory

2.CMOS Transistor Theory CMOS LSI esig.cmos rasistor heory Fu yuzhuo School of microelectroics,sju Itroductio omar fadhil,baghdad outlie PN juctio priciple CMOS trasistor itroductio Ideal I- characteristics uder static coditios

More information