Synopsis of Euler s paper. E Memoire sur la plus grande equation des planetes. (Memoir on the Maximum value of an Equation of the Planets)

Size: px
Start display at page:

Download "Synopsis of Euler s paper. E Memoire sur la plus grande equation des planetes. (Memoir on the Maximum value of an Equation of the Planets)"

Transcription

1 1 Syopsis of Euler s paper E Memoire sur la plus grade equatio des plaetes (Memoir o the Maximum value of a Equatio of the Plaets) Compiled by Thomas J Osler ad Jase Adrew Scaramazza Mathematics Departmet Rowa Uiversity Glassboro, NJ 0808 Osler@rowa.edu Preface The followig summary of E 105 was costructed by abbreviatig the collectio of Notes. Thus, there is cosiderable repetitio i these two items. We hope that the reader ca profit by readig this syopsis before tacklig Euler s paper itself. I. Plaetary Motio as viewed from the earth vs the su ` Euler discusses the fact that plaets observed from the earth exhibit a very irregular motio. I geeral, they move from west to east alog the ecliptic. At times however, the motio slows to a stop ad the plaet eve appears to reverse directio ad move from east to west. We call this retrograde motio. After some time the plaet stops agai ad resumes its west to east jourey. However, if we observe the plaet from the stad poit of a observer o the su, this retrograde motio will ot occur, ad oly a west to east path of the plaet is see. II. The aphelio ad the perihelio From the su, (poit O i figure 1) the plaet (poit P ) is see to move o a elliptical orbit with the su at oe focus. Whe the plaet is farthest from the su, we say it is at the aphelio (poit A ), ad at the perihelio whe it is closest. The time for the plaet to move from aphelio to perihelio ad back is called the period. III. Speed of plaetary motio The plaet s speed is slowest at the aphelio ad fastest at the perihelio. The plaet obeys Kepler s secod law: The radial lie from the su to the plaet sweeps out equal areas i equal times.

2 IV. The fictitious plaet which moves with costat speed The more elliptic the orbit is, the greater is this variatio i speed. If the orbit were a circle, the speed would always be costat ad equal agles would be swept out i equal times. We imagie a fictitious compaio plaet (poit X i Figure 1) that circles the su with the same period as our plaet, but with uiform motio. Further, we assume that both the real ad the fictitious plaet reach the aphelio ad perihelio poits at the same time. As Euler says: After these two plaets have passed by the aphelio, the false plaet will appear to go faster tha the true ad the real plaet will imperceptibly icrease its speed util it will have caught the false oe at the perihelio. The it will pass its parter i speed, ad will leave it behid util they rejoi agai at the Aphelio. Figure 1: The plaet P as observed from the su at O,

3 3 V. The mea aomaly x, the true aomaly z ad the equatio of the ceter Astroomers call the agle x made by the fictitious plaet X the mea aomaly. The agle made by the true plaet P is z ad is called the true aomaly. The differece of these two agles is x z ad is called by astroomer s the equatio of the ceter. x z is zero at the aphelio ad gradually icreases util it reaches a maximum ear b, the it decreases to zero agai at the perihelio. VI. The maximum of the equatio of the ceter x z We will try to fid the maximum of x z ad the value of the agle x at which this occurs. This maximum value must be a fuctio of the eccetricity of the ellipse. Euler otes that Ad iversely, we will have to determie the eccetricity by the biggest equatio. This meas that we will observe the maximum of x z, ad from this value, determie the eccetricity of the orbit. This is the mai purpose of this paper, to determie the eccetricity of a plaet by observatios that have determied the maximum of x z. The followig sequece of five figures shows the progressio of the plaet P ad the fictitious plaet X as they move from the aphelio to the perihelio. Figure a: x z = 0 at aphelio

4 4 Figure b: x z growig Figure c x z is a maximum Figure d: x z shrikig

5 5 Figure e: x z = 0 at the perihelio VII. The focus ad the eccetricity of the ellipse Euler otes that this eccetricity equals the distace betwee the two foci of the a ellipse divided by the legth of the major axis. I Figure 3 we see that this is. a Figure 3: Features of the ellipse used i E105

6 6 Whe 0 1 the orbit is a ellipse, whe 1 it is a parabola, ad whe 1 the orbit is a hyperbola. The distace from the su to the aphelio is a a ad the distace from the su to the perihelio is a a. The legth of the semi-mior axis is VIII. The eccetric aomaly y, equatios of the ellipse ad Kepler s equatio a 1. Euler itroduces the eccetric aomaly y which is show i Figure. This agle y has the property that the equatio of the ellipse traced by the plaet at P ca be writte parametrically as u a acos y ad v bsi y. Euler gives without derivatio the followig equatios (A6) r a( 1 cos y). (A7) (A8) (A9) b a 1. cos y cos z. 1 cos y 1 si y si z 1 cos y 1 si y (A10) ta z cos y Equatios (A6) through (A10) are derived below i Appedix I. He also lists Kepler s equatio (A11) x y si y, which is derived below i Appedix II. IX. Begi to fid the equatio of the ceter whe r = a. Fiish i sectio XV. Euler ow wishes to examie closely the equatio of the ceter x z. I particular, he wishes to fid the values of the agles x ad z whe r a. From (A6) r a( 1 cos y), we see that we eed y 90, ad from (A11) x y si y, we have x y /. From (A8) with y 90 we get cos z ad (9.1) z arccos 90 arcsi. X. The true aomaly z i terms of the eccetric aomaly y ad the eccetricity

7 7 Euler has previously obtaied the relatio (10.1) z y si y 1 si y si 4y 4 8 4si y 1 6 si 6y 6 3 6si 4y 1 3 si 3y 3 4 3si y 1 5 si 5y si 3y 15si y etc 10si y XI. Usig calculus fid whe the maximum of x z occurs i terms of ad y. See (11.4). With y, fid λ i (11.5) ad (11.6). Euler sets the problem: From the eccetricity ad the eccetric aomaly y, fid the maximum of the equatio? Startig with Kepler s equatio simple calculus to fid x y si y ad (A8) cos z 1 cos y, Euler uses cos y (11.3a) ad 1 cos y (11.4) cos y. Note that this last result gives the exact value of y for which that for small eccetricity, cos y, ad so y. 4 Now we let be that small chage i the agle by writig si si y / ) cos y ad (11.4) we get (11.5) si 1 1 Thus kowig the eccetricity, we ca calculate x z is a maximum. Note y ad thus usig from (11.5)) ad the eccetric aomaly from y. Fially, the true aomaly z ca be foud from (10.1) or by ivertig ay of (A8), (A9) or (A10). XII. Determie more formulas for λ i terms of the eccetricity.

8 8 Euler fids 1 1*3 3 1*3*7 5 1*3* 7 *11 7 (1.3) si 4 4*8 4*8*1 4*8*1 *16 ad (1.4) cos XIII. Fid the mea aomaly y directly i terms of at the maximum of the equatio. Get (13.1) through (13.3). Euler otes that havig foud from the previous sectio, we ca ow fid y 90, the we ca fid from Kepler s Equatio (A11) x y si y, ad z from (10.1) or ay of (A8), (A9) or (A10). However, he would ow like to fid x ad z directly from. So Euler begis with the problem: Beig give the eccetricity, fid the mea aomaly, to which correspods the maximum of the equatio. Without showig all the details of series maipulatios Euler arrives at (13.1) x 90 etc Aother fidig is (13.), with (13.3) si 1 1. XIV/ Fid the true aomaly z directly i terms of the eccetricity. See (14.1) to (14.3). Euler ow tries to fid the true aomaly z from the eccetricity. He defies the ew variable through the equatio (14.1) z 90. After several series maipulatios which are ot explaied i detail he arrives at (14.) etc Euler also has (14.3) si (1 ).

9 9 See Figure 4 which illustrates these variables. Figure 4 XV. Fid the maximum of the equatio x z directly i terms of the eccetricity. See (15.1) through (15.3). Euler ow raises the questio Beig give the eccetricity of the plaet s orbit, fid the greatest equatio. From (13.) ad (14.1) we get (15.1) x z cos, which ca be expressed as x z. (15.) But whe the distace from the plaet to the su is equal to half the major axis, the equatio is (15.3) x z arcsi 6 40 XVI. Give the maximum of the equatio x z, determie the eccetricity. This ca oly be doe by umerical guessig.

10 10 From (A6) r a( 1 cos y) ad (11.3a) 1 cos y 1 we have the distace from the su to the plaet at the maximum value of x z is (16.1) r a 1. (Note that it is less tha a.) If the value of x z is called m ad is give, it becomes very difficult to determie the eccetricity from this. Euler states that we must use the equatio ad try to determie by substitutig umbers for ad usig trial ad error to approximate the result by calculatig values above ad below m. I this way we ca get bouds o a solutio. XVII. Fid the eccetricity as a series i powers of the maximum m = x z. Euler ow cosiders fidig series for the eccetricity i powers of the greatest equatio m x z. These will be valuable whe is small. So he starts with (15.) m ad iverts to get (17.1) m m m Euler remids the reader that the value obtaied from this equatio must have added to logarithm of the result to covert agles i secods to radias. (See sectio XI.) The mea aomaly x ca the be calculated from (17.) x 90 m m m Euler remarks that whe is small oly the first term 5 m 8 eed be added to 90. XVIII. A sample calculatio for the plaet Mercury. Fid x z whe the mea aomaly y is 90 degrees. I this sectio Euler does a umerical example of the use of the above results. He 797 chooses the plaet Mercury which has a eccetricity of Now log He makes the approximatio by assumig that the maximum of the equatio occurs where the eccetric aomaly y is

11 11 90 degrees. ( 0.) I this case, from (13.) we get the mea aomaly x 90. Euler writes the result as where it appears that the symbol 3 meas 90 degrees. Usig (9.1) Euler calculates ad fids that. Thus x z = , which is early two miutes less tha the (kow) maximum of the equatio. XIX. Calculate the maximum of x - z for the plaet Mercury 797 Agai we start with Mercury with the eccetricity To fid the maximum of the equatio Euler begis usig (11.5) si ad usig logarithms he fids log(si ) Thus ad the eccetric aomaly is y 90 59' 55' '. From x 90 cos (Kepler s equatio) Euler fids x ' 44' '. To fid the true aomaly z Euler uses (14.3) 1 1 si ad 3 obtais 8 55' 5. Next Euler adds = to obtai the maximum of the equatio x z = , which does ot differ a secod from the result foud i the tables. Euler eds by fidig the distace Mercury is from the su whe the maximum of the equatio occurs. He obtais this from (16.1) r a 1 with = a. XX. Euler explais his table The eccetricities are give every hudredth i the first colum, ad the correspodig agle of the maximum of x z is give i the secod colum. The last colum also provides the logarithm of the distace from the plaet to the su, where its equatio is the greatest.

12 1 XXI. Euler explais how to use liear iterpolatio to obtai the maximum of the equatio from a give eccetricity. Euler uses simple liear iterpolatio for the plaets Earth ad Mars. XXII. Euler explais how to use liear iterpolatio to obtai the eccetricity whe the maximum of the equatio is give give. Euler uses the plaet Mercury for a sim-le sample calculatio. XXIII. Fid the maximum of the term cos λ ad metio the value of the eccetricity whe x z = 90 degrees. Euler otes that i our equatio x z cos, both λ ad μ icrease as icreases, but this is ot true for the term cos. I fact, this term is zero whe 0 ad whe 1. Euler the uses simple calculus to fid whe cos is a maximum ad discovers that it occurs whe the eccetricity is = , ad the actual maximum value is = This last result is etered as the fial lie i Euler s table.

13 13

Notes on Euler s paper. E Memoire sur la plus grande equation des planetes. (Memoir on the Maximum value of an Equation of the Planets)

Notes on Euler s paper. E Memoire sur la plus grande equation des planetes. (Memoir on the Maximum value of an Equation of the Planets) Notes o Euler s paper E05 -- Memoire sur la plus grade equatio des plaetes (Memoir o the Maximum value of a Equatio of the Plaets) Compiled b Thomas J Osler ad Jase Adrew Scaramazza Mathematics Departmet

More information

E Memoire sur la plus grande equation des planetes. (Memoir on the Maximum value of an Equation of the Planets)

E Memoire sur la plus grande equation des planetes. (Memoir on the Maximum value of an Equation of the Planets) Traslatio of Euler s paper E05 -- Memoire sur la plus grade equatio des plaetes (Memoir o the Maximum value of a Equatio of the Plaets) Origially published i Memoires de l'academie des scieces de Berli,

More information

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations Differece Equatios to Differetial Equatios Sectio. Calculus: Areas Ad Tagets The study of calculus begis with questios about chage. What happes to the velocity of a swigig pedulum as its positio chages?

More information

Chapter 1. Complex Numbers. Dr. Pulak Sahoo

Chapter 1. Complex Numbers. Dr. Pulak Sahoo Chapter 1 Complex Numbers BY Dr. Pulak Sahoo Assistat Professor Departmet of Mathematics Uiversity Of Kalyai West Begal, Idia E-mail : sahoopulak1@gmail.com 1 Module-2: Stereographic Projectio 1 Euler

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW CALCULUS BASIC SUMMER REVIEW NAME rise y y y Slope of a o vertical lie: m ru Poit Slope Equatio: y y m( ) The slope is m ad a poit o your lie is, ). ( y Slope-Itercept Equatio: y m b slope= m y-itercept=

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

Complex Analysis Spring 2001 Homework I Solution

Complex Analysis Spring 2001 Homework I Solution Complex Aalysis Sprig 2001 Homework I Solutio 1. Coway, Chapter 1, sectio 3, problem 3. Describe the set of poits satisfyig the equatio z a z + a = 2c, where c > 0 ad a R. To begi, we see from the triagle

More information

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials Math 60 www.timetodare.com 3. Properties of Divisio 3.3 Zeros of Polyomials 3.4 Complex ad Ratioal Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t =

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t = Mathematics Summer Wilso Fial Exam August 8, ANSWERS Problem 1 (a) Fid the solutio to y +x y = e x x that satisfies y() = 5 : This is already i the form we used for a first order liear differetial equatio,

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

More information

Section 6.4: Series. Section 6.4 Series 413

Section 6.4: Series. Section 6.4 Series 413 ectio 64 eries 4 ectio 64: eries A couple decides to start a college fud for their daughter They pla to ivest $50 i the fud each moth The fud pays 6% aual iterest, compouded mothly How much moey will they

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

DEPARTMENT OF ACTUARIAL STUDIES RESEARCH PAPER SERIES

DEPARTMENT OF ACTUARIAL STUDIES RESEARCH PAPER SERIES DEPARTMENT OF ACTUARIAL STUDIES RESEARCH PAPER SERIES Icreasig ad Decreasig Auities ad Time Reversal by Jim Farmer Jim.Farmer@mq.edu.au Research Paper No. 2000/02 November 2000 Divisio of Ecoomic ad Fiacial

More information

Log1 Contest Round 1 Theta Equations & Inequalities. 4 points each. 5 points each. 7, a c d. 9, find the value of the product abcd.

Log1 Contest Round 1 Theta Equations & Inequalities. 4 points each. 5 points each. 7, a c d. 9, find the value of the product abcd. 013 01 Log1 Cotest Roud 1 Theta Equatios & Iequalities Name: poits each 1 Solve for x : x 3 38 Fid the greatest itegral value of x satisfyig the iequality x x 3 7 1 3 3 xy71 Fid the ordered pair solutio

More information

Math 312 Lecture Notes One Dimensional Maps

Math 312 Lecture Notes One Dimensional Maps Math 312 Lecture Notes Oe Dimesioal Maps Warre Weckesser Departmet of Mathematics Colgate Uiversity 21-23 February 25 A Example We begi with the simplest model of populatio growth. Suppose, for example,

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

MID-YEAR EXAMINATION 2018 H2 MATHEMATICS 9758/01. Paper 1 JUNE 2018

MID-YEAR EXAMINATION 2018 H2 MATHEMATICS 9758/01. Paper 1 JUNE 2018 MID-YEAR EXAMINATION 08 H MATHEMATICS 9758/0 Paper JUNE 08 Additioal Materials: Writig Paper, MF6 Duratio: hours DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO READ THESE INSTRUCTIONS FIRST Write

More information

CALCULATING FIBONACCI VECTORS

CALCULATING FIBONACCI VECTORS THE GENERALIZED BINET FORMULA FOR CALCULATING FIBONACCI VECTORS Stuart D Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithacaedu ad Dai Novak Departmet

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

Measures of Spread: Standard Deviation

Measures of Spread: Standard Deviation Measures of Spread: Stadard Deviatio So far i our study of umerical measures used to describe data sets, we have focused o the mea ad the media. These measures of ceter tell us the most typical value of

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

The Growth of Functions. Theoretical Supplement

The Growth of Functions. Theoretical Supplement The Growth of Fuctios Theoretical Supplemet The Triagle Iequality The triagle iequality is a algebraic tool that is ofte useful i maipulatig absolute values of fuctios. The triagle iequality says that

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Kinetics of Complex Reactions

Kinetics of Complex Reactions Kietics of Complex Reactios by Flick Colema Departmet of Chemistry Wellesley College Wellesley MA 28 wcolema@wellesley.edu Copyright Flick Colema 996. All rights reserved. You are welcome to use this documet

More information

Chapter Vectors

Chapter Vectors Chapter 4. Vectors fter readig this chapter you should be able to:. defie a vector. add ad subtract vectors. fid liear combiatios of vectors ad their relatioship to a set of equatios 4. explai what it

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

10.6 ALTERNATING SERIES

10.6 ALTERNATING SERIES 0.6 Alteratig Series Cotemporary Calculus 0.6 ALTERNATING SERIES I the last two sectios we cosidered tests for the covergece of series whose terms were all positive. I this sectio we examie series whose

More information

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

For example suppose we divide the interval [0,2] into 5 equal subintervals of length Math 1206 Calculus Sec 1: Estimatig with Fiite Sums Abbreviatios: wrt with respect to! for all! there exists! therefore Def defiitio Th m Theorem sol solutio! perpedicular iff or! if ad oly if pt poit

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

Algebra of Least Squares

Algebra of Least Squares October 19, 2018 Algebra of Least Squares Geometry of Least Squares Recall that out data is like a table [Y X] where Y collects observatios o the depedet variable Y ad X collects observatios o the k-dimesioal

More information

Section A assesses the Units Numerical Analysis 1 and 2 Section B assesses the Unit Mathematics for Applied Mathematics

Section A assesses the Units Numerical Analysis 1 and 2 Section B assesses the Unit Mathematics for Applied Mathematics X0/70 NATIONAL QUALIFICATIONS 005 MONDAY, MAY.00 PM 4.00 PM APPLIED MATHEMATICS ADVANCED HIGHER Numerical Aalysis Read carefully. Calculators may be used i this paper.. Cadidates should aswer all questios.

More information

Is mathematics discovered or

Is mathematics discovered or 996 Chapter 1 Sequeces, Iductio, ad Probability Sectio 1. Objectives Evaluate a biomial coefficiet. Expad a biomial raised to a power. Fid a particular term i a biomial expasio. The Biomial Theorem Galaxies

More information

Theorem: Let A n n. In this case that A does reduce to I, we search for A 1 as the solution matrix X to the matrix equation A X = I i.e.

Theorem: Let A n n. In this case that A does reduce to I, we search for A 1 as the solution matrix X to the matrix equation A X = I i.e. Theorem: Let A be a square matrix The A has a iverse matrix if ad oly if its reduced row echelo form is the idetity I this case the algorithm illustrated o the previous page will always yield the iverse

More information

MATH spring 2008 lecture 3 Answers to selected problems. 0 sin14 xdx = x dx. ; (iv) x +

MATH spring 2008 lecture 3 Answers to selected problems. 0 sin14 xdx = x dx. ; (iv) x + MATH - sprig 008 lecture Aswers to selected problems INTEGRALS. f =? For atiderivatives i geeral see the itegrals website at http://itegrals.wolfram.com. (5-vi (0 i ( ( i ( π ; (v π a. This is example

More information

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT TR/46 OCTOBER 974 THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION by A. TALBOT .. Itroductio. A problem i approximatio theory o which I have recetly worked [] required for its solutio a proof that the

More information

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is Calculus BC Fial Review Name: Revised 7 EXAM Date: Tuesday, May 9 Remiders:. Put ew batteries i your calculator. Make sure your calculator is i RADIAN mode.. Get a good ight s sleep. Eat breakfast. Brig:

More information

NUMERICAL METHODS COURSEWORK INFORMAL NOTES ON NUMERICAL INTEGRATION COURSEWORK

NUMERICAL METHODS COURSEWORK INFORMAL NOTES ON NUMERICAL INTEGRATION COURSEWORK NUMERICAL METHODS COURSEWORK INFORMAL NOTES ON NUMERICAL INTEGRATION COURSEWORK For this piece of coursework studets must use the methods for umerical itegratio they meet i the Numerical Methods module

More information

CHAPTER 8 SYSTEMS OF PARTICLES

CHAPTER 8 SYSTEMS OF PARTICLES CHAPTER 8 SYSTES OF PARTICLES CHAPTER 8 COLLISIONS 45 8. CENTER OF ASS The ceter of mass of a system of particles or a rigid body is the poit at which all of the mass are cosidered to be cocetrated there

More information

18.440, March 9, Stirling s formula

18.440, March 9, Stirling s formula Stirlig s formula 8.44, March 9, 9 The factorial fuctio! is importat i evaluatig biomial, hypergeometric, ad other probabilities. If is ot too large,! ca be computed directly, by calculators or computers.

More information

Appendix: The Laplace Transform

Appendix: The Laplace Transform Appedix: The Laplace Trasform The Laplace trasform is a powerful method that ca be used to solve differetial equatio, ad other mathematical problems. Its stregth lies i the fact that it allows the trasformatio

More information

7.) Consider the region bounded by y = x 2, y = x - 1, x = -1 and x = 1. Find the volume of the solid produced by revolving the region around x = 3.

7.) Consider the region bounded by y = x 2, y = x - 1, x = -1 and x = 1. Find the volume of the solid produced by revolving the region around x = 3. Calculus Eam File Fall 07 Test #.) Fid the eact area betwee the curves f() = 8 - ad g() = +. For # - 5, cosider the regio bouded by the curves y =, y = 3 + 4. Produce a solid by revolvig the regio aroud

More information

MATH 129 FINAL EXAM REVIEW PACKET (Revised Spring 2008)

MATH 129 FINAL EXAM REVIEW PACKET (Revised Spring 2008) MATH 9 FINAL EXAM REVIEW PACKET (Revised Sprig 8) The followig questios ca be used as a review for Math 9. These questios are ot actual samples of questios that will appear o the fial exam, but they will

More information

( ) (( ) ) ANSWERS TO EXERCISES IN APPENDIX B. Section B.1 VECTORS AND SETS. Exercise B.1-1: Convex sets. are convex, , hence. and. (a) Let.

( ) (( ) ) ANSWERS TO EXERCISES IN APPENDIX B. Section B.1 VECTORS AND SETS. Exercise B.1-1: Convex sets. are convex, , hence. and. (a) Let. Joh Riley 8 Jue 03 ANSWERS TO EXERCISES IN APPENDIX B Sectio B VECTORS AND SETS Exercise B-: Covex sets (a) Let 0 x, x X, X, hece 0 x, x X ad 0 x, x X Sice X ad X are covex, x X ad x X The x X X, which

More information

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE UPB Sci Bull, Series A, Vol 79, Iss, 207 ISSN 22-7027 NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE Gabriel Bercu We itroduce two ew sequeces of Euler-Mascheroi type which have fast covergece

More information

We will conclude the chapter with the study a few methods and techniques which are useful

We will conclude the chapter with the study a few methods and techniques which are useful Chapter : Coordiate geometry: I this chapter we will lear about the mai priciples of graphig i a dimesioal (D) Cartesia system of coordiates. We will focus o drawig lies ad the characteristics of the graphs

More information

Mathematics Extension 1

Mathematics Extension 1 016 Bored of Studies Trial Eamiatios Mathematics Etesio 1 3 rd ctober 016 Geeral Istructios Total Marks 70 Readig time 5 miutes Workig time hours Write usig black or blue pe Black pe is preferred Board-approved

More information

EXPERIMENT OF SIMPLE VIBRATION

EXPERIMENT OF SIMPLE VIBRATION EXPERIMENT OF SIMPLE VIBRATION. PURPOSE The purpose of the experimet is to show free vibratio ad damped vibratio o a system havig oe degree of freedom ad to ivestigate the relatioship betwee the basic

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

The Pendulum. Purpose

The Pendulum. Purpose The Pedulum Purpose To carry out a example illustratig how physics approaches ad solves problems. The example used here is to explore the differet factors that determie the period of motio of a pedulum.

More information

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) =

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) = AN INTRODUCTION TO SCHRÖDER AND UNKNOWN NUMBERS NICK DUFRESNE Abstract. I this article we will itroduce two types of lattice paths, Schröder paths ad Ukow paths. We will examie differet properties of each,

More information

Mon Feb matrix inverses. Announcements: Warm-up Exercise:

Mon Feb matrix inverses. Announcements: Warm-up Exercise: Math 225-4 Week 6 otes We will ot ecessarily fiish the material from a give day's otes o that day We may also add or subtract some material as the week progresses, but these otes represet a i-depth outlie

More information

A Simplified Binet Formula for k-generalized Fibonacci Numbers

A Simplified Binet Formula for k-generalized Fibonacci Numbers A Simplified Biet Formula for k-geeralized Fiboacci Numbers Gregory P. B. Dresde Departmet of Mathematics Washigto ad Lee Uiversity Lexigto, VA 440 dresdeg@wlu.edu Zhaohui Du Shaghai, Chia zhao.hui.du@gmail.com

More information

BITSAT MATHEMATICS PAPER III. For the followig liear programmig problem : miimize z = + y subject to the costraits + y, + y 8, y, 0, the solutio is (0, ) ad (, ) (0, ) ad ( /, ) (0, ) ad (, ) (d) (0, )

More information

ARITHMETIC PROGRESSIONS

ARITHMETIC PROGRESSIONS CHAPTER 5 ARITHMETIC PROGRESSIONS (A) Mai Cocepts ad Results A arithmetic progressio (AP) is a list of umbers i which each term is obtaied by addig a fixed umber d to the precedig term, except the first

More information

(5x 7) is. 63(5x 7) 42(5x 7) 50(5x 7) BUSINESS MATHEMATICS (Three hours and a quarter)

(5x 7) is. 63(5x 7) 42(5x 7) 50(5x 7) BUSINESS MATHEMATICS (Three hours and a quarter) BUSINESS MATHEMATICS (Three hours ad a quarter) (The first 5 miutes of the examiatio are for readig the paper oly. Cadidate must NOT start writig durig this time). ------------------------------------------------------------------------------------------------------------------------

More information

Summary: CORRELATION & LINEAR REGRESSION. GC. Students are advised to refer to lecture notes for the GC operations to obtain scatter diagram.

Summary: CORRELATION & LINEAR REGRESSION. GC. Students are advised to refer to lecture notes for the GC operations to obtain scatter diagram. Key Cocepts: 1) Sketchig of scatter diagram The scatter diagram of bivariate (i.e. cotaiig two variables) data ca be easily obtaied usig GC. Studets are advised to refer to lecture otes for the GC operatios

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES I geeral, it is difficult to fid the exact sum of a series. We were able to accomplish this for geometric series ad the series /[(+)]. This is

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 018/019 DR. ANTHONY BROWN 8. Statistics 8.1. Measures of Cetre: Mea, Media ad Mode. If we have a series of umbers the

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

Fundamental Concepts: Surfaces and Curves

Fundamental Concepts: Surfaces and Curves UNDAMENTAL CONCEPTS: SURACES AND CURVES CHAPTER udametal Cocepts: Surfaces ad Curves. INTRODUCTION This chapter describes two geometrical objects, vi., surfaces ad curves because the pla a ver importat

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Sequeces ad 6 Sequeces Ad SEQUENCES AND SERIES Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives rise to what is called a sequece. Sequeces

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

1. Introduction. Notice that we have taken the terms of the harmonic series, and subtracted them from

1. Introduction. Notice that we have taken the terms of the harmonic series, and subtracted them from 06/5/00 EAANGING TEM O A HAMONIC-LIKE EIE Mathematics ad Computer Educatio, 35(00), pp 36-39 Thomas J Osler Mathematics Departmet owa Uiversity Glassboro, NJ 0808 osler@rowaedu Itroductio The commutative

More information

Solving equations (incl. radical equations) involving these skills, but ultimately solvable by factoring/quadratic formula (no complex roots)

Solving equations (incl. radical equations) involving these skills, but ultimately solvable by factoring/quadratic formula (no complex roots) Evet A: Fuctios ad Algebraic Maipulatio Factorig Square of a sum: ( a + b) = a + ab + b Square of a differece: ( a b) = a ab + b Differece of squares: a b = ( a b )(a + b ) Differece of cubes: a 3 b 3

More information

Properties and Tests of Zeros of Polynomial Functions

Properties and Tests of Zeros of Polynomial Functions Properties ad Tests of Zeros of Polyomial Fuctios The Remaider ad Factor Theorems: Sythetic divisio ca be used to fid the values of polyomials i a sometimes easier way tha substitutio. This is show by

More information

Please do NOT write in this box. Multiple Choice. Total

Please do NOT write in this box. Multiple Choice. Total Istructor: Math 0560, Worksheet Alteratig Series Jauary, 3000 For realistic exam practice solve these problems without lookig at your book ad without usig a calculator. Multiple choice questios should

More information

APPENDIX F Complex Numbers

APPENDIX F Complex Numbers APPENDIX F Complex Numbers Operatios with Complex Numbers Complex Solutios of Quadratic Equatios Polar Form of a Complex Number Powers ad Roots of Complex Numbers Operatios with Complex Numbers Some equatios

More information

XT - MATHS Grade 12. Date: 2010/06/29. Subject: Series and Sequences 1: Arithmetic Total Marks: 84 = 2 = 2 1. FALSE 10.

XT - MATHS Grade 12. Date: 2010/06/29. Subject: Series and Sequences 1: Arithmetic Total Marks: 84 = 2 = 2 1. FALSE 10. ubject: eries ad equeces 1: Arithmetic otal Mars: 8 X - MAH Grade 1 Date: 010/0/ 1. FALE 10 Explaatio: his series is arithmetic as d 1 ad d 15 1 he sum of a arithmetic series is give by [ a ( ] a represets

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

THE KALMAN FILTER RAUL ROJAS

THE KALMAN FILTER RAUL ROJAS THE KALMAN FILTER RAUL ROJAS Abstract. This paper provides a getle itroductio to the Kalma filter, a umerical method that ca be used for sesor fusio or for calculatio of trajectories. First, we cosider

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information

Calculus 2 Test File Spring Test #1

Calculus 2 Test File Spring Test #1 Calculus Test File Sprig 009 Test #.) Without usig your calculator, fid the eact area betwee the curves f() = - ad g() = +..) Without usig your calculator, fid the eact area betwee the curves f() = ad

More information

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 3 Solutions

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 3 Solutions Math 451: Euclidea ad No-Euclidea Geometry MWF 3pm, Gasso 204 Homework 3 Solutios Exercises from 1.4 ad 1.5 of the otes: 4.3, 4.10, 4.12, 4.14, 4.15, 5.3, 5.4, 5.5 Exercise 4.3. Explai why Hp, q) = {x

More information

Chapter 2 Feedback Control Theory Continued

Chapter 2 Feedback Control Theory Continued Chapter Feedback Cotrol Theor Cotiued. Itroductio I the previous chapter, the respose characteristic of simple first ad secod order trasfer fuctios were studied. It was show that first order trasfer fuctio,

More information

FINALTERM EXAMINATION Fall 9 Calculus & Aalytical Geometry-I Questio No: ( Mars: ) - Please choose oe Let f ( x) is a fuctio such that as x approaches a real umber a, either from left or right-had-side,

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES 11.4 The Compariso Tests I this sectio, we will lear: How to fid the value of a series by comparig it with a kow series. COMPARISON TESTS

More information

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y Questio (a) A square matrix A= A is called positive defiite if the quadratic form waw > 0 for every o-zero vector w [Note: Here (.) deotes the traspose of a matrix or a vector]. Let 0 A = 0 = show that:

More information

multiplies all measures of center and the standard deviation and range by k, while the variance is multiplied by k 2.

multiplies all measures of center and the standard deviation and range by k, while the variance is multiplied by k 2. Lesso 3- Lesso 3- Scale Chages of Data Vocabulary scale chage of a data set scale factor scale image BIG IDEA Multiplyig every umber i a data set by k multiplies all measures of ceter ad the stadard deviatio

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew Problem ( poits) Evaluate the itegrals Z p x 9 x We ca draw a right triagle labeled this way x p x 9 From this we ca read off x = sec, so = sec ta, ad p x 9 = R ta. Puttig those pieces ito the itegralrwe

More information

Chapter 7: Numerical Series

Chapter 7: Numerical Series Chapter 7: Numerical Series Chapter 7 Overview: Sequeces ad Numerical Series I most texts, the topic of sequeces ad series appears, at first, to be a side topic. There are almost o derivatives or itegrals

More information

On a Smarandache problem concerning the prime gaps

On a Smarandache problem concerning the prime gaps O a Smaradache problem cocerig the prime gaps Felice Russo Via A. Ifate 7 6705 Avezzao (Aq) Italy felice.russo@katamail.com Abstract I this paper, a problem posed i [] by Smaradache cocerig the prime gaps

More information

UNIVERSITY OF NORTHERN COLORADO MATHEMATICS CONTEST. First Round For all Colorado Students Grades 7-12 November 3, 2007

UNIVERSITY OF NORTHERN COLORADO MATHEMATICS CONTEST. First Round For all Colorado Students Grades 7-12 November 3, 2007 UNIVERSITY OF NORTHERN COLORADO MATHEMATICS CONTEST First Roud For all Colorado Studets Grades 7- November, 7 The positive itegers are,,, 4, 5, 6, 7, 8, 9,,,,. The Pythagorea Theorem says that a + b =

More information

Simple Linear Regression

Simple Linear Regression Chapter 2 Simple Liear Regressio 2.1 Simple liear model The simple liear regressio model shows how oe kow depedet variable is determied by a sigle explaatory variable (regressor). Is is writte as: Y i

More information

Chapter 6 Overview: Sequences and Numerical Series. For the purposes of AP, this topic is broken into four basic subtopics:

Chapter 6 Overview: Sequences and Numerical Series. For the purposes of AP, this topic is broken into four basic subtopics: Chapter 6 Overview: Sequeces ad Numerical Series I most texts, the topic of sequeces ad series appears, at first, to be a side topic. There are almost o derivatives or itegrals (which is what most studets

More information

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1 PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

More information

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row:

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row: Math 50-004 Tue Feb 4 Cotiue with sectio 36 Determiats The effective way to compute determiats for larger-sized matrices without lots of zeroes is to ot use the defiitio, but rather to use the followig

More information

Chapter 6: Numerical Series

Chapter 6: Numerical Series Chapter 6: Numerical Series 327 Chapter 6 Overview: Sequeces ad Numerical Series I most texts, the topic of sequeces ad series appears, at first, to be a side topic. There are almost o derivatives or itegrals

More information

The Riemann Zeta Function

The Riemann Zeta Function Physics 6A Witer 6 The Riema Zeta Fuctio I this ote, I will sketch some of the mai properties of the Riema zeta fuctio, ζ(x). For x >, we defie ζ(x) =, x >. () x = For x, this sum diverges. However, we

More information

The Minimum Distance Energy for Polygonal Unknots

The Minimum Distance Energy for Polygonal Unknots The Miimum Distace Eergy for Polygoal Ukots By:Johaa Tam Advisor: Rollad Trapp Abstract This paper ivestigates the eergy U MD of polygoal ukots It provides equatios for fidig the eergy for ay plaar regular

More information

Topic 1 2: Sequences and Series. A sequence is an ordered list of numbers, e.g. 1, 2, 4, 8, 16, or

Topic 1 2: Sequences and Series. A sequence is an ordered list of numbers, e.g. 1, 2, 4, 8, 16, or Topic : Sequeces ad Series A sequece is a ordered list of umbers, e.g.,,, 8, 6, or,,,.... A series is a sum of the terms of a sequece, e.g. + + + 8 + 6 + or... Sigma Notatio b The otatio f ( k) is shorthad

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information