Position & motion in 2D and 3D

Size: px
Start display at page:

Download "Position & motion in 2D and 3D"

Transcription

1 Position & motion in 2D and 3D! METR4202: Guest lecture 22 October 2014 Peter Corke Peter Corke Robotics, Vision and Control FUNDAMENTAL ALGORITHMS IN MATLAB 123 Sections 11.1, 15.2 Queensland University of Technology Peter Corke

2 Peter Corke

3 Peter Corke

4 The (amazing) sense of vision The trilobites were among the most successful of all early animals, appearing 521 million years ago and roaming the oceans for over 270 million years. Peter Corke

5 2D and 3D Queensland University of Technology Peter Corke

6

7 Cave paintings ~40,000 years ago Peter Corke

8 Piero della Francesca ( ) Jan Vredeman de Vries, Peter Corke

9 trompe l'oeil ˌtrômp ˈloi noun ( pl. trompe l'oeils pronunc. same ) visual illusion in art, esp. as used to trick the eye into perceiving a painted detail as a threedimensional object. Peter Corke

10 Peter Corke

11 Peter Corke

12 Peter Corke

13 Peter Corke

14 Peter Corke

15 Edgar Mueller Peter Corke

16 Peter Corke

17 Waterfall M.C. Escher 1961 Peter Corke

18 Image formation (in pictures) Queensland University of Technology Peter Corke

19 points in the Peter Corke

20 Image formation points in the image plane Peter Corke

21 Image formation dark inverted image points in the image plane Peter Corke

22 The pin hole camera Peter Corke

23 Pin hole images Peter Corke

24 Simple imaging Y Y x Z = y f y X Z f X Z = x f Image formation is the mapping of scene points to the image plane x = fx Z, y = fy Z (X,Y,Z) 7! (x,y) R 3 7! R 2 Queensland University of Technology Peter Corke

25 Image formation dark inverted image Peter Corke

26 Image formation f bigger area f brighter image small is good F = f /f image plane Peter Corke

27 Use a lens to gather more light George R. Lawrence 1900 Peter Corke

28 Thin lens model object pin hole ray equivalent pin hole z z o focal points f f z i inverted image 1 z o + 1 z i = 1 f ideal thin lens image plane Perspective projection 3D to 2D Focussing on distant objects (X,Y,Z) 7! (x,y) z o! z i! f R 3 7! R 2 Peter Corke

29 Peter Corke

30 Peter Corke

31 Peter Corke

32 Perspective projection Maps Lines lines parallel lines not necessarily parallel angles are not preserved Conics conics Peter Corke

33 No unique inverse

34

35 Image formation (in maths) Queensland University of Technology Peter Corke

36 Homogeneous coordinates Cartesian homogeneous P =(x,y) P 2 R 2 P =(x,y,1) P 2 P 2 homogeneous Cartesian P =( x,ỹ, z) P =(x,y) x = x z, y = ỹ z lines and points are duals Peter Corke

37 A line in homogeneous form such that p =( x,ỹ, z) =(l 1,l 2,l 3 ) `T p = 0 Point equation of a line y = mx + c Peter Corke

38 Line joining points p 2 =(d,e, f ) p 1 =(a,b,c) ` ` = p 1 p 2 Peter Corke

39 Intersecting lines 2 =(d,e, f ) p p = `1 `2 1 =(a,b,c) line equation of a point Peter Corke

40 Central projection model 0 x ỹa = z 0 1 f X 0 f 0 0AB Y ZA Peter Corke

41 optical axis Pin-hole model in homogeneous form P =(X, Y, Z) p x 0 ỹa = z 1 f f A X Z 1 1 C A z=f principal point image planey z C {C} y C x C camera origin x = fx,ỹ = fy, z = Z x = x z, y = ỹ z Central perspective model ) x = fx Z, y = fy Z Perspective transformation, with the pesky divide by Z, is linear in homogeneous coordinate form. Peter Corke

42 0 ỹa = z 1 0 3D to f f A X Z 1 1 C A scaling/ zooming f A B0 f 0 0 C A Peter Corke

43 Change of coordinates P =(X, Y, Z) W 1 u u = x r u + u 0 z optical axis 0 0 p v = y r v + v 0 H H 1 v (u 0,v 0 ) image plane z=f principal point W z C {C} y C x C camera origin ṽ w 1 A = 0 1 r u 0 u rv v C A ỹa z 1 scale from metres to pixels shift the origin to top left corner p = u v = ũ/ w ṽ/ w Peter Corke

44 Complete camera model P =(X, Y, Z) C P 0 x ỹa = z f f A X Z 1 1 C A {C} y ξ C z x {0} extrinsic parameters 0 P ṽ w 1 A = u r B u 0 1 C f v rv 0 A@ 0 f 0 0A R t {z } K 1 {z } intrinsic parameters C camera matrix 0 1 X BY ZA Peter Corke 1

45 Camera matrix Mapping points from the to an image (pixel) coordinate is simply a matrix multiplication using homogeneous coordinates ṽ w 1 A = C 11 C 12 C 13 C 14 C 21 C 22 C 23 C 24 C 31 C 32 C 33 C A X Z 1 1 C A u = ũ w, v = ṽ w Peter Corke

46 Scale invariance Consider an arbitrary scalar scale factor!!!!! ũ,ṽ, w will all be scaled by but! ṽ w 1 A = l u = ũ C 11 C 12 C 13 C 14 C 21 C 22 C 23 C 24 w, v = ṽ so the result is unchanged C 31 C 32 C 33 C 34 w l 0 1 A X Z 1 1 C A Peter Corke

47 Normalized camera matrix Since scale factor is arbitrary we can fix the value of one element, typically C(3,4) to one. focal length pixel size camera position & orientation ṽ w 1 A = C X 11 C 12 C 13 C C 21 C 22 C 23 C ABY C ZA C 31 C 32 C u = ũ w, v = ṽ w Peter Corke

48 Consider a moving camera Queensland University of Technology Peter Corke

49 Motion of a camera w x v x (u,v) v z w z v y (X,Y,Z) w y 6 degrees of freedom translate along x, y, z rotate about x, y, z

50 Optical flow patterns t x v (pixels) w z v (pixels) u (pixels) u (pixels) v (pixels) t z u (pixels) Pixel motion depends on pixel position camera motion Peter Corke

51 Optical flow patterns t x w y v (pixels) v (pixels) u (pixels) u (pixels) Rotation and translation in x and y cause very similar motion Peter Corke

52 Optical flow equation speed of pixel speed of camera (ū, v) are distances from principal point Peter Corke

53 Motion of multiple points Consider the case of three points, in matrix form ν = (v x, v y, v z, ω x, ω y, ω z ) R 6 ational velocity components. Th Peter Corke

54 Desired view Peter Corke

55 Current view Peter Corke

56 Image plane motion Peter Corke

57 Image plane motion ( u, v) (u, v) Peter Corke

58 Inverting the problem required point velocity to move from p to p* desired point current point Peter Corke

59 IBVS simulation Peter Corke

60 Applications Queensland University of Technology Peter Corke

61 Visual servoing: simple feedback Peter Corke

62 Non-holonomic visual servoing Peter Corke

63 Direct processing of wide-angle imagery K. Usher and J. Roberts and P. Corke and E. Duff, Vision-based navigational competencies for a car-like vehicles. In M. Ang and O. Khatib, editors, Experimental Robotics IX, volume 21 of Springer Tracts in Advanced Robotics (STAR), P. Corke and D. Symeonidis and K. Usher, Tracking road edges in the panospheric image plane. In Proc. Int. Conf on Intelligent Robots and Systems (IROS), Peter Corke

64 AUV visual odometry A hybrid AUV design for shallow water reef navigation. In Proc. IEEE Int. Conf. Robotics and Automation, M. Dunbabin, P. Corke, Visual motion estimation for an autonomous underwater reef monitoring robot. In P. Corke and S. Sukkariah, editors, Field and Service Robotics: Results of the 5th International Conference, I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke. Data collection, storage and retrieval with an underwater sensor network. In Proc. IEEE SenSys, Peter Corke

65 Crucible Finder The HMC must deal with uncertainty on crucible pose and vehicle approach position Use a pan/tilt/zoom camera Use visual fiducials on the crucible handle Peter Corke

66 Crucible pickup Peter Corke

67

68

Lecture 16: Projection and Cameras. October 17, 2017

Lecture 16: Projection and Cameras. October 17, 2017 Lecture 6: Projection and Cameras October 7 207 3D Viewing as Virtual Camera To take a picture with a camera or to render an image with computer graphics we need to:. Position the camera/viewpoint in 3D

More information

EE Camera & Image Formation

EE Camera & Image Formation Electric Electronic Engineering Bogazici University February 21, 2018 Introduction Introduction Camera models Goal: To understand the image acquisition process. Function of the camera Similar to that of

More information

Nonlinear Wind Estimator Based on Lyapunov

Nonlinear Wind Estimator Based on Lyapunov Nonlinear Based on Lyapunov Techniques Pedro Serra ISR/DSOR July 7, 2010 Pedro Serra Nonlinear 1/22 Outline 1 Motivation Problem 2 Aircraft Dynamics Guidance Control and Navigation structure Guidance Dynamics

More information

Introduction to pinhole cameras

Introduction to pinhole cameras Introduction to pinhole cameras Lesson given by Sébastien Piérard in the course Introduction aux techniques audio et vidéo (ULg, Pr JJ Embrechts) INTELSIG, Montefiore Institute, University of Liège, Belgium

More information

Instrumentation Commande Architecture des Robots Evolués

Instrumentation Commande Architecture des Robots Evolués Instrumentation Commande Architecture des Robots Evolués Program 4a : Automatic Control, Robotics, Signal Processing Presentation General Orientation Research activities concern the modelling and control

More information

Visual Object Recognition

Visual Object Recognition Visual Object Recognition Lecture 2: Image Formation Per-Erik Forssén, docent Computer Vision Laboratory Department of Electrical Engineering Linköping University Lecture 2: Image Formation Pin-hole, and

More information

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit Augmented Reality VU Camera Registration Prof. Vincent Lepetit Different Approaches to Vision-based 3D Tracking [From D. Wagner] [From Drummond PAMI02] [From Davison ICCV01] Consider natural features Consider

More information

3D from Photographs: Camera Calibration. Dr Francesco Banterle

3D from Photographs: Camera Calibration. Dr Francesco Banterle 3D from Photographs: Camera Calibration Dr Francesco Banterle francesco.banterle@isti.cnr.it 3D from Photographs Automatic Matching of Images Camera Calibration Photographs Surface Reconstruction Dense

More information

EKF and SLAM. McGill COMP 765 Sept 18 th, 2017

EKF and SLAM. McGill COMP 765 Sept 18 th, 2017 EKF and SLAM McGill COMP 765 Sept 18 th, 2017 Outline News and information Instructions for paper presentations Continue on Kalman filter: EKF and extension to mapping Example of a real mapping system:

More information

Homogeneous Coordinates

Homogeneous Coordinates Homogeneous Coordinates Basilio Bona DAUIN-Politecnico di Torino October 2013 Basilio Bona (DAUIN-Politecnico di Torino) Homogeneous Coordinates October 2013 1 / 32 Introduction Homogeneous coordinates

More information

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT Journal of Computer Science and Cybernetics, V.31, N.3 (2015), 255 265 DOI: 10.15625/1813-9663/31/3/6127 CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT NGUYEN TIEN KIEM

More information

Camera calibration. Outline. Pinhole camera. Camera projection models. Nonlinear least square methods A camera calibration tool

Camera calibration. Outline. Pinhole camera. Camera projection models. Nonlinear least square methods A camera calibration tool Outline Camera calibration Camera projection models Camera calibration i Nonlinear least square methods A camera calibration tool Applications Digital Visual Effects Yung-Yu Chuang with slides b Richard

More information

A geometric interpretation of the homogeneous coordinates is given in the following Figure.

A geometric interpretation of the homogeneous coordinates is given in the following Figure. Introduction Homogeneous coordinates are an augmented representation of points and lines in R n spaces, embedding them in R n+1, hence using n + 1 parameters. This representation is useful in dealing with

More information

Multi-Frame Factorization Techniques

Multi-Frame Factorization Techniques Multi-Frame Factorization Techniques Suppose { x j,n } J,N j=1,n=1 is a set of corresponding image coordinates, where the index n = 1,...,N refers to the n th scene point and j = 1,..., J refers to the

More information

Camera calibration Triangulation

Camera calibration Triangulation Triangulation Perspective projection in homogenous coordinates ~x img I 0 apple R t 0 T 1 ~x w ~x img R t ~x w Matrix transformations in 2D ~x img K R t ~x w K = 2 3 1 0 t u 40 1 t v 5 0 0 1 Translation

More information

A Practical Method for Decomposition of the Essential Matrix

A Practical Method for Decomposition of the Essential Matrix Applied Mathematical Sciences, Vol. 8, 2014, no. 176, 8755-8770 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410877 A Practical Method for Decomposition of the Essential Matrix Georgi

More information

Induced Planar Homologies in Epipolar Geometry

Induced Planar Homologies in Epipolar Geometry Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 4 (2016), pp. 3759 3773 Research India Publications http://www.ripublication.com/gjpam.htm Induced Planar Homologies in

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Basic Information Instructor: Professor Ron Sahoo Office: NS 218 Tel: (502) 852-2731 Fax: (502)

More information

SLAM for Ship Hull Inspection using Exactly Sparse Extended Information Filters

SLAM for Ship Hull Inspection using Exactly Sparse Extended Information Filters SLAM for Ship Hull Inspection using Exactly Sparse Extended Information Filters Matthew Walter 1,2, Franz Hover 1, & John Leonard 1,2 Massachusetts Institute of Technology 1 Department of Mechanical Engineering

More information

Aerial Robotics. Vision-based control for Vertical Take-Off and Landing UAVs. Toulouse, October, 2 nd, Henry de Plinval (Onera - DCSD)

Aerial Robotics. Vision-based control for Vertical Take-Off and Landing UAVs. Toulouse, October, 2 nd, Henry de Plinval (Onera - DCSD) Aerial Robotics Vision-based control for Vertical Take-Off and Landing UAVs Toulouse, October, 2 nd, 2014 Henry de Plinval (Onera - DCSD) collaborations with P. Morin (UPMC-ISIR), P. Mouyon (Onera), T.

More information

Improved Kalman Filter Initialisation using Neurofuzzy Estimation

Improved Kalman Filter Initialisation using Neurofuzzy Estimation Improved Kalman Filter Initialisation using Neurofuzzy Estimation J. M. Roberts, D. J. Mills, D. Charnley and C. J. Harris Introduction It is traditional to initialise Kalman filters and extended Kalman

More information

Lane Marker Parameters for Vehicle s Steering Signal Prediction

Lane Marker Parameters for Vehicle s Steering Signal Prediction Lane Marker Parameters for Vehicle s Steering Signal Prediction ANDRIEJUS DEMČENKO, MINIJA TAMOŠIŪNAITĖ, AUŠRA VIDUGIRIENĖ, LEONAS JAKEVIČIUS 3 Department of Applied Informatics, Department of System Analysis

More information

Manipulators. Robotics. Outline. Non-holonomic robots. Sensors. Mobile Robots

Manipulators. Robotics. Outline. Non-holonomic robots. Sensors. Mobile Robots Manipulators P obotics Configuration of robot specified by 6 numbers 6 degrees of freedom (DOF) 6 is the minimum number required to position end-effector arbitrarily. For dynamical systems, add velocity

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

A Study of Kruppa s Equation for Camera Self-calibration

A Study of Kruppa s Equation for Camera Self-calibration Proceedings of the International Conference of Machine Vision and Machine Learning Prague, Czech Republic, August 14-15, 2014 Paper No. 57 A Study of Kruppa s Equation for Camera Self-calibration Luh Prapitasari,

More information

Lecture 1.2 Pose in 2D and 3D. Thomas Opsahl

Lecture 1.2 Pose in 2D and 3D. Thomas Opsahl Lecture 1.2 Pose in 2D and 3D Thomas Osahl Motivation For the inhole camera, the corresondence between observed 3D oints in the world and 2D oints in the catured image is given by straight lines through

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Linear Algebra MATH 2076 Linear Algebra SLEs Chapter 1 Section 1 1 / 8 Linear Equations and their Solutions A linear equation in unknowns (the variables) x 1, x 2,..., x n has

More information

Analysis of Errors in the Measurement of Double Stars Using Imaging and the Reduc Software

Analysis of Errors in the Measurement of Double Stars Using Imaging and the Reduc Software Page 193 Analysis of Errors in the Measurement of Double Stars Using Imaging and the Reduc Software Tim Napier-Munn and Graeme Jenkinson Astronomical Association of Queensland Abstract: This paper reports

More information

Probability Map Building of Uncertain Dynamic Environments with Indistinguishable Obstacles

Probability Map Building of Uncertain Dynamic Environments with Indistinguishable Obstacles Probability Map Building of Uncertain Dynamic Environments with Indistinguishable Obstacles Myungsoo Jun and Raffaello D Andrea Sibley School of Mechanical and Aerospace Engineering Cornell University

More information

Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction

Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction Qifa Ke and Takeo Kanade Department of Computer Science, Carnegie Mellon University Email: ke@cmu.edu, tk@cs.cmu.edu Abstract

More information

Introduction to Dynamic Path Inversion

Introduction to Dynamic Path Inversion Dipartimento di ingegneria dell Informazione Università di Parma Dottorato di Ricerca in Tecnologie dell Informazione a.a. 2005/2006 Introduction to Dynamic Path Aurelio PIAZZI DII, Università di Parma

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Trifocal Tensor Lecture 21 March 31, 2005 2 Lord Shiva is depicted as having three eyes. The

More information

Homographies and Estimating Extrinsics

Homographies and Estimating Extrinsics Homographies and Estimating Extrinsics Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Adapted from: Computer vision: models, learning and inference. Simon J.D. Prince Review: Motivation

More information

Lecture Topics VMF Prof. Dr.-Ing. habil. Hermann Lödding Prof. Dr.-Ing. Wolfgang Hintze. PD Dr.-Ing. habil.

Lecture Topics VMF Prof. Dr.-Ing. habil. Hermann Lödding Prof. Dr.-Ing. Wolfgang Hintze. PD Dr.-Ing. habil. Lecture Topics. Introduction. Sensor Guides Robots / Machines 3. Motivation Model Calibration 4. 3D Video Metric (Geometrical Camera Model) 5. Grey Level Picture Processing for Position Measurement 6.

More information

Theory of Bouguet s MatLab Camera Calibration Toolbox

Theory of Bouguet s MatLab Camera Calibration Toolbox Theory of Bouguet s MatLab Camera Calibration Toolbox Yuji Oyamada 1 HVRL, University 2 Chair for Computer Aided Medical Procedure (CAMP) Technische Universität München June 26, 2012 MatLab Camera Calibration

More information

One Approach to the Integration of Inertial and Visual Navigation Systems

One Approach to the Integration of Inertial and Visual Navigation Systems FATA UNIVERSITATIS (NIŠ) SER.: ELE. ENERG. vol. 18, no. 3, December 2005, 479-491 One Approach to the Integration of Inertial and Visual Navigation Systems Dedicated to Professor Milić Stojić on the occasion

More information

ARCS IN FINITE PROJECTIVE SPACES. Basic objects and definitions

ARCS IN FINITE PROJECTIVE SPACES. Basic objects and definitions ARCS IN FINITE PROJECTIVE SPACES SIMEON BALL Abstract. These notes are an outline of a course on arcs given at the Finite Geometry Summer School, University of Sussex, June 26-30, 2017. Let K denote an

More information

The Basis. [5] The Basis

The Basis. [5] The Basis The Basis [5] The Basis René Descartes Born 1596. After studying law in college,... I entirely abandoned the study of letters. Resolving to seek no knowledge other than that of which could be found in

More information

Doppler Shifts. Doppler Shift Lecture-Tutorial: Pgs Temperature or Heat? What can we learn from light? Temp: Peak in Thermal Radiation

Doppler Shifts. Doppler Shift Lecture-Tutorial: Pgs Temperature or Heat? What can we learn from light? Temp: Peak in Thermal Radiation Doppler Shift Lecture-Tutorial: Pgs. 75-80 Work with a partner or two Read directions and answer all questions carefully. Take time to understand it now! Come to a consensus answer you all agree on before

More information

1. Projective geometry

1. Projective geometry 1. Projective geometry Homogeneous representation of points and lines in D space D projective space Points at infinity and the line at infinity Conics and dual conics Projective transformation Hierarchy

More information

Determining the Translational Speed of a Camera from Time-Varying Optical Flow

Determining the Translational Speed of a Camera from Time-Varying Optical Flow Determining the Translational Speed of a Camera from Time-Varying Optical Flow Anton van den Hengel, Wojciech Chojnacki, and Michael J. Brooks School of Computer Science, Adelaide University, SA 5005,

More information

Lecture 5. Epipolar Geometry. Professor Silvio Savarese Computational Vision and Geometry Lab. 21-Jan-15. Lecture 5 - Silvio Savarese

Lecture 5. Epipolar Geometry. Professor Silvio Savarese Computational Vision and Geometry Lab. 21-Jan-15. Lecture 5 - Silvio Savarese Lecture 5 Epipolar Geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 5-21-Jan-15 Lecture 5 Epipolar Geometry Why is stereo useful? Epipolar constraints Essential

More information

Camera Models and Affine Multiple Views Geometry

Camera Models and Affine Multiple Views Geometry Camera Models and Affine Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in May 29, 2001 1 1 Camera Models A Camera transforms a 3D

More information

Video and Motion Analysis Computer Vision Carnegie Mellon University (Kris Kitani)

Video and Motion Analysis Computer Vision Carnegie Mellon University (Kris Kitani) Video and Motion Analysis 16-385 Computer Vision Carnegie Mellon University (Kris Kitani) Optical flow used for feature tracking on a drone Interpolated optical flow used for super slow-mo optical flow

More information

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/! Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!! WARNING! this class will be dense! will learn how to use nonlinear optimization

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Robust image-based visual servoing using invariant visual information. Omar Tahri, Helder Araujo, François Chaumette, Youcef Mezouar

Robust image-based visual servoing using invariant visual information. Omar Tahri, Helder Araujo, François Chaumette, Youcef Mezouar Accepted Manuscript Robust image-based visual servoing using invariant visual information Omar Tahri, Helder Araujo, François Chaumette, Youcef Mezouar PII: S921-889(13)119-X DOI: http://dx.doi.org/1.116/j.robot.213.6.1

More information

Computing MAP trajectories by representing, propagating and combining PDFs over groups

Computing MAP trajectories by representing, propagating and combining PDFs over groups Computing MAP trajectories by representing, propagating and combining PDFs over groups Paul Smith Department of Engineering University of Cambridge Cambridge CB2 1PZ, UK pas11@eng.cam.ac.uk Tom Drummond

More information

Keywords: Visual odometry, error analysis, motion concatenation, ego-motion, navigational drift

Keywords: Visual odometry, error analysis, motion concatenation, ego-motion, navigational drift Computing and Informatics, Vol. 33, 2014, 685 706 NAVIGATIONAL DRIFT ANALYSIS FOR VISUAL ODOMETRY Hongtao Liu, Ruyi Jiang, Weng Hu, Shigang Wang School of Mechanical Engineering Shanghai Jiao Tong University

More information

Pose estimation from point and line correspondences

Pose estimation from point and line correspondences Pose estimation from point and line correspondences Giorgio Panin October 17, 008 1 Problem formulation Estimate (in a LSE sense) the pose of an object from N correspondences between known object points

More information

How does your eye form an Refraction

How does your eye form an Refraction Astronomical Instruments and : Everyday Light Sensors How does your eye form an image? How do we record images? How does your eye form an image? Refraction Refraction is the of light Eye uses refraction

More information

Autonomous Agent Behaviour Modelled in PRISM A Case Study

Autonomous Agent Behaviour Modelled in PRISM A Case Study Autonomous Agent Behaviour Modelled in PRISM A Case Study Ruth Hoffmann 1, Murray Ireland 1, Alice Miller 1, Gethin Norman 1, and Sandor Veres 2 1 University of Glasgow, Glasgow, G12 8QQ, Scotland 2 University

More information

Activity: Derive a matrix from input-output pairs

Activity: Derive a matrix from input-output pairs Activity: Derive a matrix from input-output pairs [ ] a b The 2 2 matrix A = satisfies the following equations: c d Calculate the entries of the matrix. [ ] [ ] a b 5 c d 10 [ ] [ ] a b 2 c d 1 = = [ ]

More information

CS277 - Experimental Haptics Lecture 13. Six-DOF Haptic Rendering I

CS277 - Experimental Haptics Lecture 13. Six-DOF Haptic Rendering I CS277 - Experimental Haptics Lecture 13 Six-DOF Haptic Rendering I Outline Motivation Direct rendering Proxy-based rendering - Theory - Taxonomy Motivation 3-DOF avatar The Holy Grail? Tool-Mediated Interaction

More information

OPPA European Social Fund Prague & EU: We invest in your future.

OPPA European Social Fund Prague & EU: We invest in your future. OPPA European Social Fund Prague & EU: We invest in your future. 1D Projective Coordinates The 1-D projective coordinate of a point P : [P ] = [P P 0 P I P ] = [p p 0 p I p] = p pi p 0 p I p 0 p p p p

More information

Algorithm for conversion between geometric algebra versor notation and conventional crystallographic symmetry-operation symbols

Algorithm for conversion between geometric algebra versor notation and conventional crystallographic symmetry-operation symbols Algorithm for conversion between geometric algebra versor notation and conventional crystallographic symmetry-operation symbols Eckhard Hitzer and Christian Perwass June, 2009 Introduction This paper establishes

More information

Vision for Mobile Robot Navigation: A Survey

Vision for Mobile Robot Navigation: A Survey Vision for Mobile Robot Navigation: A Survey (February 2002) Guilherme N. DeSouza & Avinash C. Kak presentation by: Job Zondag 27 February 2009 Outline: Types of Navigation Absolute localization (Structured)

More information

Parking Place Inspection System Utilizing a Mobile Robot with a Laser Range Finder -Application for occupancy state recognition-

Parking Place Inspection System Utilizing a Mobile Robot with a Laser Range Finder -Application for occupancy state recognition- Parking Place Inspection System Utilizing a Mobile Robot with a Laser Range Finder -Application for occupancy state recognition- Sanngoen Wanayuth, Akihisa Ohya and Takashi Tsubouchi Abstract The automated

More information

We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill.

We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill. We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill. 2.3.2. Steering control using point mass model: Open loop commands We consider

More information

Active Nonlinear Observers for Mobile Systems

Active Nonlinear Observers for Mobile Systems Active Nonlinear Observers for Mobile Systems Simon Cedervall and Xiaoming Hu Optimization and Systems Theory Royal Institute of Technology SE 00 44 Stockholm, Sweden Abstract For nonlinear systems in

More information

Human Pose Tracking I: Basics. David Fleet University of Toronto

Human Pose Tracking I: Basics. David Fleet University of Toronto Human Pose Tracking I: Basics David Fleet University of Toronto CIFAR Summer School, 2009 Looking at People Challenges: Complex pose / motion People have many degrees of freedom, comprising an articulated

More information

Local Probabilistic Models: Continuous Variable CPDs

Local Probabilistic Models: Continuous Variable CPDs Local Probabilistic Models: Continuous Variable CPDs Sargur srihari@cedar.buffalo.edu 1 Topics 1. Simple discretizing loses continuity 2. Continuous Variable CPDs 3. Linear Gaussian Model Example of car

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Review of Edge Detectors #2 Today s Lecture Interest Points Detection What do we mean with Interest Point Detection in an Image Goal:

More information

Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems

Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems 1 Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems V. Estivill-Castro 2 Perception Concepts Vision Chapter 4 (textbook) Sections 4.3 to 4.5 What is the course

More information

On the Computation of the Ego-Motion and Distance to Obstacles for a Micro Air Vehicle

On the Computation of the Ego-Motion and Distance to Obstacles for a Micro Air Vehicle On the Computation of the Ego-Motion and Distance to Obstacles for a Micro Air Vehicle Ram V. Iyer, hihai He and Phillip R. Chandler Abstract In this paper, we have considered the problem of velocity and

More information

CITS 4402 Computer Vision

CITS 4402 Computer Vision CITS 4402 Computer Vision A/Prof Ajmal Mian Adj/A/Prof Mehdi Ravanbakhsh Lecture 06 Object Recognition Objectives To understand the concept of image based object recognition To learn how to match images

More information

Vision based control of aerial robotic vehicles using the port Hamiltonian framework

Vision based control of aerial robotic vehicles using the port Hamiltonian framework Vision based control of aerial robotic vehicles using the port Hamiltonian framework Robert Mahony, Stefano Stramigioli, and Jochen Trumpf Abstract This paper investigates the formulation of sensor based

More information

How does your eye form an Refraction

How does your eye form an Refraction Astronomical Instruments Eyes and Cameras: Everyday Light Sensors How does your eye form an image? How do we record images? How does your eye form an image? Refraction Refraction is the bending of light

More information

Screen-space processing Further Graphics

Screen-space processing Further Graphics Screen-space processing Rafał Mantiuk Computer Laboratory, University of Cambridge Cornell Box and tone-mapping Rendering Photograph 2 Real-world scenes are more challenging } The match could not be achieved

More information

Advances in Computer Vision. Prof. Bill Freeman. Image and shape descriptors. Readings: Mikolajczyk and Schmid; Belongie et al.

Advances in Computer Vision. Prof. Bill Freeman. Image and shape descriptors. Readings: Mikolajczyk and Schmid; Belongie et al. 6.869 Advances in Computer Vision Prof. Bill Freeman March 3, 2005 Image and shape descriptors Affine invariant features Comparison of feature descriptors Shape context Readings: Mikolajczyk and Schmid;

More information

2D Image Processing (Extended) Kalman and particle filter

2D Image Processing (Extended) Kalman and particle filter 2D Image Processing (Extended) Kalman and particle filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz

More information

A Factorization Method for 3D Multi-body Motion Estimation and Segmentation

A Factorization Method for 3D Multi-body Motion Estimation and Segmentation 1 A Factorization Method for 3D Multi-body Motion Estimation and Segmentation René Vidal Department of EECS University of California Berkeley CA 94710 rvidal@eecs.berkeley.edu Stefano Soatto Dept. of Computer

More information

Statistical Visual-Dynamic Model for Hand-Eye Coordination

Statistical Visual-Dynamic Model for Hand-Eye Coordination The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2010, Taipei, Taiwan Statistical Visual-Dynamic Model for Hand-Eye Coordination Daniel Beale, Pejman Iravani

More information

L03. PROBABILITY REVIEW II COVARIANCE PROJECTION. NA568 Mobile Robotics: Methods & Algorithms

L03. PROBABILITY REVIEW II COVARIANCE PROJECTION. NA568 Mobile Robotics: Methods & Algorithms L03. PROBABILITY REVIEW II COVARIANCE PROJECTION NA568 Mobile Robotics: Methods & Algorithms Today s Agenda State Representation and Uncertainty Multivariate Gaussian Covariance Projection Probabilistic

More information

Small Satellite Laser Comm Pointing

Small Satellite Laser Comm Pointing Small Satellite Laser Comm Pointing Darren Rowen July 11, 2016 2016 The Aerospace Corporation Agenda Optical Ground Station Tracking Demo of Cubesat Laser OCSD-B/C Design & Configuration OCSD-A Star Tracker

More information

1 Overview. CS348a: Computer Graphics Handout #8 Geometric Modeling Original Handout #8 Stanford University Thursday, 15 October 1992

1 Overview. CS348a: Computer Graphics Handout #8 Geometric Modeling Original Handout #8 Stanford University Thursday, 15 October 1992 CS348a: Computer Graphics Handout #8 Geometric Modeling Original Handout #8 Stanford University Thursday, 15 October 1992 Original Lecture #1: 1 October 1992 Topics: Affine vs. Projective Geometries Scribe:

More information

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada SLAM Techniques and Algorithms Jack Collier Defence Research and Development Canada Recherche et développement pour la défense Canada Canada Goals What will we learn Gain an appreciation for what SLAM

More information

Affine Properties of the Relative Position PHI-Descriptor

Affine Properties of the Relative Position PHI-Descriptor 2016 23rd International Conference on Pattern Recognition (ICPR) Cancún Center, Cancún, México, December 4-8, 2016 Affine Properties of the Relative Position PHI-Descriptor Pascal Matsakis School of Computer

More information

Robotics - Homogeneous coordinates and transformations. Simone Ceriani

Robotics - Homogeneous coordinates and transformations. Simone Ceriani Robotics - Homogeneous coordinates and transformations Simone Ceriani ceriani@elet.polimi.it Dipartimento di Elettronica e Informazione Politecnico di Milano 5 March 0 /49 Outline Introduction D space

More information

PAijpam.eu EPIPOLAR GEOMETRY WITH A FUNDAMENTAL MATRIX IN CANONICAL FORM Georgi Hristov Georgiev 1, Vencislav Dakov Radulov 2

PAijpam.eu EPIPOLAR GEOMETRY WITH A FUNDAMENTAL MATRIX IN CANONICAL FORM Georgi Hristov Georgiev 1, Vencislav Dakov Radulov 2 International Journal of Pure and Applied Mathematics Volume 105 No. 4 2015, 669-683 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v105i4.8

More information

Minimal representations of orientation

Minimal representations of orientation Robotics 1 Minimal representations of orientation (Euler and roll-pitch-yaw angles) Homogeneous transformations Prof. lessandro De Luca Robotics 1 1 Minimal representations rotation matrices: 9 elements

More information

Pole searching algorithm for Wide-field all-sky image analyzing monitoring system

Pole searching algorithm for Wide-field all-sky image analyzing monitoring system Contrib. Astron. Obs. Skalnaté Pleso 47, 220 225, (2017) Pole searching algorithm for Wide-field all-sky image analyzing monitoring system J. Bednář, P. Skala and P. Páta Czech Technical University in

More information

Exploring the Depths of the Universe

Exploring the Depths of the Universe Exploring the Depths of the Universe Jennifer Lotz Hubble Science Briefing Jan. 16, 2014 Hubble is now observing galaxies 97% of the way back to the Big Bang, during the first 500 million years 2 Challenge:

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Last Lecture : Edge Detection Preprocessing of image is desired to eliminate or at least minimize noise effects There is always tradeoff

More information

Delayed Fusion of Relative State Measurements by Extending Stochastic Cloning via Direct Kalman Filtering

Delayed Fusion of Relative State Measurements by Extending Stochastic Cloning via Direct Kalman Filtering Delayed Fusion of Relative State Measurements by Extending Stochastic Cloning via Direct Kalman Filtering Ehsan Asadi and Carlo L Bottasso Department of Aerospace Science and echnology Politecnico di Milano,

More information

mathematical objects can be described via equations, functions, graphs, parameterization in R, R, and R.

mathematical objects can be described via equations, functions, graphs, parameterization in R, R, and R. Multivariable Calculus Lecture # Notes This lecture completes the discussion of the cross product in R and addresses the variety of different ways that n mathematical objects can be described via equations,

More information

A new large projection operator for the redundancy framework

A new large projection operator for the redundancy framework 21 IEEE International Conference on Robotics and Automation Anchorage Convention District May 3-8, 21, Anchorage, Alaska, USA A new large projection operator for the redundancy framework Mohammed Marey

More information

Tracking for VR and AR

Tracking for VR and AR Tracking for VR and AR Hakan Bilen November 17, 2017 Computer Graphics University of Edinburgh Slide credits: Gordon Wetzstein and Steven M. La Valle 1 Overview VR and AR Inertial Sensors Gyroscopes Accelerometers

More information

Basic Math for

Basic Math for Basic Math for 16-720 August 23, 2002 1 Linear Algebra 1.1 Vectors and Matrices First, a reminder of a few basic notations, definitions, and terminology: Unless indicated otherwise, vectors are always

More information

TELESCOPES. How do they work?

TELESCOPES. How do they work? TELESCOPES How do they work? There are two types of Telescopes Refractor telescopes They use glass lenses Reflector telescopes They use mirrors and lenses Parts of a Telescope Tube - a long tube, made

More information

Mobile Manipulation: Force Control

Mobile Manipulation: Force Control 8803 - Mobile Manipulation: Force Control Mike Stilman Robotics & Intelligent Machines @ GT Georgia Institute of Technology Atlanta, GA 30332-0760 February 19, 2008 1 Force Control Strategies Logic Branching

More information

Single view metrology

Single view metrology EECS 44 Computer vision Single view metrology Review calibration Lines and planes at infinity Absolute conic Estimating geometry from a single image Etensions Reading: [HZ] Chapters,3,8 Calibration Problem

More information

Edge Detection in Computer Vision Systems

Edge Detection in Computer Vision Systems 1 CS332 Visual Processing in Computer and Biological Vision Systems Edge Detection in Computer Vision Systems This handout summarizes much of the material on the detection and description of intensity

More information

Packing Congruent Bricks into a Cube

Packing Congruent Bricks into a Cube Journal for Geometry and Graphics Volume 5 (2001), No. 1, 1 11. Packing Congruent Bricks into a Cube Ákos G. Horváth, István Prok Department of Geometry, Budapest University of Technology and Economics

More information

Underwater platforms and photographic techniques

Underwater platforms and photographic techniques Underwater platforms and photographic techniques Underwater platforms Robotic vehicles are in use for seafloor surveys aleady since the late 1960's s in deep water archaeology. Submersible technology (human

More information

A Switching Active Sensing Strategy to Maintain Observability for Vision-Based Formation Control

A Switching Active Sensing Strategy to Maintain Observability for Vision-Based Formation Control 29 IEEE International Conference on Robotics and Automation Kobe International Conference Center Kobe, Japan, May 2-7, 29 A Switching Active Sensing Strategy to Maintain Observability for Vision-Based

More information

Passivity-based Formation Control for UAVs with a Suspended Load

Passivity-based Formation Control for UAVs with a Suspended Load Passivity-based Formation Control for UAVs with a Suspended Load Chris Meissen Kristian Klausen Murat Arcak Thor I. Fossen Andrew Packard Department of Mechanical Engineering at the University of California,

More information

2-D Visual Servoing for MARCO

2-D Visual Servoing for MARCO 2-D Visual Seroing for MARCO Teresa A. Vidal C. Institut de Robòtica i Informàtica Industrial Uniersitat Politèctica de Catalunya - CSIC Llorens i Artigas 4-6, Edifici U, 2a pl. Barcelona 82, Spain tidal@iri.upc.es

More information

Control de robots y sistemas multi-robot basado en visión

Control de robots y sistemas multi-robot basado en visión Control de robots y sistemas multi-robot basado en visión Universidad de Zaragoza Ciclo de conferencias Master y Programa de Doctorado en Ingeniería de Sistemas y de Control UNED ES Ingeniería Informática

More information

Self-Calibration of a Moving Camera by Pre-Calibration

Self-Calibration of a Moving Camera by Pre-Calibration Self-Calibration of a Moving Camera by Pre-Calibration Peter Sturm To cite this version: Peter Sturm. Self-Calibration of a Moving Camera by Pre-Calibration. Robert B. Fisher and Emanuele Trucco. 7th British

More information