Pole searching algorithm for Wide-field all-sky image analyzing monitoring system

Size: px
Start display at page:

Download "Pole searching algorithm for Wide-field all-sky image analyzing monitoring system"

Transcription

1 Contrib. Astron. Obs. Skalnaté Pleso 47, , (2017) Pole searching algorithm for Wide-field all-sky image analyzing monitoring system J. Bednář, P. Skala and P. Páta Czech Technical University in Prague, Technicka 2, Prague , Czech Republic ( Received: May 28, 2017; Accepted: June 24, 2017 Abstract. Paper show how to find coordinates of the celestial pole. The algorithm is useful as the first hint for blind astrometry in order to help or speed up the process. The algorithm uses a principle of Hough transformation commonly used in computer vision. Key words: Astrometry Wide-field All-sky 1. Introduction Modern robotic telescopes are equipped with many types of sensors for environment monitoring to run autonomously. One type of the monitoring system is a weather estimation that can be done by imaging of the sky for a real-time view of the weather conditions. A popular way of monitoring the sky is using widefield lenses with a proper digital detector. But such a wide-field system can be used not only for weather monitoring but also directly for some astronomical observations. One of the main demands is proper astrometric calibration of image, so further analysis can be made. In this cases, astrometric calibration of all-sky images is particularly difficult because of extreme distortion of image shape. The second problem is that most of the algorithms cannot find an astrometric solution simply because, they are not intended for systems using a fish-eye lens. Some algorithms are capable make a blind astrometric solution with no additional data about the image, but this can lead to very long processing time or even to failure of calibration. Therefore, some hint is useful. Our proposed method can locate approximate location of the north or south pole without any additional information and speed up the calibration process. In this paper, we describe a typical system for which our method is designed. Basic principles of our algorithm are presented, along with discussion of its precision and possible ways to further improve the reliability of results. 2. WILLIAM system The project WILLIAM (Wide-field all-sky image analysing monitoring system) was first developed on demand to provide autonomous control of the telescope and observatory dome. The system is built as a low-cost wide-field and high

2 Pole searching algorithm for Wide-field all-sky image analyzing monitoring system 221 resolution camera system. Main part of the system is a digital camera Nikon D5100 with APS-C chip (23.6 x 15.6mm) with resolution 4928 x 3264 pixels. The camera is equipped with fisheye lens Sigma 10mm F2.8 EX DC2. This lens covers most of the sky with an 180 diagonal view angle (corners of the image are at the horizon).the camera is controlled by RaspberryPi microcomputer. It controls parameters of the exposure depending on the day time and transfers acquired data to a dedicated remote virtual server to store and to process the data. The camera is located in a camera dome (usually used for surveillance applications) where an autonomous heating system is also located. The driving microcomputer is located near the dome in an another case with electric supply. More information about the system are in Janout et al. (2015). 3. Algorithm Images used for testing were obtained by WILLIAM and debayered by Photoshop algorithm so maximum information is preserved. For comparison purposes, longer exposures were simulated by rotating images around north pole pixel. Three test images simulates exposures ranging from 20 seconds (original) and 26 to 32 seconds respectively (simulated). For testing, only the green channel was selected as it has least noise and chromatic aberration. Depending on the focal length of lens and exposure times the stars are motion blurred, as they are rotating around the north pole causing the stars being elliptically shaped. The prolongation is larger with increasing distance from the pole and is largest on the celestial equator. The major axis of the ellipse is tangential to the direction of rotation, the minor axis of the ellipse points to the centre of the rotation (see Figure 1). The intersection of all lines specified by minor axis is the centre of rotation we are looking for. In order to find it the Hough transformation can be used (Chen et al., 2010). This transformation is often used in computer vision, primary for line detection and has been used in astronomy, for example, for meteor detection in Trigo-Rodriguez et al. (2008). Let s have a line defined by point A 0 = [x 0, y 0 ] and with direction angle ϕ. In Hough space the same line is defined using θ and r r = x cos θ + y sin θ (1) where θ = π 2 + ϕ is the angle between the x-axis and the line connecting the origin with that closest point and r is the distance between the origin and the closest point (see Figure 2). A point in x-y space is defined as a sine function r(ϑ) in Hough space, while a line in x-y space is defined as a single point in Hough space. Usually, the usage of Hough transformation is to open binarized image which include lines, where it transform every point of lines into the Hough space. In our case, we do not need to make binary image with all the lines created in direction of minor axis from selected stars. Because we know parameters A 0 and ϕ of all these lines (star location and direction of its minor axis), we can

3 222 J. Bednář, P. Skala and P. Páta Figure 1. An example of selected star. The major axis is blue, the minor axis is red. The red doted line points toward the centre of rotation of the image. Figure 2. Point A 0[x 0, y 0] and direction angle ϕ define the red line. In Hough space, the red line is defined via the θ angle and the distance r from [0, 0] to the line. calculate r and θ parameters and put them directly into Hough space. Notice that if the lines have intersection point in xy space, then it is sine function that is going trough points of those lines in Hough space. In real case we must fit sine function to obtain coordinates of intersection point aka north or south pole Figure 3. We use standard fitting model r = a sin (b θ + c) (2) r = a sin(c) cos(b θ) + a cos(c) sin(b θ) (3) From witch we can obtain coordinates of the corresponding point x 0 = a sin(c), y 0 = a cos(c) (4)

4 Pole searching algorithm for Wide-field all-sky image analyzing monitoring system 223 In this paper, we select 100 stars from the image depending on their brightness, 5000 Exposure time = 20 s, RMSE = Exposure time = 26 s, RMSE = Exposure time = 32 s, RMSE = Fit result Input parameters 4000 Fit result Input parameters 3500 r [px] [rad] r [px] [rad] r [px] Fit result 500 Input parameters [rad] Figure 3. Fit of intersection point in Hough space from input line parameters for different time of exposure (from left 20s, 26s and 32s). size, shape and location. The algorithm can not work with circular stars, so we select stars according to the eccentricity of their shape. All required parameters are calculated from binarized preprocessed image. For every exposition the position of centre of rotation is calculated and is compared with real rotation point, Euclidean distance of points is calculated. Figure 4 shows positions of all calculated points and the original. Positions are also provided in 1 where is also calculated RMSE of all fitted functions. Table 1. Positions of calculated centre of rotation, distance d from real centre and RMSE of the fit. Exposure time [s] x 0 [px] y 0 [px] d[px] RMSE [-] Original As a complementary source of information, the eccentricity of the stars can be plotted as a function of its position. As Figure 5 shows, this obvious method also gives some information about the location of the pole, but as figures minimum are being extrapolated (Lowess) from data, estimating the pole position outside of the image would be very problematic. 4. Conclusion Paper shows that our proposed algorithm to search the pole using properties of Hough transformation has potential to locate the pole. As expected, precision increases with longer exposure times. Stars with bigger eccentricity give better

5 224 J. Bedna r, P. Skala and P. Pa ta Figure 4. Enhanced image of the sky. Marked stars are selected by the algorithm. The position of the pole and calculated rotational centres for all exposures are showed. Figure 5. Fit of location of the pole from the eccentricity of the stars. The cross is the position of estimated location of the pole while star is its original position. Left image is for exposure time 20 s, right image is for 32 s.

6 Pole searching algorithm for Wide-field all-sky image analyzing monitoring system 225 information about the direction of rotation because they are scattered over more pixels. Difference between 20 and 32 seconds is about 60% but in RMSE it is 259% and distance is 316% improvement in precision. But in most times system uses as short exposure as possible, therefore worst case scenario is the most common. As the first hint for blind astrometric solution algorithm can give limited information but precision in hundreds of pixels is still too high. It is clear that algorithm should be enhanced, we plan to use better algorithm for calculating the centroid, and orientation of the ellipse approximation of the star using weighted calculation from the intensity in the star pixels and not only by binary mask created by simple thresholding. For this reasons, we consider this algorithm only as a proof of concept. Algorithm is usable for all weather monitors as well as more sophisticated devices like described by Castro-Tirado et al. (2008). 5. Acknowledgements This work was supported by the Grant Agency of the Czech Technical University in Prague, Grant No. SGS16/165/OHK3/2T/13. References Castro-Tirado, A. J., Jelínek, M., Vítek, S., et al. 2008, in Proceedings of the SPIE, Vol. 7019, Advanced Software and Control for Astronomy II, 70191V Chen, L., Wang, L., & Xiong, J. 2010, in Proceedings of the 2010 International Conference on e-education, e-business, e-management and e-learning, IC4E 10 (Washington, DC, USA: IEEE Computer Society), Janout, P., Páta, P., Bednář, J., et al. 2015, in Proceedings of the SPIE, Vol. 9450, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 94501I Trigo-Rodriguez, J. M., Madiedo, J. M., Gural, P. S., et al. 2008, Earth Moon and Planets, 102, 231

Light-pollution measurement with the Wide-field all-sky image analyzing monitoring system

Light-pollution measurement with the Wide-field all-sky image analyzing monitoring system Contrib. Astron. Obs. Skalnaté Pleso 47, 2 219, (20) Light-pollution measurement with the Wide-field all-sky image analyzing monitoring system S. Vítek Czech Technical University in Prague, Technická 2,

More information

Hard X-ray Vela supernova observation on rocket experiment WRX-R

Hard X-ray Vela supernova observation on rocket experiment WRX-R Contrib. Astron. Obs. Skalnaté Pleso 47, 165 169, (2017) Hard X-ray Vela supernova observation on rocket experiment WRX-R V. Stehlikova 1,2, M. Urban 1, O. Nentvich 1, V. Daniel 2, L. Sieger 1 and J. Tutt

More information

Why Use a Telescope?

Why Use a Telescope? 1 Why Use a Telescope? All astronomical objects are distant so a telescope is needed to Gather light -- telescopes sometimes referred to as light buckets Resolve detail Magnify an image (least important

More information

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset Chapter 6 Telescopes: Portals of Discovery Agenda Announce: Read S2 for Thursday Ch. 6 Telescopes 6.1 Eyes and Cameras: Everyday Light Sensors How does your eye form an image? Our goals for learning How

More information

Chapter 6 Lecture. The Cosmic Perspective. Telescopes Portals of Discovery Pearson Education, Inc.

Chapter 6 Lecture. The Cosmic Perspective. Telescopes Portals of Discovery Pearson Education, Inc. Chapter 6 Lecture The Cosmic Perspective Telescopes Portals of Discovery 2014 Pearson Education, Inc. Telescopes Portals of Discovery CofC Observatory 6.1 Eyes and Cameras: Everyday Light Sensors Our goals

More information

Detection of X-ray spectra and images by Timepix

Detection of X-ray spectra and images by Timepix Contrib. Astron. Obs. Skalnaté Pleso 47, 151 156, (2017) Detection of X-ray spectra and images by Timepix M. Urban, O. Nentvich, V. Stehlikova and L. Sieger Czech Technical University in Prague, Faculty

More information

Chapter 6 Lecture. The Cosmic Perspective Seventh Edition. Telescopes Portals of Discovery Pearson Education, Inc.

Chapter 6 Lecture. The Cosmic Perspective Seventh Edition. Telescopes Portals of Discovery Pearson Education, Inc. Chapter 6 Lecture The Cosmic Perspective Seventh Edition Telescopes Portals of Discovery Telescopes Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How do eyes

More information

Telescopes: Portals of Discovery Pearson Education, Inc.

Telescopes: Portals of Discovery Pearson Education, Inc. Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How do eyes and cameras work? The Eye Refraction Incoming light ray Air Glass Refraction is the bending

More information

Future Robotic observatory on Mountain Vidojevica: site and equipment specification

Future Robotic observatory on Mountain Vidojevica: site and equipment specification Second Workshop on Robotic Autonomous Observatories ASI Conference Series, 2012, Vol. 7, pp 187 193 Edited by Sergey Guziy, Shashi B. Pandey, Juan C. Tello & Alberto J. Castro-Tirado Future Robotic observatory

More information

Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light.

Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light. Telescopes Portals of Discovery Chapter 6 Lecture The Cosmic Perspective 6.1 Eyes and Cameras: Everyday Light Sensors How do eyes and cameras work? Seventh Edition Telescopes Portals of Discovery The Eye

More information

Chapter 6 Telescopes: Portals of Discovery

Chapter 6 Telescopes: Portals of Discovery Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How does your eye form an image? How do we record images? How does your eye form an image?

More information

A Ramble Through the Night Sky

A Ramble Through the Night Sky 1 2 Contents of Talk What is up there? Moon, stars, planets, comets, aurora, nebulae, galaxies How can I find my way around? Magazines, books, planisphere, software What if I want to see more? Binoculars,

More information

3/7/2018. Light and Telescope. PHYS 1411 Introduction to Astronomy. Topics for Today s class. What is a Telescopes?

3/7/2018. Light and Telescope. PHYS 1411 Introduction to Astronomy. Topics for Today s class. What is a Telescopes? PHYS 1411 Introduction to Astronomy Light and Telescope Chapter 6 Topics for Today s class Optical Telescopes Big Telescopes Advances in Telescope Designs Telescopes Mountings Problems with Mirrors and

More information

Commissioning of the Hanle Autoguider

Commissioning of the Hanle Autoguider Commissioning of the Hanle Autoguider Copenhagen University Observatory Edited November 10, 2005 Figure 1: First light image for the Hanle autoguider, obtained on September 17, 2005. A 5 second exposure

More information

Telescopes come in three basic styles

Telescopes come in three basic styles Telescopes come in three basic styles Refracting telescopes use lenses Refractors are either achromatic (some color distortion) or apochromatic (very little if any color distortion). Apo refractors use

More information

Feasibility of Using Commercial Star Trackers for On-Orbit Resident Space Object Detection

Feasibility of Using Commercial Star Trackers for On-Orbit Resident Space Object Detection Feasibility of Using Commercial Star Trackers for On-Orbit Resident Space Object Detection Samuel Clemens York University Regina Lee York University Paul Harrison Magellan Aerospace Warren Soh Magellan

More information

Telescopes. Optical Telescope Design. Reflecting Telescope

Telescopes. Optical Telescope Design. Reflecting Telescope Telescopes The science of astronomy was revolutionized after the invention of the telescope in the early 17th century Telescopes and detectors have been constantly improved over time in order to look at

More information

Chapter 5 Telescopes

Chapter 5 Telescopes Chapter 5 Telescopes Units of Chapter 5 Telescope Design Images and Detectors The Hubble Space Telescope Telescope Size High-Resolution Astronomy Radio Astronomy Interferometry Space-Based Astronomy Full-Spectrum

More information

A Ramble Through the Night Sky

A Ramble Through the Night Sky 1 2 Contents of Talk What is up there? Moon, stars, planets, comets, aurora, nebulae, galaxies How can I find my way around? Magazines, books, planisphere, software What if I want to see more? Binoculars,

More information

Telescopes. Optical Telescope Design. Reflecting Telescope

Telescopes. Optical Telescope Design. Reflecting Telescope Telescopes The science of astronomy was revolutionized after the invention of the telescope in the early 17th century Telescopes and detectors have been constantly improved over time in order to look at

More information

Astronomical Tools. Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes

Astronomical Tools. Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes Astronomical Tools Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes Laws of Refraction and Reflection Law of Refraction n 1 sin θ 1

More information

How Light Beams Behave. Light and Telescopes Guiding Questions. Telescopes A refracting telescope uses a lens to concentrate incoming light at a focus

How Light Beams Behave. Light and Telescopes Guiding Questions. Telescopes A refracting telescope uses a lens to concentrate incoming light at a focus Light and Telescopes Guiding Questions 1. Why is it important that telescopes be large? 2. Why do most modern telescopes use a large mirror rather than a large lens? 3. Why are observatories in such remote

More information

Laboratory Emulation of Observations from Space

Laboratory Emulation of Observations from Space Science with a Wide-field Infrared Telescopes in Space, Pasadena, Feb 13, 2012 of Observations from Space Roger Smith -- Caltech Jason Rhodes, Suresh Seshadri -- JPL Previous culture, friendly collaboration

More information

Automatic Star-tracker Optimization Framework. Andrew Tennenbaum The State University of New York at Buffalo

Automatic Star-tracker Optimization Framework. Andrew Tennenbaum The State University of New York at Buffalo SSC17-VIII-6 Automatic Star-tracker Optimization Framework Andrew Tennenbaum The State University of New York at Buffalo aztennen@buffalo.edu Faculty Advisor: John Crassidis The State University of New

More information

D50 - Telescope for GRBs & HE sources. Matúš Kocka

D50 - Telescope for GRBs & HE sources. Matúš Kocka D50 - Telescope for GRBs & HE sources Matúš Kocka kocka.mat@gmail.com Astronomical Institute of CR, Stellar department, Group of Hight Energy Astrophysics 1 D50 Looking back in history D50 telescope is

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 3 Telescopes Lecture Presentation 3.0 Imaging the universe Our original observations of the universe depended on our eyes! What other

More information

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes Foundations of Astronomy 13e Seeds Chapter 6 Light and Telescopes Guidepost In this chapter, you will consider the techniques astronomers use to study the Universe What is light? How do telescopes work?

More information

INTRODUCTION TO THE TELESCOPE

INTRODUCTION TO THE TELESCOPE INTRODUCTION TO THE TELESCOPE What will you learn in this Lab? For a few of the labs this semester, you will be using an 8-inch Celestron telescope to take observations. This lab will introduce you to

More information

CCD Astrometric Measurements of WDS Using the itelescope Network

CCD Astrometric Measurements of WDS Using the itelescope Network Page 558 CCD Astrometric Measurements of WDS 08167+4053 Using the itelescope Network Bill Riley 1, Dewei Li 2, Junyao Li 2, Aren Dennis 2, Grady Boyce 3 and Pat Boyce 3. 1. Cuesta College 2. Army and Navy

More information

Detection of Artificial Satellites in Images Acquired in Track Rate Mode.

Detection of Artificial Satellites in Images Acquired in Track Rate Mode. Detection of Artificial Satellites in Images Acquired in Track Rate Mode. Martin P. Lévesque Defence R&D Canada- Valcartier, 2459 Boul. Pie-XI North, Québec, QC, G3J 1X5 Canada, martin.levesque@drdc-rddc.gc.ca

More information

An Example of Telescope Resolution

An Example of Telescope Resolution An Example of Telescope Resolution J. Kielkopf September 23, 2012 1 Principles Light leaves a distant source with the properties of a spherical wave. That is, the phase of the wave is constant on the surface

More information

Digitising Astronomical Plates of the Heidelberg Königstuhl Archives

Digitising Astronomical Plates of the Heidelberg Königstuhl Archives Digitising Astronomical Plates of the Heidelberg Königstuhl Archives Florian Rothmaier, Markus Demleitner with contributions by Holger Mandel and Stephanie Schwemmer Zentrum für Astronomie Heidelberg Sofia,

More information

CCD Astrometric Measurements of WDS using the itelescope network

CCD Astrometric Measurements of WDS using the itelescope network Accepted for publication by the Journal of Double Star Observations, April 24, 2016 CCD Astrometric Measurements of WDS 08167+4053 using the itelescope network Bill Riley 1, Dewei Li 2, Junyao Li 2, Aren

More information

Sky brightness from Dome A

Sky brightness from Dome A Sky brightness from Dome A Preliminary results from the HRCAM all-sky camera Authors: & Michael Ashley Date: Meeting: Collaborators University of NSW Michael C. B. Ashley Daniel M. Luong-Van John W. V.

More information

How do they work? Chapter 5

How do they work? Chapter 5 Telescopes How do they work? Chapter 5 1. History 2. Lenses & Hardware 3. Reflecting Telescopes 4. Refracting Telescopes History Hans Lippershey Middleburg, Holland invented the refractor telescope in

More information

Notes 10-3: Ellipses

Notes 10-3: Ellipses Notes 10-3: Ellipses I. Ellipse- Definition and Vocab An ellipse is the set of points P(x, y) in a plane such that the sum of the distances from any point P on the ellipse to two fixed points F 1 and F

More information

Optics and Telescopes

Optics and Telescopes Optics and Telescopes Guiding Questions 1. Why is it important that telescopes be large? 2. Why do most modern telescopes use a large mirror rather than a large lens? 3. Why are observatories in such remote

More information

Determining absolute orientation of a phone by imaging celestial bodies

Determining absolute orientation of a phone by imaging celestial bodies Technical Disclosure Commons Defensive Publications Series October 06, 2017 Determining absolute orientation of a phone by imaging celestial bodies Chia-Kai Liang Yibo Chen Follow this and additional works

More information

Agenda Announce: Visions of Science Visions of Science Winner

Agenda Announce: Visions of Science  Visions of Science Winner 7. Telescopes: Portals of Discovery All of this has been discovered and observed these last days thanks to the telescope that I have [built], after having been enlightened by divine grace. Galileo Galilei

More information

Fig. 2 The image will be in focus everywhere. It's size changes based on the position of the focal plane.

Fig. 2 The image will be in focus everywhere. It's size changes based on the position of the focal plane. Instruments 1. Basic Optics 1. Rays of Light 2. Waves of light 3. Basic Imaging Systems 4. A Basic Telescope 5. Aberrations 6. Mirrors 2. Some Real Instruments 1. Galileo's Telescope 2. Keplerian Optics

More information

Lecture 2. September 13, 2018 Coordinates, Telescopes and Observing

Lecture 2. September 13, 2018 Coordinates, Telescopes and Observing Lecture 2 September 13, 2018 Coordinates, Telescopes and Observing News Lab time assignments are on class webpage. Lab 2 Handed out today and is due September 27. Observing commences starting tomorrow.

More information

Improved Space Object Orbit Determination Using CMOS Detectors. J. Silha 1,2

Improved Space Object Orbit Determination Using CMOS Detectors. J. Silha 1,2 Improved Space Object Orbit Determination Using CMOS Detectors J. Silha 1,2 1 Astronomical Institute, University of Bern, CH-3012 Bern, Switzerland, 2 Faculty of Mathematics, Physics and Informatics, Comenius

More information

Gaia Astrometry Upkeeping by GNSS - Evaluation Study [GAUGES]

Gaia Astrometry Upkeeping by GNSS - Evaluation Study [GAUGES] Gaia Astrometry Upkeeping by GNSS - Evaluation Study [GAUGES] M. Gai, A. Vecchiato [INAF-OATo] A. Fienga, F. Vakili, J.P. Rivet, D. Albanese [OCA] Framework: Development of High Precision Astrometric Techniques

More information

CCD Astrometric Measurements of WDS

CCD Astrometric Measurements of WDS CCD Astrometric Measurements of WDS 04155+0611 Zhixin Cao 1, Junyao Li 1, Jeff Li 1, Steve Qu 1, Michael Fene 2, Grady Boyce 3, and Pat Boyce 3 1. Army and Navy Academy, Carlsbad, California 2. University

More information

Observational Astronomy - Lecture 3 Telescopes and the Electromagnetic Spectrum

Observational Astronomy - Lecture 3 Telescopes and the Electromagnetic Spectrum Observational Astronomy - Lecture 3 Telescopes and the Electromagnetic Spectrum Craig Lage New York University - Department of Physics craig.lage@nyu.edu April 1, 2014 1 / 1 The Electromagnetic Spectrum

More information

High-resolution échelle at Skalnaté Pleso: future plans and development T. Pribulla

High-resolution échelle at Skalnaté Pleso: future plans and development T. Pribulla High-resolution échelle at Skalnaté Pleso: future plans and development T. Pribulla Astronomical Institute of the Slovak Academy of Sciences, Tatranská Lomnica, Slovakia PLATOSpec workshop, Ondřejov observatory,

More information

Robotics Institute, Carnegie Mellon University Forbes Ave., Pittsburgh PA of Sun altitude, but the basic ideas could be applied

Robotics Institute, Carnegie Mellon University Forbes Ave., Pittsburgh PA of Sun altitude, but the basic ideas could be applied Robot Localization using a Computer Vision Sextant Fabio Cozman Eric Krotkov Robotics Institute, Carnegie Mellon University 5000 Forbes Ave., Pittsburgh PA 15213 Abstract This paper explores the possibility

More information

Kirkpatrick Baez X ray optics for astrophysics: Recent status

Kirkpatrick Baez X ray optics for astrophysics: Recent status Contrib. Astron. Obs. Skalnaté Pleso 8, 37 5, (18) Kirkpatrick Baez X ray optics for astrophysics: Recent status R. Hudec 1,, L. Pina 3, V. Marsikova 1, O. Nentvich 1, M. Urban 1 and A. Inneman 1 1 Czech

More information

INTRODUCTION TO THE TELESCOPE

INTRODUCTION TO THE TELESCOPE AST 113/114 Fall 2014 / Spring 2016 NAME: INTRODUCTION TO THE TELESCOPE What will you learn in this Lab? For a few of the labs this semester, you will be using an 8-inch Celestron telescope to take observations.

More information

NOTES: Arvind Borde The Bending of Light and Telescopes. Light travels in straight lines... except when it bends (refraction).

NOTES: Arvind Borde The Bending of Light and Telescopes. Light travels in straight lines... except when it bends (refraction). Arvind Borde The Bending of Light and Telescopes Light travels in straight lines...... except when it bends (refraction). 1 The bending of light causes lensing. 2 And lensing is what our eyes, cameras,

More information

Remote Observing with HdA/MPIA's 50cm Telescope

Remote Observing with HdA/MPIA's 50cm Telescope Remote Observing with HdA/MPIA's 50cm Telescope Carolin Liefke AstroTechTalk May 5th 2017 Remote observing with HdA/MPIa's 50cm telescope The telescope and its instrumentation Remote observing how does

More information

Astrometric Detection of Exoplanets

Astrometric Detection of Exoplanets Astrometric Detection of Exoplanets Angles & Coordinates: 1 full circle = 360 degrees 1 degree = 60 arcminutes 1 arcminute = 60 arcseconds ~ 1 inch @ 100 yards (2.908 cm at 100 meters) 1 milliarcsec (mas)

More information

AOL Spring Wavefront Sensing. Figure 1: Principle of operation of the Shack-Hartmann wavefront sensor

AOL Spring Wavefront Sensing. Figure 1: Principle of operation of the Shack-Hartmann wavefront sensor AOL Spring Wavefront Sensing The Shack Hartmann Wavefront Sensor system provides accurate, high-speed measurements of the wavefront shape and intensity distribution of beams by analyzing the location and

More information

Properties of Thermal Radiation

Properties of Thermal Radiation Observing the Universe: Telescopes Astronomy 2020 Lecture 6 Prof. Tom Megeath Today s Lecture: 1. A little more on blackbodies 2. Light, vision, and basic optics 3. Telescopes Properties of Thermal Radiation

More information

8 The SVD Applied to Signal and Image Deblurring

8 The SVD Applied to Signal and Image Deblurring 8 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

Final Announcements. Lecture25 Telescopes. The Bending of Light. Parts of the Human Eye. Reading: Chapter 7. Turn in the homework#6 NOW.

Final Announcements. Lecture25 Telescopes. The Bending of Light. Parts of the Human Eye. Reading: Chapter 7. Turn in the homework#6 NOW. Final Announcements Turn in the homework#6 NOW. Homework#5 and Quiz#6 will be returned today. Today is the last lecture. Lecture25 Telescopes Reading: Chapter 7 Final exam on Thursday Be sure to clear

More information

8 The SVD Applied to Signal and Image Deblurring

8 The SVD Applied to Signal and Image Deblurring 8 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

Telescopes, Observatories, Data Collection

Telescopes, Observatories, Data Collection Telescopes, Observatories, Data Collection Telescopes 1 Astronomy : observational science only input is the light received different telescopes, different wavelengths of light lab experiments with spectroscopy,

More information

III. ASTRONOMY TOOLS:

III. ASTRONOMY TOOLS: III. ASTRONOMY TOOLS: A. Since light is so important to astronomers, they want to collect as much of it as possible from a given object, and quantitatively study it in great detail. 1. Astronomers use

More information

Shape Measurement: An introduction to KSB

Shape Measurement: An introduction to KSB Shape Measurement: An introduction to KSB Catherine Heymans Institute for Astronomy, University of Edinburgh, UK DUEL Weak Lensing School September 2009 at the end of the week you ll be able to... Use

More information

OSCILLATION OF THE MEASUREMENT ACCURACY OF THE CENTER LOCATION OF AN ELLIPSE ON A DIGITAL IMAGE

OSCILLATION OF THE MEASUREMENT ACCURACY OF THE CENTER LOCATION OF AN ELLIPSE ON A DIGITAL IMAGE OSCILLATION OF THE MEASUREMENT ACCURACY OF THE CENTER LOCATION OF AN ELLIPSE ON A DIGITAL IMAGE R. Matsuoka a, b a Research and Development Division, Kokusai Kogyo Co., Ltd., -4-1 Harumi-cho, Fuchu, Tokyo

More information

Introduction to Telescopes Pre-lab

Introduction to Telescopes Pre-lab AST 114 Spring 2005 Introduction to Telescopes Introduction to Telescopes Pre-lab 1. Read through the "Parts of a Telescope" section of the lab. You may be asked to point out the different parts of the

More information

1 Lecture, 2 September 1999

1 Lecture, 2 September 1999 1 Lecture, 2 September 1999 1.1 Observational astronomy Virtually all of our knowledge of astronomical objects was gained by observation of their light. We know how to make many kinds of detailed measurements

More information

Telescopes: Portals of Discovery

Telescopes: Portals of Discovery Telescopes: Portals of Discovery How do light and matter interact? Emission Absorption Transmission Transparent objects transmit light Opaque objects block (absorb) light Reflection or Scattering Reflection

More information

How to Measure and Record Light Spectrograph. The Photographic plate now obsolete Turbulence

How to Measure and Record Light Spectrograph. The Photographic plate now obsolete Turbulence PHYS 1411 Introduction to Astronomy Light and Telescope Chapter 6 Chapter 6 topics we have covered so far Radiation Information from Space Wave properties, light as a wave and particle, Electromagnetic

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. The diagram shows the concave mirror of a Cassegrain reflecting telescope, together with the eyepiece lens. Complete the diagram of the telescope and mark on it the focal

More information

D = telescope aperture h = wavelength of light being observed D and h must be in the same units.

D = telescope aperture h = wavelength of light being observed D and h must be in the same units. the diameter or aperture. Because stars are extremely far away, they appear as point sources of light even with a telescope. Their brightness in the telescope depends only on the size of the aperture.

More information

CCD astrometry and instrumental V photometry of visual double stars,

CCD astrometry and instrumental V photometry of visual double stars, ASTRONOMY & ASTROPHYSICS MAY I 1999, PAGE 525 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 136, 525 529 (1999) CCD astrometry and instrumental V photometry of visual double stars, V. Differential measurements

More information

Astronomy 1504/15014 Section 20

Astronomy 1504/15014 Section 20 1 point each Astronomy 1504/15014 Section 20 Midterm 1 (Practice Exam) September 21, 2015 Exam Version A Choose the answer that best completes the question. Read each problem carefully and read through

More information

Universe. Chapter 6. Optics and Telescopes 11/16/2014. By reading this chapter, you will learn. Tenth Edition

Universe. Chapter 6. Optics and Telescopes 11/16/2014. By reading this chapter, you will learn. Tenth Edition Roger Freedman Robert Geller William Kaufmann III Universe Tenth Edition Chapter 6 Optics and Telescopes By reading this chapter, you will learn 6 1 How a refracting telescope uses a lens to form an image

More information

Observation of Light Curves of Space Objects. Hirohisa Kurosaki Japan Aerospace Exploration Agency Toshifumi Yanagisawa.

Observation of Light Curves of Space Objects. Hirohisa Kurosaki Japan Aerospace Exploration Agency Toshifumi Yanagisawa. Observation of Light Curves of Space Objects Hirohisa Kurosaki Japan Aerospace Exploration Agency Toshifumi Yanagisawa Japan Aerospace Exploration Agency Atsushi Nakajima Japan Aerospace Exploration Agency

More information

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 5 Telescopes Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Tools of the Trade: Telescopes The Powers of a Telescope Collecting Power Bigger telescope,

More information

Magnifying Glass. Angular magnification (m): 25 cm/f < m < 25cm/f + 1. image at 25 cm (= normal near point) relaxed eye, image at (normal) far point

Magnifying Glass. Angular magnification (m): 25 cm/f < m < 25cm/f + 1. image at 25 cm (= normal near point) relaxed eye, image at (normal) far point Magnifying Glass Angular magnification (m): 25 cm/f < m < 25cm/f + 1 relaxed eye, image at (normal) far point image at 25 cm (= normal near point) For more magnification, first use a lens to form an enlarged

More information

Image Processing in Astronomy: Current Practice & Challenges Going Forward

Image Processing in Astronomy: Current Practice & Challenges Going Forward Image Processing in Astronomy: Current Practice & Challenges Going Forward Mario Juric University of Washington With thanks to Andy Connolly, Robert Lupton, Ian Sullivan, David Reiss, and the LSST DM Team

More information

6 The SVD Applied to Signal and Image Deblurring

6 The SVD Applied to Signal and Image Deblurring 6 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

Universe. Chapter 6. Optics and Telescopes 8/12/2015. By reading this chapter, you will learn. Tenth Edition

Universe. Chapter 6. Optics and Telescopes 8/12/2015. By reading this chapter, you will learn. Tenth Edition Roger Freedman Robert Geller William Kaufmann III Universe Tenth Edition Chapter 6 Optics and Telescopes By reading this chapter, you will learn 6 1 How a refracting telescope uses a lens to form an image

More information

Field Rotation in Altitude over Azimuth Mounts and Its Effect on CCD Imaging What is the Maximum Exposure? Bill Keicher.

Field Rotation in Altitude over Azimuth Mounts and Its Effect on CCD Imaging What is the Maximum Exposure? Bill Keicher. Field Rotation in Altitude over Azimuth Mounts and Its Effect on CCD Imaging What is the Maximum Exposure? Bill Keicher 12 March 2005 When planning astronomical imaging sessions with a telescope equipped

More information

Astronomical Techniques

Astronomical Techniques Astronomical Techniques Lecture 2 Yogesh Wadadekar ISYA 2016, Tehran ISYA 2016, Tehran 1 / 51 How sun moves? How do stars move in the sky? ISYA 2016, Tehran 2 / 51 Celestial sphere ISYA 2016, Tehran 3

More information

PHYS 160 Astronomy Test #2 Fall 2017 Version A

PHYS 160 Astronomy Test #2 Fall 2017 Version A PHYS 160 Astronomy Test #2 Fall 2017 Version A I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. A blackbody emits all of its radiation

More information

Modern Image Processing Techniques in Astronomical Sky Surveys

Modern Image Processing Techniques in Astronomical Sky Surveys Modern Image Processing Techniques in Astronomical Sky Surveys Items of the PhD thesis József Varga Astronomy MSc Eötvös Loránd University, Faculty of Science PhD School of Physics, Programme of Particle

More information

Optics and Telescope. Chapter Six

Optics and Telescope. Chapter Six Optics and Telescope Chapter Six ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap.

More information

Properties of the Solar System

Properties of the Solar System Properties of the Solar System Dynamics of asteroids Telescopic surveys, especially those searching for near-earth asteroids and comets (collectively called near-earth objects or NEOs) have discovered

More information

PAPER 338 OPTICAL AND INFRARED ASTRONOMICAL TELESCOPES AND INSTRUMENTS

PAPER 338 OPTICAL AND INFRARED ASTRONOMICAL TELESCOPES AND INSTRUMENTS MATHEMATICAL TRIPOS Part III Monday, 12 June, 2017 1:30 pm to 3:30 pm PAPER 338 OPTICAL AND INFRARED ASTRONOMICAL TELESCOPES AND INSTRUMENTS Attempt no more than TWO questions. There are THREE questions

More information

Larger Optics and Improved Calibration Techniques for Small Satellite Observations with the ERAU OSCOM System

Larger Optics and Improved Calibration Techniques for Small Satellite Observations with the ERAU OSCOM System Larger Optics and Improved Calibration Techniques for Small Satellite Observations with the ERAU OSCOM System Sergei Bilardi 1, Aroh Barjatya 1, Forrest Gasdia 2 1 Space and Atmospheric Instrumentation

More information

International Olympiad on Astronomy and Astrophysics (IOAA)

International Olympiad on Astronomy and Astrophysics (IOAA) Syllabus of International Olympiad on Astronomy and Astrophysics (IOAA) General Notes 1. Extensive contents in basic astronomical concepts are required in theoretical and practical problems. 2. Basic concepts

More information

What are the most important properties of a telescope? Chapter 6 Telescopes: Portals of Discovery. What are the two basic designs of telescopes?

What are the most important properties of a telescope? Chapter 6 Telescopes: Portals of Discovery. What are the two basic designs of telescopes? Chapter 6 Telescopes: Portals of Discovery What are the most important properties of a telescope? 1. Light-collecting area: Telescopes with a larger collecting area can gather a greater amount of light

More information

Study of a new Common Proper Motion Pair at Obsevatorio Kappa Crucis IAU/MPC I26

Study of a new Common Proper Motion Pair at Obsevatorio Kappa Crucis IAU/MPC I26 Page 150 Study of a new Common Proper Motion Pair at Obsevatorio Kappa Crucis IU/MPC I26 lejandro Garro Observatorio Kappa Crucis IU/MPC I26 Córdoba, rgentina Red de ficionados a la stronomía http://observatoriokappacrucis.blogspot.com

More information

Galaxies: enormous collections of gases, dust and stars held together by gravity Our galaxy is called the milky way

Galaxies: enormous collections of gases, dust and stars held together by gravity Our galaxy is called the milky way Celestial bodies are all of the natural objects in space ex. stars moons, planets, comets etc. Star: celestial body of hot gas that gives off light and heat the closest star to earth is the sun Planet:

More information

Speckle Interferometry

Speckle Interferometry Contrib. Astron. Obs. Skalnaté Pleso 43, 229 236, (2014) Speckle Interferometry R. Köhler Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany, (E-mail: koehler@mpia.de) Received:

More information

Earth s Atmosphere & Telescopes. Atmospheric Effects

Earth s Atmosphere & Telescopes. Atmospheric Effects Earth s Atmosphere & Telescopes Whether light is absorbed by the atmosphere or not depends greatly on its wavelength. Earth s atmosphere can absorb certain wavelengths of light so much that astronomers

More information

Determining Polar Axis Alignment Accuracy

Determining Polar Axis Alignment Accuracy Determining Polar Axis Alignment Accuracy by Frank Barrett nd Edition 9/1/016 Abstract: In order to photograph dim celestial objects, long exposures on the order of minutes or hours are required. To perform

More information

Optical Instruments. Optical Instruments 1. Physics 123, Fall 2012

Optical Instruments. Optical Instruments 1. Physics 123, Fall 2012 Optical Instruments 1 Physics 123, Fall 2012 Name Optical Instruments I. Magnifier The lens in the human eye adjusts its shape to change the focal length, so that objects at a variety of distances can

More information

Astronomy is remote sensing

Astronomy is remote sensing Astronomy is remote sensing We cannot repeat (or change) the Universe in a controlled environment. We cannot make planets, stars, or galaxies. We cannot make the vacuum of space, nor the shape of spacetime

More information

Astronomical Equipment for

Astronomical Equipment for Astronomical Equipment for Martin Mobberley Springer 1 Fundamentals for Beginners 1 Using Low Magnification 1 Using High Magnification 4 Formulae 4 Jargon 4 Eyepiece Sizes 6 2 Refractors and Reflectors

More information

The J-MAPS Mission: Improvements to Orientation Infrastructure and Support for Space Situational Awareness

The J-MAPS Mission: Improvements to Orientation Infrastructure and Support for Space Situational Awareness AIAA SPACE 2007 Conference & Exposition 18-20 September 2007, Long Beach, California AIAA 2007-9927 The J-MAPS Mission: Improvements to Orientation Infrastructure and Support for Space Situational Awareness

More information

Millimagnitude Accuracy Photometry of Extra solar Planets Transits using Small Telescopes

Millimagnitude Accuracy Photometry of Extra solar Planets Transits using Small Telescopes Millimagnitude Accuracy Photometry of Extra solar Planets Transits using Small Telescopes S. Kozłowski 1, 2, A. Szary 1, M. Zub 1, G. Melikidze 1, K. Maciesiak 1, J. A. Gil 1 1 Institute of Astronomy University

More information

Astrometric Measurements of Binary Star System WDS

Astrometric Measurements of Binary Star System WDS Page 83 Astrometric Measurements of Binary Star System WDS 12069+0548 Stephen White 1, Paige Benson 1, Sepehr Ardebilianfard 1, Gezal Bahmani 1, Irena Stojimirovic 1, Alexander Beltzer Sweeney 1, Grady

More information

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1 David Buckley, SAAO 24 Feb 2012 NASSP OT1: Telescopes I-1 1 What Do Telescopes Do? They collect light They form images of distant objects The images are analyzed by instruments The human eye Photographic

More information

The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5.

The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5. Happy Thursday! The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5. The exposures were made with a digital

More information

Satellite and debris characterisation in LEO and GEO using adaptive optics

Satellite and debris characterisation in LEO and GEO using adaptive optics Satellite and debris characterisation in LEO and GEO using adaptive optics M. Copeland, F. Bennet, F. Rigaut, C. d Orgeville and V. Korkiakoski Research School of Astronomy and Astrophysics, Australian

More information