Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Observing the Universe: Telescopes Astronomy 2020 Lecture 6 Prof. Tom Megeath Today s Lecture: 1. A little more on blackbodies 2. Light, vision, and basic optics 3. Telescopes Properties of Thermal Radiation 1. Hotter objects emit more light at all frequencies per unit area. 2. Hotter objects emit photons with a higher average energy. First: Some more on black bodies. Two Cups - one hot, one cold. Visible Light Infrared 1

2 Visible Light Since neither cup is hot enough to emit in visible light, we see it in reflected light from the Sun or light bulb (both are hot enough to emit in visible). Wien s law: λ (nm) = 2.9x10 6 /T(Kelvin) where 1 nm = 10-9 meters Picture from Nick Strobel s astronomy notes: Infrared Light In this picture, everything is emitting infrared light: the water, the cup, the background. At the same time everything is absorbing infrared light. If everything was at the same temperature, it would emit and absorb the same amount of light, and everything would be the same color (I.e. everything would be the same temperature). Melting Ice Cube Since the hot water is hotter than its surroundings, it is emitting more light (glows more brightly) than it absorbs. It will eventually cool (conservation of energy) Since the cold water is colder than its surrounding, it absorbs more light than it emits. It will eventually warm up. In this infrared picture, the color is the temperature of the blackbody radiation. Cold ice cube radiates less light than surrounding water. Materials that are transparent in visible light, may absorb much infrared radiation (as well as some visible light). For example: Glass, water, air absorbs infrared radiation 2

3 How does your eye form an image? Refraction Refraction is the bending of light when it passes from one substance into another Your eye uses refraction to focus light Example: Refraction at Sunset focusing Light Sun appears distorted at sunset because of how light bends in Earth s atmosphere Refraction can cause parallel light rays to converge to a focus 3

4 Image Formation How do we record images? The focal plane is where light from different directions comes into focus The image behind a single (convex) lens is actually upside-down! Focusing Light Digital cameras detect light with charge-coupled devices (CCDs) A camera focuses light like an eye and captures the image with a detector The CCD detectors in digital cameras are similar to those used in modern telescopes What are the two most important properties of a telescope? 1. Light-collecting area: Telescopes with a larger collecting area can gather a greater amount of light in a shorter time. 2. Angular resolution: Telescopes that are larger are capable of taking images with greater detail. 4

5 Light Collecting Area A telescope s diameter tells us its lightcollecting area: Area = π(diameter/2) 2 The largest telescopes currently in use have a diameter of about 10 meters Angular Resolution is give by: θ = 1.22 λ (meters)/d (meters) Angular Resolution Where θ is the angular resolution of a telescope in radians, λ is the wavelength of light, and D is the diameter of the telescope. In units of arcseconds (a full moon is 1800 arcseconds in diameter) θ(arcseconds) = 2.5 x 10 5 λ/d L = 650 nm or 650 x 10-9 meter (red light) D = 10 meter (biggest telescope) θ = arcsecond which is 30 meter at the distance of the moon Ultimate limit to resolution comes from interference of light waves within a telescope. Larger telescopes are capable of greater resolution because there s less interference However, resolution is often limited by atmospheric turbulence What are the two basic designs of telescopes? Reflecting Telescope Refracting telescope: focuses light with lenses Reflecting telescope: focuses light with mirrors Reflecting telescopes can have much greater diameters Most modern telescopes are reflectors 5

6 Designs for Reflecting Telescopes Mirrors in Reflecting Optical/ Infrared Telescopes Twin Keck telescopes on Mauna Kea in Hawaii Segmented 10-meter mirror of a Keck telescope Imaging Imaging Astronomical detectors can record forms of light our eyes can t see Color is sometimes used to represent different energies of nonvisible light Astronomical detectors generally record only one color of light at a time Several images must be combined to make full-color pictures 6

7 Spectroscopy Spectroscopy Light from only one star enters Diffraction grating breaks light into spectrum A spectrograph separates the different wavelengths of light before they hit the detector Graphing relative brightness of light at each wavelength shows the details in a spectrum Detector records spectrum Timing Timing Example: Transits and Eclipses A light curve represents a series of brightness measurements made over a period of time A transit is when a planet crosses in front of a star The resulting eclipse reduces the star s apparent brightness and tells us planet s radius No orbital tilt: accurate measurement of planet mass If the temperature and radius of the star are known, the radius of the planet can be determined. 7

9 M51 Galaxy Resolved by Submillimeter Array Radio Interferometry Example The Very Large Array Hubble Image (visible light) SMA Image (submillimeter) Gurwell & Butler (2005) Radio map is shown in Orange Calm, High, Dark, Dry Summit of Mauna Kea, Hawaii The best observing sites are atop remote mountains Best sites in the world are on Mauna Kea in Hawaii and high mountain tops in the Chilean Andes. Antartica may be the best site for infrared astronomy. Turbulence and Twinkling Turbulence in the air above the telescope distorts the image of the star, causing it to move and change in shape. This blurs the image of a star, and also causes the twinkling of stars to the naked eye. Slide from Claire Max: 9

10 How does adaptive optics help? (cartoon approximation) Measure details of blurring from guide star near the object you want to observe Calculate (on a computer) the shape to apply to deformable mirror to correct blurring Light from both guide star and astronomical object is reflected from deformable mirror; distortions are removed Adaptive Optics Star viewed through turbulent atmophere Same star corrected with adaptive optics. By rapidly changing the shape of a mirror in the telescopes light path, the variations from turbulence can be corrected. Slide from Claire Max: Slide from Claire Max: Telescopes in Space Advantage Number 1 of Space Based Telescopes: Improved Angular Resolution Star viewed with groundbased telescope Same star viewed with Hubble Space Telescope Turbulent air flow in Earth s atmosphere distorts our view, causing stars to appear to twinkle Adaptive optics cannot yet provide a full correction, particularly at visible wavelengths. 10

11 Advantage Number 2 of Space Based Telescopes: Observing Outside The Atmospheric Windows Optical and UV Telescopes Hubble Space Telescope Avoid bluring by atmosphere. Can detect UV radiation which is absorbed by atmosphere. Space is darker than night sky on Earth, thus observations can be more sensitive. Gamma Ray and X-ray Telescopes Infrared Telescopes Compton Gamma-Ray Observatory Chandra X-Ray Observatory X-ray and Gamma ray telescopes also need to be in space focusing X-ray and gamma rays is extremely difficult, normal reflecting mirrors don t work SOFIA Spitzer Infrared telescopes operate like visible-light telescopes but need to be above atmosphere to see all IR wavelengths. Moving to space also reduces the infrared glow from the atmosphere and telescope and greatly increases the sensitivity of the telescope. 11

12 August 25, 2003 Cape Canaveral 4m tall, mass ~ 865 kg The Observatory Solar Panel Telescope Instruments Liquid Helium Satellite Bus To conserve liquid Helium & extend mission lifetime: 1. Warm launch 2. Radiative Cooling 3. Solar orbit Instrumentation IRS Instrument detectors cooled by He to lower detector noises (5 K) Telescope cooled to 20 K by radiating into deep space, and then to 6 K by venting Helium MIPS IRAC 12

13 Spitzer offers improved resolution The Herschel Space Observatory DR21 in Cygnus Messier 51 IRAS Satellite IRAS MSX/ISO Satellites ISO,2MASS Spitzer Space Telescope (2008?) Spitzer Things to know What is a reflecting telescope? When we state the diameter of a telescope, it is the diameter of what part? What are the two most important properties of a telescope? What is the difference between imaging and spectroscopy? What s a radio telescope? What is an interferometer? The relationship between telescope size, wavelength and angular resolution What are the advantages of observing from space? 13

### Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset

Chapter 6 Telescopes: Portals of Discovery Agenda Announce: Read S2 for Thursday Ch. 6 Telescopes 6.1 Eyes and Cameras: Everyday Light Sensors How does your eye form an image? Our goals for learning How

### Chapter 6 Telescopes: Portals of Discovery

Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How does your eye form an image? How do we record images? How does your eye form an image?

### Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light.

Telescopes Portals of Discovery Chapter 6 Lecture The Cosmic Perspective 6.1 Eyes and Cameras: Everyday Light Sensors How do eyes and cameras work? Seventh Edition Telescopes Portals of Discovery The Eye

### Telescopes: Portals of Discovery Pearson Education, Inc.

Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How do eyes and cameras work? The Eye Refraction Incoming light ray Air Glass Refraction is the bending

### What are the most important properties of a telescope? Chapter 6 Telescopes: Portals of Discovery. What are the two basic designs of telescopes?

Chapter 6 Telescopes: Portals of Discovery What are the most important properties of a telescope? 1. Light-collecting area: Telescopes with a larger collecting area can gather a greater amount of light

### How does your eye form an Refraction

Astronomical Instruments Eyes and Cameras: Everyday Light Sensors How does your eye form an image? How do we record images? How does your eye form an image? Refraction Refraction is the bending of light

### Telescopes: Portals of Discovery

Telescopes: Portals of Discovery How do light and matter interact? Emission Absorption Transmission Transparent objects transmit light Opaque objects block (absorb) light Reflection or Scattering Reflection

### Phases of ma*er strongly depend on temperature

Phases of ma*er strongly depend on temperature Light and Atoms Remember that each electron is only allowed to have certain energies in an atom. Electrons can absorb light and gain energy or emit light

### 1. Using, scientists can use a few smaller telescopes to take images with the. 2. To double the resolving power of a telescope, you must.

Chapter 5 Telescopes Multiple Choice Questions 1. Using, scientists can use a few smaller telescopes to take images with the same resolution as a much larger telescope. A. Satellite telescopes B. Charge-coupled

### Why Use a Telescope?

1 Why Use a Telescope? All astronomical objects are distant so a telescope is needed to Gather light -- telescopes sometimes referred to as light buckets Resolve detail Magnify an image (least important

### = λ. Topics for Today. Clicker Q: Radio Waves. Radios. Light Pollution. Problems in Looking Through Our Atmosphere

ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nick Featherstone Lecture 5 Tues 30 Jan 07 zeus.colorado.edu/astr1040-toomre toomre Topics for Today Twinkle and absorption by our atmosphere

### Lecture Outlines. Chapter 5. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines Chapter 5 Astronomy Today 8th Edition Chaisson/McMillan Chapter 5 Telescopes Units of Chapter 5 5.1 Optical Telescopes 5.2 Telescope Size 5.3 Images and Detectors 5.4 High-Resolution Astronomy

### ASTR 2310: Chapter 6

ASTR 231: Chapter 6 Astronomical Detection of Light The Telescope as a Camera Refraction and Reflection Telescopes Quality of Images Astronomical Instruments and Detectors Observations and Photon Counting

### Telescopes and the Atmosphere

Telescopes and the Atmosphere Our goals for learning How does Earth s atmosphere affect ground-based observations? Why do we put telescopes into space? How does Earth s atmosphere affect ground-based observations?

### Final Announcements. Lecture25 Telescopes. The Bending of Light. Parts of the Human Eye. Reading: Chapter 7. Turn in the homework#6 NOW.

Final Announcements Turn in the homework#6 NOW. Homework#5 and Quiz#6 will be returned today. Today is the last lecture. Lecture25 Telescopes Reading: Chapter 7 Final exam on Thursday Be sure to clear

### Chapter 5 Telescopes

Chapter 5 Telescopes Units of Chapter 5 Telescope Design Images and Detectors The Hubble Space Telescope Telescope Size High-Resolution Astronomy Radio Astronomy Interferometry Space-Based Astronomy Full-Spectrum

### Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc.

Chapter 5 Light: The Cosmic Messenger 5.1 Basic Properties of Light and Matter Our goals for learning: What is light? What is matter? How do light and matter interact? What is light? Light is an electromagnetic

### Astronomical Tools. Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes

Astronomical Tools Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes Laws of Refraction and Reflection Law of Refraction n 1 sin θ 1

### Collecting Light. In a dark-adapted eye, the iris is fully open and the pupil has a diameter of about 7 mm. pupil

Telescopes Collecting Light The simplest means of observing the Universe is the eye. The human eye is sensitive to light with a wavelength of about 400 and 700 nanometers. In a dark-adapted eye, the iris

### Telescopes. Optical Telescope Design. Reflecting Telescope

Telescopes The science of astronomy was revolutionized after the invention of the telescope in the early 17th century Telescopes and detectors have been constantly improved over time in order to look at

### Chapter 3 Telescopes 2/19/2014. Lecture Outline. 3.1 Optical Telescopes. 3.1 Optical Telescopes. Units of Chapter Optical Telescopes

Lecture Outline Chapter 3 Telescopes Images can be formed through reflection or refraction. Reflecting mirror Chapter 3 Telescopes Refracting lens Units of Chapter 3 Optical Telescopes Telescope Size High-Resolution

### 1/29/14. Topics for Today. UV, X-rays and Gamma-rays. Atmospheric Absorption of Light. Why bother with other light? ASTR 1040: Stars & Galaxies

ASTR 1040: Stars & Galaxies Gran Telescopio Canarias, La Palma 10.4m Topics for Today What our atmosphere does to light Magic of adaptive optics Radio telescopes: many dishes make a big one (interferometry

### Telescopes. Telescopes Key Concepts. glass

Telescopes Telescopes Key Concepts 1) A refracting telescope uses a lens to gather light; a reflecting telescope uses a mirror. ) The main purposes of a telescope are to gather light and resolve fine detail.

### Chapter 5: Telescopes

Chapter 5: Telescopes You don t have to know different types of reflecting and refracting telescopes. Why build bigger and bigger telescopes? There are a few reasons. The first is: Light-gathering power:

### Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 5 Telescopes Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Learning Objectives Upon completing this chapter you should be able to: 1. Classify the

### Telescopes. Optical Telescope Design. Reflecting Telescope

Telescopes The science of astronomy was revolutionized after the invention of the telescope in the early 17th century Telescopes and detectors have been constantly improved over time in order to look at

### Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 5 Telescopes Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Tools of the Trade: Telescopes The Powers of a Telescope Collecting Power Bigger telescope,

### Astronomy. Optics and Telescopes

Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Optics and Telescopes - Refraction, lenses and refracting telescopes - Mirrors and reflecting telescopes - Diffraction limit,

### Doppler Shifts. Doppler Shift Lecture-Tutorial: Pgs Temperature or Heat? What can we learn from light? Temp: Peak in Thermal Radiation

Doppler Shift Lecture-Tutorial: Pgs. 75-80 Work with a partner or two Read directions and answer all questions carefully. Take time to understand it now! Come to a consensus answer you all agree on before

### Universe. Chapter 6. Optics and Telescopes 11/16/2014. By reading this chapter, you will learn. Tenth Edition

Roger Freedman Robert Geller William Kaufmann III Universe Tenth Edition Chapter 6 Optics and Telescopes By reading this chapter, you will learn 6 1 How a refracting telescope uses a lens to form an image

### Optics and Telescopes

Optics and Telescopes Guiding Questions 1. Why is it important that telescopes be large? 2. Why do most modern telescopes use a large mirror rather than a large lens? 3. Why are observatories in such remote

### Agenda Announce: Visions of Science Visions of Science Winner

7. Telescopes: Portals of Discovery All of this has been discovered and observed these last days thanks to the telescope that I have [built], after having been enlightened by divine grace. Galileo Galilei

### Earth s Atmosphere & Telescopes. Atmospheric Effects

Earth s Atmosphere & Telescopes Whether light is absorbed by the atmosphere or not depends greatly on its wavelength. Earth s atmosphere can absorb certain wavelengths of light so much that astronomers

### @astro_stephi. Telescopes. CAASTRO in the Classroom: National Science Week Stephanie Bernard, University of Melbourne

@astro_stephi Telescopes CAASTRO in the Classroom: National Science Week 2017 Stephanie Bernard, University of Melbourne About me NASA, ESA NASA, JPL The first telescopes Invented in 1600s in the Netherlands

### Lecture Outline: Chapter 5: Telescopes

Lecture Outline: Chapter 5: Telescopes You don t have to know the different types of optical reflecting and refracting telescopes. It is important to understand the difference between imaging, photometry,

### Chapter 3 Telescopes The tools of Astronomy

Chapter 3 Telescopes The tools of Astronomy Very Large Array (VLA), National Radio Astronomy Observatory (NRAO), Socorro, New Mexico (Radio telescope: 27 antennas, Y configuration, 25 meters diameter each)

### Telescopes (Chapter 6)

Telescopes (Chapter 6) Based on Chapter 6 This material will be useful for understanding Chapters 7 and 10 on Our planetary system and Jovian planet systems Chapter 5 on Light will be useful for understanding

### How Light Beams Behave. Light and Telescopes Guiding Questions. Telescopes A refracting telescope uses a lens to concentrate incoming light at a focus

Light and Telescopes Guiding Questions 1. Why is it important that telescopes be large? 2. Why do most modern telescopes use a large mirror rather than a large lens? 3. Why are observatories in such remote

### The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5.

Happy Thursday! The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5. The exposures were made with a digital

### Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5 MULTIPLE CHOICE 1. What is the wavelength of the longest wavelength light visible to the human eye? a. 400 nm b. 4000 nm c. 7000 nm

### Chapter 5. Telescopes. Dr. Tariq Al-Abdullah

Chapter 5 Telescopes The Tools of Astronomy Dr. Tariq Al-Abdullah Learning Goals: 5.1 Optical Telescopes (The Hubble Space Telescope) 5.2 Telescope Size 5.3 Images and Detectors 5.4 High-Resolution Astronomy

### Benefits of Infrared. The Spitzer Space Telescope. Instruments/Components of Spitzer. Cryostat. Infrared Telescope

The Spitzer Space Telescope Benefits of Infrared IR can reveal objects that don't emit visible light IR provides different information than visible light IR is better than visible for viewing cold objects

### Tools of Modern Astronomy

Tools of Modern Astronomy Are Those Stars Really a Group? 1. Cut ten pieces of thread to different lengths between 5 cm and 25 cm. Tape a 1- cm plastic foam ball to the end of each piece of thread. 2.

### Spitzer Space Telescope

Spitzer Space Telescope (A.K.A. The Space Infrared Telescope Facility) The Infrared Imaging Chain 1/38 The infrared imaging chain Generally similar to the optical imaging chain... 1) Source (different

### Telescopes and estimating the distances to astronomical objects

Telescopes and estimating the distances to astronomical objects Why do we use telescopes? 1. Light-collecting area: A telescope is a light bucket Q: How much more light can a telescope with a diameter

### Telescopes. Astronomy 320 Wednesday, February 14, 2018

Telescopes Astronomy 320 Wednesday, February 14, 2018 Telescopes gather light and resolve detail A telescope is sometimes called a light bucket. Number of photons collected per second is proportional to

### Astr 2310 Thurs. March 3, 2016 Today s Topics

Astr 2310 Thurs. March 3, 2016 Today s Topics Chapter 6: Telescopes and Detectors Optical Telescopes Simple Optics and Image Formation Resolution and Magnification Invisible Astronomy Ground-based Radio

### Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 24 Studying the Sun 24.1 The Study of Light Electromagnetic Radiation Electromagnetic radiation includes gamma rays, X-rays, ultraviolet light, visible

### Today. Doppler Effect & Motion. Telescopes

Today Doppler Effect & Motion Telescopes The Doppler Effect Doppler ball 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Doppler Effect for Light Motion away -> redshift Motion towards

### Focus Question: How do astronomers study light?

Telescopes Focus Question: How do astronomers study light? Telescopes Tools for collecting and analyzing electromagnetic radiation (light) in ways beyond what we can do with our eyes alone Properties of

### Parallel Rays From Distant Objects. 6. Optics and Telescopes. Refraction & Reflection

6. Optics and Telescopes Refracting telescopes Reflecting telescopes Image degradation Imaging systems Spectrographs Non-optical telescopes Orbiting telescopes Parallel Rays From Distant Objects Refracting

### Tools of Astronomy: Telescopes

Tools of Astronomy: Telescopes Lecture 9 1 Refracting Telescopes Large lens to gather and focus light. Incoming Light Objective Lens Focus Eyepiece 2 Problems w/ Refracting Tel s Must make a large piece

### The table summarises some of the properties of Vesta, one of the largest objects in the asteroid belt between Mars and Jupiter.

Q1.(a) The table summarises some of the properties of Vesta, one of the largest objects in the asteroid belt between Mars and Jupiter. Diameter / m Distance from the Sun / AU smallest largest 5.4 10 5

### Chapter 26. Objectives. Describe characteristics of the universe in terms of time, distance, and organization

Objectives Describe characteristics of the universe in terms of time, distance, and organization Identify the visible and nonvisible parts of the electromagnetic spectrum Compare refracting telescopes

### How do they work? Chapter 5

Telescopes How do they work? Chapter 5 1. History 2. Lenses & Hardware 3. Reflecting Telescopes 4. Refracting Telescopes History Hans Lippershey Middleburg, Holland invented the refractor telescope in

### It will cover material up to, but not including, Will consist of a few short-answers, 1-2 short essay, and a few problems + extra credit.

Astronomy 210 Section 1 MWF 1500-1550 134 Astronomy Building This Class (Lecture 13): Thermal Radiation Next Class: Exam #1 on Friday! Thursday Review Session Hour Exam #1 Music: The Space Race is Over

### Observational Astronomy - Lecture 3 Telescopes and the Electromagnetic Spectrum

Observational Astronomy - Lecture 3 Telescopes and the Electromagnetic Spectrum Craig Lage New York University - Department of Physics craig.lage@nyu.edu April 1, 2014 1 / 1 The Electromagnetic Spectrum

### Now that we ve examined the nature of light, let s turn our attention

Section 24.2 24.2 Tools for Studying Space 1 FOCUS Section Objectives 24.4 Explain how refracting, reflecting, and radio telescopes work. 24.5 Describe the advantages and disadvantages of each type of

### Recall: The Importance of Light

Key Concepts: Lecture 19: Light Light: wave-like behavior Light: particle-like behavior Light: Interaction with matter - Kirchoff s Laws The Wave Nature of Electro-Magnetic Radiation Visible light is just

### Light and Telescopes

Light and Telescopes Astronomy 1 Elementary Astronomy LA Mission College Spring F2015 Quotes & Cartoon of the Day We find them smaller and fainter, in constantly increasing numbers, and we know that we

### Optical Telescopes. Telescopes. Refracting/Reflecting Telescopes. Physics 113 Goderya

Telescopes Physics 113 Goderya Chapter(s): 6 Learning Outcomes: Optical Telescopes Astronomers use telescopes to gather more light from astronomical objects. The larger the telescope, the more light it

### Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

### The Nature of Light. We have a dual model

Light and Atoms Properties of Light We can come to understand the composition of distant bodies by analyzing the light they emit This analysis can tell us about the composition as well as the temperature

### Talk about. Optical Telescopes and Instrumentation. by Christian Clemens

Talk about Optical Telescopes and Instrumentation by Christian Clemens Overview powers of telescopes lens refractors, mirror reflectors interferometry, spectroscopy, optical systems modern observatories

### Michael Seeds Dana Backman. Chapter 4 Light and Telescopes

Michael Seeds Dana Backman Chapter 4 Light and Telescopes He burned his house down for the fire insurance and spent the proceeds on a telescope. ROBERT FROST The Star-Splitter Light is a treasure that

### Astro 1010 Planetary Astronomy Sample Questions for Exam 3

Astro 1010 Planetary Astronomy Sample Questions for Exam 3 Chapter 6 1. Which of the following statements is false? a) Refraction is the bending of light when it passes from one medium to another. b) Mirrors

### Wave Interference and Diffraction Part 3: Telescopes and Interferometry

Wave Interference and Diffraction Part 3: Telescopes and Interferometry Paul Avery University of Florida http://www.phys.ufl.edu/~avery/ avery@phys.ufl.edu PHY 2049 Physics 2 with Calculus PHY 2049: Chapter

### Telescopes... Light Buckets

Telescopes... Light Buckets Now that we have an understanding of what light is and why it s important to astronomy, what tools are required to study light from distant objects? The telescope is the tool

### AST 2010: Descriptive Astronomy EXAM 2 March 3, 2014

AST 2010: Descriptive Astronomy EXAM 2 March 3, 2014 DO NOT open the exam until instructed to. Please read through the instructions below and fill out your details on the Scantron form. Instructions 1.

### Learning aim B: Astronomical measurements and observations

Learning aim B: Astronomical measurements and observations Types of telescopes There are 2 different types of telescopes, each with their own advantages and disadvantages: Reflecting telescopes Refracting

### Astronomy 114. Lecture 26: Telescopes. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114 Lecture 26: Telescopes Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 26 17 Apr 2007 Read: Ch. 6,26 Astronomy 114 1/17 Announcements Quiz #2: we re aiming

### 1) What do all waves transport from one place to another?

Pre Quiz 1) What do all waves transport from one place to another? 2) In which of the following scenarios would the Doppler effect be present? a) A police car, with its siren sounding, speeds past you

### Astronomical Observations: Distance & Light 7/2/09. Astronomy 101

Astronomical Observations: Distance & Light 7/2/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Something Cool: Lasers on the Moon Astronomy 101 Outline for Today Astronomy Picture of the Day

I am telescope. My purpose is to collect as much light as possible from some distant source and deliver it to a detector/observer for detailed study. Different Telescopes opaque opaque Space based telescopes

### CHAPTER 28 STARS AND GALAXIES

CHAPTER 28 STARS AND GALAXIES 28.1 A CLOSER LOOK AT LIGHT Light is a form of electromagnetic radiation, which is energy that travels in waves. Waves of energy travel at 300,000 km/sec (speed of light Ex:

### Telescopes. PHY2054: Chapter 25 26

Telescopes PHY2054: Chapter 25 26 Main purposes Telescopes Resolution of closely spaced objects Light collection (measure spectra, see distant and dim objects) Resolution through magnification mθ = fobjective

### UNIT E: SPACE EXPLORATION

UNIT E: SPACE EXPLORATION S C I E N C E 9 1 Science 9 Unit E Section 3.0 OPTICAL TELESCOPES, RADIO TELESCOPES, AND OTHER TECHNOLOGIES ADVANCE OUR UNDERSTANDING OF SPACE SECTI ON 3.0 Science 9 Unit E Section

### Light and motion. = v c

Light and motion This means that if you know what wavelength some radiation was emitted at (as you would for, say, a hydrogen Balmer line), then the observed wavelength tells you the velocity of the object

### Taking Fingerprints of Stars, Galaxies, and Other Stuff. The Bohr Atom. The Bohr Atom Model of Hydrogen atom. Bohr Atom. Bohr Atom

Periodic Table of Elements Taking Fingerprints of Stars, Galaxies, and Other Stuff Absorption and Emission from Atoms, Ions, and Molecules Universe is mostly (97%) Hydrogen and Helium (H and He) The ONLY

### PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 1. The diagram shows the concave mirror of a Cassegrain reflecting telescope, together with the eyepiece lens. Complete the diagram of the telescope and mark on it the focal

### Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition

Today Spectra Thermal Radiation Wien s Law Stefan-Boltzmann Law Kirchoff s Laws Emission and Absorption Spectra & Composition Spectrum Originally, the range of colors obtained by passing sunlight through

### Astronomy 10 Test #2 Practice Version

Given (a.k.a. `First ) Name(s): Family (a.k.a. `Last ) name: ON YOUR PARSCORE: `Bubble your name, your student I.D. number, and your multiple-choice answers. I will keep the Parscore forms. ON THIS TEST

### AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16]

AST 105 Intro Astronomy The Solar System MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] REVIEW Light as Information Bearer We can separate light into its different wavelengths (spectrum).

### Electromagnetic Waves

4/15/12 Chapter 26: Properties of Light Field Induction Ok, so a changing magnetic field causes a current (Faraday s law) Why do we have currents in the first place? electric fields of the charges Changing

### In class quiz - nature of light. Moonbow with Sailboats (Matt BenDaniel)

In class quiz - nature of light Moonbow with Sailboats (Matt BenDaniel) Nature of light - review Light travels at very high but finite speed. Light is electromagnetic wave characterized by wavelength (or

### More Optical Telescopes

More Optical Telescopes There are some standard reflecting telescope designs used today All have the common feature of light entering a tube and hitting a primary mirror, from which light is reflected

### Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact?

Chapter 5 Light and Matter: Reading Messages from the Cosmos How do we experience light? The warmth of sunlight tells us that light is a form of energy We can measure the amount of energy emitted by a

### Name: Partner(s): 1102 or 3311: Desk # Date: Spectroscopy Part I

Name: Partner(s): 1102 or 3311: Desk # Date: Spectroscopy Part I Purpose Investigate Kirchhoff s Laws for continuous, emission and absorption spectra Analyze the solar spectrum and identify unknown lines

### 6 Light from the Stars

6 Light from the Stars Essentially everything that we know about objects in the sky is because of the light coming from them. 6.1 The Electromagnetic Spectrum The properties of light (electromagnetic waves)

### What can laser light do for (or to) me?

What can laser light do for (or to) me? Phys 1020, Day 15: Questions? Refection, refraction LASERS: 14.3 Next Up: Finish lasers Cameras and optics 1 Eyes to web: Final Project Info Light travels more slowly

### Terahertz (THz) Astronomy from Antarctica. New opportunities for groundbreaking science

Terahertz (THz) Astronomy from Antarctica New opportunities for groundbreaking science The Life Cycle of matter in the Galaxy remains poorly understood. some UV, X-rays 21 cm radio???? visible light infrared

### Beyond the Visible -- Exploring the Infrared Universe

Beyond the Visible -- Exploring the Infrared Universe Prof. T. Jarrett (UCT) Infrared Window Telescopes ISM -- Galaxies Infrared Window Near-infrared: 1 to 5 µm Mid-infrared: 5 to 50 µm

### Your First Steps. Astronomy as a Hobby. Astronomy 210. Read. Did you know you can see a galaxy 2½. Section 1 MWF Astronomy Building

Astronomy 210 Section 1 MWF 1500-1550 134 Astronomy Building This Class (Lecture 14): Telescopes Next Class: HW #4 on Friday! Turn in the Betelgeuse observation! The Solar System: Overview Music: Amy Hit

### DAY LABORATORY EXERCISE: SPECTROSCOPY

AS101 - Day Laboratory: Spectroscopy Page 1 DAY LABORATORY EXERCISE: SPECTROSCOPY Goals: To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are

### TELESCOPES. How do they work?

TELESCOPES How do they work? There are two types of Telescopes Refractor telescopes They use glass lenses Reflector telescopes They use mirrors and lenses Parts of a Telescope Tube - a long tube, made

### The Space InfraRed Telescope Facility - SIRTF SIRTF an Overview

The Space InfraRed Telescope Facility - SIRTF SIRTF an Overview Jay A. Frogel SIRTF Program Scientist, NASA Michael Werner SIRTF Project Scientist, JPL/Caltech January, 2003 Lifting the Cosmic Veil Views

### Astronomy 201 Review 1 Answers

Astronomy 201 Review 1 Answers What is temperature? What happens to the temperature of a box of gas if you compress it? What happens to the temperature of the gas if you open the box and let the gas expand?