Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Size: px
Start display at page:

Download "Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets"

Transcription

1 Lecture #15: Plan Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

2 Collecting Area Light bucket : the bigger the area of the telescope s mirror or lens, the more photons it collects Collecting Area ~ (Diameter of telescope) 2

3 Collecting Area Example: Eye (D = 5 mm) vs Keck (D = 10 m) Collecting power (Keck) / Collecting power (eye) = D(Keck) 2 / D(eye) 2 = [D(Keck) / D(eye)] 2 = [10 / 5 x 10-3 ] 2 = [2 x 10 3 ] 2 = 4 x 10 6 Keck is 4,000,000 x more powerful than our eye!

4 Resolving Power (review) The bigger the size of the telescope, the better it is at discerning fine details Resolving power ~ (Diameter of telescope) / λ

5 Radio Telescopes are big! (radio! longer λ, so larger D is needed to get the same resolving power as optical telescopes)

6 Radio Telescopes: Interferometry (Combine the signal from an array of radio telescopes to increase effective D)

7 Effects of Earth s Atmosphere 1. Absorption: light is absorbed by atmosphere 2. Scattering: light is redirected by atmosphere 3. Refraction: light is bent by atmosphere

8 Atmospheric Absorption Oxygen (O 2 ) & ozone (O 3 ) absorb UV and X rays Water and carbon dioxide absorb far-infrared Electrons in upper atmosphere screen out long radio wavelengths Atmosphere is transparent to visible and short radio waves (and some windows in near-infrared)

9 Atmospheric Scattering Redirection of light in random directions when it strikes atoms, molecules or dust particles The amount of scattering is larger in blue than in red Consequences: 1. Sky is bright 2. Sky is blue 3. Sunset / sunrise are red

10 Refraction Bending of light when it moves from one medium to another

11 Example: Air to Water

12 Atmospheric Refraction: Consequences 1. Lingering (~2 min), elliptical sunsets Horizon (apparent position) (real position, below horizon)

13 Atmospheric Refraction: Consequences

14 Atmospheric Refraction: Consequences Green flash!

15 Atmospheric Refraction: Consequences 2. Scintillation ( twinkling ) of stars

16 Atmospheric Refraction: Consequences 3. Dispersion ( splitting ) of light into its different colors Flashing colors in twinkling stars

17 High Altitude Ground based Observatories or Space based Observatories

18 Lecture #15: Plan Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

19 Direct Views of Exoplanets First thought: just get a picture! But angle is tiny and star is much brighter than the planet Current state-of-the-art: Detection of Jupiter-like planets around stars Future: Earth-like planet ~1010 times fainter than a Sunlike star!

20 Direct Views of Exoplanets Fomalhaut b: Jupiter masses ~115 A.U. from star ~18 A.U. closer than the debris disk

21 Indirect Method: Spatial Wobbles Next possibility: orbital motion of (unseen) planet makes the star wobble (by Newton s 3 rd law) Expected stellar wobble << 1 arcsecond Requires excellent image quality Only works for the very nearest systems

22 Indirect Method: Kinematic Wobbles Measure the Doppler shift to tell us how fast the star is moving towards or away from us.

23 Indirect Method: Kinematic Wobbles The planet orbits the star But by Newton s 3 rd law, the star must move too We observe the star, not the planet Tiny motion shifts spectra back and forth From the radial velocity & period, one can infer the (minimum) mass of the unseen planet!

24 Indirect Method: Eclipses Another possibility: maybe planet passes in front of the star! Partial eclipse: reduces light during transit Need special orientation for an eclipse to occur

25 Example: Spitzer Space Telescope Note the vertical axis: not easy to see eclipse!

26 Properties of Exoplanets Broad range of masses, sizes, and orbital periods: - Most are more massive and bigger than Earth - Many are more massive and bigger than Jupiter

27 Properties of Exoplanets Jupiter Many are on a tight (< 1 AU) short-period orbit around their star

28 Exoplanet around nearest star might be in Habitable Zone! (The habitable zone is the region where H 2 O is a liquid)

29 Question #8 Name one of the effects of Earth s atmosphere on astronomical observations

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Lecture #15: Plan Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Resolving Power (review) The bigger the size of the telescope, the better it is at discerning fine details

(in case you missed it yesterday ) Merger of Two Neutron Stars!

(in case you missed it yesterday ) Merger of Two Neutron Stars! https://cmns.umd.edu/news-events/features/3997 More on this later in the semester Lecture #14: Plan Light (cont d) Atomic physics Formation

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds

10/16/17 Lecture Outline 10.1 Detecting Planets Around Other Stars Chapter 10: Other Planetary Systems The New Science of Distant Worlds Our goals for learning: How do we detect planets around other stars?

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Size Difference. Brightness Difference

Chapter 13 Other Planetary Systems Why is it so difficult to detect planets around other stars? Size Difference Planets are small compared to interstellar distances 10 billion to 1 scale Sun is size of

Searching for Other Worlds

Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

Extrasolar Planets = Exoplanets III.

Extrasolar Planets = Exoplanets III http://www.astro.keele.ac.uk/~rdj/planets/images/taugruishydra2.jpg Outline Gravitational microlensing Direct detection Exoplanet atmospheres Detecting planets by microlensing:

Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc.

Chapter 5 Light: The Cosmic Messenger 5.1 Basic Properties of Light and Matter Our goals for learning: What is light? What is matter? How do light and matter interact? What is light? Light is an electromagnetic

Extrasolar planets. Lecture 23, 4/22/14

Extrasolar planets Lecture 23, 4/22/14 Extrasolar planets Extrasolar planets: planets around other stars Also called exoplanets 1783 exoplanets discovered as of 4/21/14 Orbitting 1105 different stars Number

1. Using, scientists can use a few smaller telescopes to take images with the. 2. To double the resolving power of a telescope, you must.

Chapter 5 Telescopes Multiple Choice Questions 1. Using, scientists can use a few smaller telescopes to take images with the same resolution as a much larger telescope. A. Satellite telescopes B. Charge-coupled

Chapter 13 Other Planetary Systems. The New Science of Distant Worlds

Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning Why is it so difficult to detect planets around other stars? How do we detect

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset

Chapter 6 Telescopes: Portals of Discovery Agenda Announce: Read S2 for Thursday Ch. 6 Telescopes 6.1 Eyes and Cameras: Everyday Light Sensors How does your eye form an image? Our goals for learning How

Lecture Fall, 2005 Astronomy 110 1

Lecture 13+14 Fall, 2005 Astronomy 110 1 Important Concepts for Understanding Spectra Electromagnetic Spectrum Continuous Spectrum Absorption Spectrum Emission Spectrum Emission line Wavelength, Frequency

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Brightness Difference

Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning:! Why is it so difficult to detect planets around other stars?! How do we detect

The Nature of Light. We have a dual model

Light and Atoms Properties of Light We can come to understand the composition of distant bodies by analyzing the light they emit This analysis can tell us about the composition as well as the temperature

Observing the Universe: Telescopes Astronomy 2020 Lecture 6 Prof. Tom Megeath Today s Lecture: 1. A little more on blackbodies 2. Light, vision, and basic optics 3. Telescopes Properties of Thermal Radiation

Chapter 13 Lecture. The Cosmic Perspective. Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

9/19/ Basic Properties of Light and Matter. Chapter 5: Light: The Cosmic Messenger. What is light? Lecture Outline

Lecture Outline 5.1 Basic Properties of Light and Matter Chapter 5: Light: The Cosmic Messenger Our goals for learning: What is light? What is matter? How do light and matter interact? What is light? Light

Why Use a Telescope?

1 Why Use a Telescope? All astronomical objects are distant so a telescope is needed to Gather light -- telescopes sometimes referred to as light buckets Resolve detail Magnify an image (least important

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

AST 101 Intro to Astronomy: Stars & Galaxies

AST 101 Intro to Astronomy: Stars & Galaxies Telescopes Mauna Kea Observatories, Big Island, HI Imaging with our Eyes pupil allows light to enter the eye lens focuses light to create an image retina detects

Chapter 6 Telescopes: Portals of Discovery

Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How does your eye form an image? How do we record images? How does your eye form an image?

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 5 Telescopes Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Tools of the Trade: Telescopes The Powers of a Telescope Collecting Power Bigger telescope,

a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU

1 AST104 Sp04: WELCOME TO EXAM 1 Multiple Choice Questions: Mark the best answer choice. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1. A galaxy

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 5 Telescopes Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Learning Objectives Upon completing this chapter you should be able to: 1. Classify the

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

Chapter 5: Telescopes

Chapter 5: Telescopes You don t have to know different types of reflecting and refracting telescopes. Why build bigger and bigger telescopes? There are a few reasons. The first is: Light-gathering power:

2010 Pearson Education, Inc.

Thought Question Suppose you found a star with the same mass as the Sun moving back and forth with a period of 16 months. What could you conclude? A. It has a planet orbiting at less than 1 AU. B. It has

Buy-back points tallied and added: 750 points bought-back. Last Withdrawal date: this friday, Oct 31st.

Announcements HW #3: Available online now. Due in 1 week, Nov 3rd, 11pm. Buy-back points tallied and added: 750 points bought-back. Last Withdrawal date: this friday, Oct 31st. Evening Observing: next

Review: Properties of a wave

Radiation travels as waves. Waves carry information and energy. Review: Properties of a wave wavelength (λ) crest amplitude (A) trough velocity (v) λ is a distance, so its units are m, cm, or mm, etc.

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5 MULTIPLE CHOICE 1. What is the wavelength of the longest wavelength light visible to the human eye? a. 400 nm b. 4000 nm c. 7000 nm

Telescopes: Portals of Discovery Pearson Education, Inc.

Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How do eyes and cameras work? The Eye Refraction Incoming light ray Air Glass Refraction is the bending

Telescopes and estimating the distances to astronomical objects

Telescopes and estimating the distances to astronomical objects Why do we use telescopes? 1. Light-collecting area: A telescope is a light bucket Q: How much more light can a telescope with a diameter

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley

Extrasolar Planets Properties 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Finding extrasolar planets is hard quick recap Planet Detection Direct: pictures or spectra of the planets

Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light.

Telescopes Portals of Discovery Chapter 6 Lecture The Cosmic Perspective 6.1 Eyes and Cameras: Everyday Light Sensors How do eyes and cameras work? Seventh Edition Telescopes Portals of Discovery The Eye

Detecting Extra Solar Planets

Detecting Extra Solar Planets The Extrasolar Planet Count Currently, 288 stars have been discovered to have planets. Some of these have more than one, so a total of 380 planets have been discovered as

Collecting Light. In a dark-adapted eye, the iris is fully open and the pupil has a diameter of about 7 mm. pupil

Telescopes Collecting Light The simplest means of observing the Universe is the eye. The human eye is sensitive to light with a wavelength of about 400 and 700 nanometers. In a dark-adapted eye, the iris

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 One person s perspective: Three great events stand at the threshold of the modern age and determine its character: 1) the discovery of America; 2) the Reformation; 3) the invention

Astronomy 1504/15014 Section 20

1 point each Astronomy 1504/15014 Section 20 Midterm 1 (Practice Exam) September 21, 2015 Exam Version A Choose the answer that best completes the question. Read each problem carefully and read through

Lecture Outlines. Chapter 5. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines Chapter 5 Astronomy Today 8th Edition Chaisson/McMillan Chapter 5 Telescopes Units of Chapter 5 5.1 Optical Telescopes 5.2 Telescope Size 5.3 Images and Detectors 5.4 High-Resolution Astronomy

Telescopes. Optical Telescope Design. Reflecting Telescope

Telescopes The science of astronomy was revolutionized after the invention of the telescope in the early 17th century Telescopes and detectors have been constantly improved over time in order to look at

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

Foundations of Astronomy 13e Seeds Chapter 6 Light and Telescopes Guidepost In this chapter, you will consider the techniques astronomers use to study the Universe What is light? How do telescopes work?

Earth s Atmosphere & Telescopes. Atmospheric Effects

Earth s Atmosphere & Telescopes Whether light is absorbed by the atmosphere or not depends greatly on its wavelength. Earth s atmosphere can absorb certain wavelengths of light so much that astronomers

PHYS 160 Astronomy Test #2 Fall 2017 Version A

PHYS 160 Astronomy Test #2 Fall 2017 Version A I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. A blackbody emits all of its radiation

7. Telescopes: Portals of Discovery Pearson Education Inc., publishing as Addison Wesley

7. Telescopes: Portals of Discovery Parts of the Human Eye pupil allows light to enter the eye lens focuses light to create an image retina detects the light and generates signals which are sent to the

Stars, Galaxies & the Universe (29:50) Professor C.C. Lang Exam #1 - Fall 2010 Wednesday, September 22 nd FORM B - SOLUTIONS

Stars, Galaxies & the Universe (29:50) Professor C.C. Lang Exam #1 - Fall 2010 Wednesday, September 22 nd FORM B - SOLUTIONS Questions 1-6 are True/False questions (worth 4 pts each): 1. The Sun is a Red

13 - EXTRASOLAR PLANETS

NSCI 314 LIFE IN THE COSMOS 13 - EXTRASOLAR PLANETS Dr. Karen Kolehmainen Department of Physics, CSUSB http://physics.csusb.edu/~karen/ EXTRASOLAR PLANETS? DO PLANETS ORBIT AROUND OTHER STARS? WE WOULD

» How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our

» How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our Wars are transacted, is when compared to them. A very fit

What are the most important properties of a telescope? Chapter 6 Telescopes: Portals of Discovery. What are the two basic designs of telescopes?

Chapter 6 Telescopes: Portals of Discovery What are the most important properties of a telescope? 1. Light-collecting area: Telescopes with a larger collecting area can gather a greater amount of light

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017

Lecture 12: Extrasolar planets Astronomy 111 Monday October 9, 2017 Reminders Star party Thursday night! Homework #6 due Monday The search for extrasolar planets The nature of life on earth and the quest

Final Announcements. Lecture25 Telescopes. The Bending of Light. Parts of the Human Eye. Reading: Chapter 7. Turn in the homework#6 NOW.

Final Announcements Turn in the homework#6 NOW. Homework#5 and Quiz#6 will be returned today. Today is the last lecture. Lecture25 Telescopes Reading: Chapter 7 Final exam on Thursday Be sure to clear

Telescopes. Optical Telescope Design. Reflecting Telescope

Telescopes The science of astronomy was revolutionized after the invention of the telescope in the early 17th century Telescopes and detectors have been constantly improved over time in order to look at

Planet Detection. AST 105 Intro Astronomy The Solar System

Review AST 105 Intro Astronomy The Solar System MIDTERM III this THURSDAY 04/8 covering LECT. 17 through We ve talked about the Terrestrial Planets and the Jovian Planets - What about planets around other

Chapter 5 Telescopes

Chapter 5 Telescopes Units of Chapter 5 Telescope Design Images and Detectors The Hubble Space Telescope Telescope Size High-Resolution Astronomy Radio Astronomy Interferometry Space-Based Astronomy Full-Spectrum

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Extrasolar Planets Today Dwarf Planets Extrasolar Planets Next week Review Tuesday Exam Thursday also, Homework 6 Due will count best 5 of 6 homeworks 2007 Pearson Education Inc., publishing as Pearson

How do they work? Chapter 5

Telescopes How do they work? Chapter 5 1. History 2. Lenses & Hardware 3. Reflecting Telescopes 4. Refracting Telescopes History Hans Lippershey Middleburg, Holland invented the refractor telescope in

Telescopes. Telescopes Key Concepts. glass

Telescopes Telescopes Key Concepts 1) A refracting telescope uses a lens to gather light; a reflecting telescope uses a mirror. ) The main purposes of a telescope are to gather light and resolve fine detail.

@astro_stephi. Telescopes. CAASTRO in the Classroom: National Science Week Stephanie Bernard, University of Melbourne

@astro_stephi Telescopes CAASTRO in the Classroom: National Science Week 2017 Stephanie Bernard, University of Melbourne About me NASA, ESA NASA, JPL The first telescopes Invented in 1600s in the Netherlands

The Main Point(s) Lecture #36: Planets Around Other Stars. Extrasolar Planets! Reading: Chapter 13. Theory Observations

Lecture #36: Planets Around Other Stars Extrasolar Planets! Theory Observations Detection methods Results to date... Implications for "Habitable Zones" Reading: Chapter 13 Astro 102/104 1 The Main Point(s)

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us.

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us. Current techniques can measure motions as small as 1 m/s (walking speed!). Sun motion due to: Jupiter:

Telescopes (Chapter 6)

Telescopes (Chapter 6) Based on Chapter 6 This material will be useful for understanding Chapters 7 and 10 on Our planetary system and Jovian planet systems Chapter 5 on Light will be useful for understanding

Telescopes. Lecture 7 2/7/2018

Telescopes Lecture 7 2/7/2018 Tools to measure electromagnetic radiation Three essentials for making a measurement: A device to collect the radiation A method of sorting the radiation A device to detect

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6)

Discussion Review Test #2 Units 12-19: (1) (2) (3) (4) (5) (6) (7) (8) (9) Galileo used his observations of the changing phases of Venus to demonstrate that a. the sun moves around the Earth b. the universe

= λ. Topics for Today. Clicker Q: Radio Waves. Radios. Light Pollution. Problems in Looking Through Our Atmosphere

ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nick Featherstone Lecture 5 Tues 30 Jan 07 zeus.colorado.edu/astr1040-toomre toomre Topics for Today Twinkle and absorption by our atmosphere

Lecture Outline: Chapter 5: Telescopes

Lecture Outline: Chapter 5: Telescopes You don t have to know the different types of optical reflecting and refracting telescopes. It is important to understand the difference between imaging, photometry,

Telescopes and the Atmosphere

Telescopes and the Atmosphere Our goals for learning How does Earth s atmosphere affect ground-based observations? Why do we put telescopes into space? How does Earth s atmosphere affect ground-based observations?

ASTR 1120 General Astronomy: Stars & Galaxies

ASTR 1120 General Astronomy: Stars & Galaxies!AST CLASS Learning from light: temperature (from continuum spectrum) chemical composition (from spectral lines) velocity (from Doppler shift) "ODA# Detecting

How does your eye form an Refraction

Astronomical Instruments Eyes and Cameras: Everyday Light Sensors How does your eye form an image? How do we record images? How does your eye form an image? Refraction Refraction is the bending of light

Chapter 6 Light and Telescopes

Chapter 6 Light and Telescopes Guidepost In the early chapters of this book, you looked at the sky the way ancient astronomers did, with the unaided eye. In chapter 4, you got a glimpse through Galileo

Chapter 6 Lecture. The Cosmic Perspective. Telescopes Portals of Discovery Pearson Education, Inc.

Chapter 6 Lecture The Cosmic Perspective Telescopes Portals of Discovery 2014 Pearson Education, Inc. Telescopes Portals of Discovery CofC Observatory 6.1 Eyes and Cameras: Everyday Light Sensors Our goals

Summary. Week 7: 10/5 & 10/ Learning from Light. What are the three basic types of spectra? Three Types of Spectra

Week 7: 10/5 & 10/7 Capturing that radiation Chapter 6 (Telescopes & Sensors) Optical to Radio Summary What are we sensing? Matter! Matter is made of atoms (nucleus w/ protons, neutrons & cloud of electrons

Why is it hard to detect planets around other stars?

Extrasolar planets Why is it hard to detect planets around other stars? Planets are small and low in mass Planets are faint The angular separation between planets and their stars is tiny Why is it hard

On to Telescopes. Imaging with our Eyes. Telescopes and cameras work much like our eyes. ASTR 1120 General Astronomy: Stars & Galaxies !

ASTR 1120 General Astronomy: Stars & Galaxies On to Telescopes!AST CLASS Learning from light: temperature (from continuum spectrum) chemical composition (from spectral lines) velocity (from Doppler shift)

Chapter 6 Lecture. The Cosmic Perspective Seventh Edition. Telescopes Portals of Discovery Pearson Education, Inc.

Chapter 6 Lecture The Cosmic Perspective Seventh Edition Telescopes Portals of Discovery Telescopes Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How do eyes

Properties of the Solar System

Properties of the Solar System Dynamics of asteroids Telescopic surveys, especially those searching for near-earth asteroids and comets (collectively called near-earth objects or NEOs) have discovered

Doppler Shifts. Doppler Shift Lecture-Tutorial: Pgs Temperature or Heat? What can we learn from light? Temp: Peak in Thermal Radiation

Doppler Shift Lecture-Tutorial: Pgs. 75-80 Work with a partner or two Read directions and answer all questions carefully. Take time to understand it now! Come to a consensus answer you all agree on before

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets

Credit: NASA/Kepler Mission/Dana Berry Exoplanets Outline What is an exoplanet? Why are they interesting? How can we find them? Exolife?? The future... Jon Thaler Exoplanets 2 What is an Exoplanet? Most

Light and Telescopes

Light and Telescopes The key thing to note is that light and matter interact. This can happen in four principal ways: 1) emission a hot object such as the filament in a light bulb emits visible light 2)

Young Solar-like Systems

Young Solar-like Systems FIG.2. Panels(a),(b),and(c)show 2.9,1.3,and 0.87 mm ALMA continuum images of other panels, as well as an inset with an enlarged view of the inner 300 mas centered on the (f) show

Tools of Astronomy: Telescopes

Tools of Astronomy: Telescopes Lecture 9 1 Refracting Telescopes Large lens to gather and focus light. Incoming Light Objective Lens Focus Eyepiece 2 Problems w/ Refracting Tel s Must make a large piece

1) What do all waves transport from one place to another?

Pre Quiz 1) What do all waves transport from one place to another? 2) In which of the following scenarios would the Doppler effect be present? a) A police car, with its siren sounding, speeds past you

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page The handle http://hdl.handle.net/1887/22837 holds various files of this Leiden University dissertation. Author: Juan Ovelar, Maria de Title: Imaging polarimetry for the characterisation of exoplanets

Solution for Homework# 3. Chapter 5 : Review & Discussion

Solution for Homework# 3 Chapter 5 : Review & Discussion. The largest telescopes are reflecting telescopes, primarily because of 3 distinct disadvantages of the refracting telescope. When light passes

Astronomy is remote sensing

Astronomy is remote sensing We cannot repeat (or change) the Universe in a controlled environment. We cannot make planets, stars, or galaxies. We cannot make the vacuum of space, nor the shape of spacetime

Key Ideas: The Search for New Planets. Scientific Questions. Are we alone in the Universe? Direct Imaging. Searches for Extrasolar Planets

The Search for New Planets Key Ideas: Search for planets around other stars. Successful Search Techniques: Astrometric Wobble Doppler Wobble major discovery method Planetary Transits planets we can study

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 5 Telescopes Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Why do we need Telescopes? Large collection area for photons than the eye long integration

Universe. Chapter 6. Optics and Telescopes 11/16/2014. By reading this chapter, you will learn. Tenth Edition

Roger Freedman Robert Geller William Kaufmann III Universe Tenth Edition Chapter 6 Optics and Telescopes By reading this chapter, you will learn 6 1 How a refracting telescope uses a lens to form an image

Can We See Them?! Planet Detection! Planet is Much Fainter than Star!

Can We See Them?! Planet Detection! Estimating f p! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

Parallax: Measuring the distance to Stars

Measuring the Stars Parallax: Measuring the distance to Stars Use Earth s orbit as baseline Parallactic angle = 1/2 angular shift Distance from the Sun required for a star to have a parallactic angle of

New physics is learnt from extreme or fundamental things

New physics is learnt from extreme or fundamental things New physics is learnt from extreme or fundamental things The Universe is full of extremes and is about as fundamental as it gets! New physics is

Planet Detection! Estimating f p!

Planet Detection! Estimating f p! Can We See Them?! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

ASTR 2310: Chapter 6

ASTR 231: Chapter 6 Astronomical Detection of Light The Telescope as a Camera Refraction and Reflection Telescopes Quality of Images Astronomical Instruments and Detectors Observations and Photon Counting

5 Radiation and Spectra 1 Radiation and Spectra What is light? According to Webster: a.something that makes vision possible b.the sensation aroused by stimulation of the visual receptors c.electromagnetic

Telescopes have Three Powers

Telescopes have Three Powers 1. Light Gathering Power: The ability to collect light 2. Resolving Power: The ability to see fine details 3. Magnifying Power: The ability to make objects look bigger Pizzas!!!

Planets and Brown Dwarfs

Extra Solar Planets Extra Solar Planets We have estimated there may be 10 20 billion stars in Milky Way with Earth like planets, hospitable for life. But what evidence do we have that such planets even

Black Holes in Hibernation

Black Holes in Hibernation Black Holes in Hibernation Only about 1 in 100 galaxies contains an active nucleus. This however does not mean that most galaxies do no have SMBHs since activity also requires

Optics and Telescope. Chapter Six

Optics and Telescope Chapter Six ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap.

Optical Telescopes. Telescopes. Refracting/Reflecting Telescopes. Physics 113 Goderya

Telescopes Physics 113 Goderya Chapter(s): 6 Learning Outcomes: Optical Telescopes Astronomers use telescopes to gather more light from astronomical objects. The larger the telescope, the more light it

Light Pollution. Atmospheric Seeing. Seeing Through the Atmosphere. Atmospheric Absorption of Light

Lec 8: 2 FEB 2012 ASTR 130 - Introductory Astronomy II (Chapter 6) LAST TIME - Optics and Telescopes Basic Functions of a Telescope Reflecting v. Refracting Affects of the Atmosphere TODAY Modern Astronomical