Aerial Robotics. Vision-based control for Vertical Take-Off and Landing UAVs. Toulouse, October, 2 nd, Henry de Plinval (Onera - DCSD)

Size: px
Start display at page:

Download "Aerial Robotics. Vision-based control for Vertical Take-Off and Landing UAVs. Toulouse, October, 2 nd, Henry de Plinval (Onera - DCSD)"

Transcription

1 Aerial Robotics Vision-based control for Vertical Take-Off and Landing UAVs Toulouse, October, 2 nd, 2014 Henry de Plinval (Onera - DCSD) collaborations with P. Morin (UPMC-ISIR), P. Mouyon (Onera), T. Hamel (I3S), L. Burlion (Onera), C. Samson (Inria), Onera DCSD 2

2 Plan I Introduction II Problem setting & models III Results 1 Principles 2 Linear approaches 3 Nonlinear approaches 4 Complements Figure 1 : Onera Rmax UAV IV Conclusion VTOL UAV Visual servoing - 10/02/2014-2/19

3 I - Context : why vision? Reasons : Rich information Sensors unavailibility (e.g. GPS jamming) Cost, mass, size efficiency Relative navigation Figure 2 : The bee, Portelli 2011 Applications examples : Target following Building surveillance / IR cartography Refueling Urban navigation Figure 3 : Vehicle tracking (ONERA-DCSD) How to compute relevant information from image for use in the control loops VTOL UAV Visual servoing - 10/02/2014-3/19

4 I - Objective & Difficulties Objective : control a VTOL UAV based on a single videocamera and inertial measurements (angular velocity, acceleration) only, knowing an image of the observed scene. Difficulties : Lack of knowledge : UAV position and orientation, target distance and orientation = "extreme case" Wealth of the visual information ; Under-actuation : 4 control inputs (thrust, torques), 6 deg. of freedom (rotation, translation) Robustness : wind, measurement noise, etc. Nonlinearities : rotations, saturations Semi-global stabilization Figure 4 : UAV Hovereye (Bertin) Each problem considered appart from the others has been studied ; the complete problem much less. VTOL UAV Visual servoing - 10/02/2014-4/19

5 I - State of the art Visual servoing for VTOLs UAVs : Pose estimation (Shakernia, 1999) Vision based orders (Franceschini, 2004) Direct use : Bounded orientation control (Metni, 2003) Quadrirotor control with image moments (Ozawa & Chaumette, 2011) Aircraft landing based on homography (Gonçalvès, 2009) Observation and nonlinear control (Le Bras, 2010) Discussion : Assumptions, computations Low level control : which sensors? Complementary measurements Local result Linear assumption knowledge about the environment VTOL UAV Visual servoing - 10/02/2014-5/19

6 II - Considered scénario The problem UAV flying in front of a scene Scene assumed to be locally planar Goal : join an equilibrium point Reference / current image No more information : target, size, distance unknown Only image, inertia : sometimes translational velocity position, orientation unmeasured T d * P Z * x* y* z* x y z Fig. 5 : problem illustration, Fig. 6 : Chaumette & Hutchinson, 2006 VTOL UAV Visual servoing - 10/02/2014-6/19

7 II - UAV dynamic model Model with aerodyn. effects and mass induced torque neglected : ṗ = R v (1) Ṙ = R S(ω) (2) m v = m S(ω)v Tb 3 + m g R T b 3 (3) J ω = S(ω) J ω + Γ (4) Figure 7 : helicopter with p position error in inertial frame v, ω linear and angular velocities in body frame R rotation matrix from body to inertial frame Thrust T and torque Γ inputs m mass, J inertia, g gravity, b 3 = [0, 0, 1] T VTOL UAV Visual servoing - 10/02/2014-7/19

8 II - Measurement model Available sensors : Thus : One videocamera Inertial measurements Depending on the case : translational velocity Reference image / current one ; Planar target assumption ; Comparaison : homography H = R T 1 d RT p n T y* z*, x* z x d * y P y* * z* R rotational error p position error in inertial frame d distance to target object n normal vector to the object n * x VTOL UAV Visual servoing - 10/02/2014-8/19

9 III.1 - Philosophy of the approach Dynamics + sensors + processing input-output relationship. How to exploit this relationship? Usually : jacobian, but : Linear assumption ; Lack of knowledge of these variables ; Following approach retained : Extract from image a measurement close to position ; Exact position cannot be obtained in this case : σ(p, δ) p with σ(0, δ) = 0 ; Define a control law robust, which manages this positioning uncertainty ; Robust approach using an uncertain position measurement VTOL UAV Visual servoing - 10/02/2014-9/19

10 III.2 - Linear approach Principle and difficulties : Movements around equilibrium : the models are linearized ; Maintained difficulties : lack of knowledge of distance and orientation of the target, UAV position and orientation ; Retained appproach : Define an error vector close to position / orientation ; Law mimics classical control law, when the state is known ; Error vector in the image inspired by Benhimane & Malis 2007 : e = [e ν, e ω ] T e ν = (H I )m, e ω = vex(h H T ) from homography H and a direction m = [0, 0, 1] T ; To cope with dynamics, ( new error vector needed : 2I3 S(m ē = Me, M = ) ( ) ) ep S(m, ē = ) I 3 e Θ VTOL UAV Visual servoing - 10/02/ /19

11 III.2 - Linear approach Control law definition (unique measurements : H, ω) : Dynamic extension to replace the unmeasured velocity Nested loops : vertical, yaw, horizontal T = m (g + k 1 ē 3 + k 2 ν 3 ) ν = K 7 ν ē p γ d = K 5 ē p K 6 ν ω d = K ( 4 g gēθ + S(b 3 )γ d) ( Γ = JK 3 ω ω d ) Results : 1 For all bound lower than the distance to target at the reference pose, exist gains which stabilize (locally exponentially) for all greater distance 2 Tuning heuristics for the gains for performance VTOL UAV Visual servoing - 10/02/ /19

12 III.2 - Linear approach : simulations Figures legends Position (m) Orientation ( ) Temps (s) Obtained result for d = 1, 5m Position (m) Orientation ( ) Temps (s) Obtained result for d = 15m The same gains stabilize over a large window of values for d VTOL UAV Visual servoing - 10/02/ /19

13 III.3 - Nonlinear approach : principle Principle and difficulties : Define an error vector adapted to the nonlinear context ; Consider fully-actuated then under-actuated ; Measurements model : σ = S (Hb 2 ) Hb 3 Hb 1 = R T Mp γ = ghb 3 = gr T b 3 v = R T ṗ ω With : σ uncertain position meas. M n 1 d I + S( n 2 d b 3 ) uncertain γ vertical meas. in body frame v, ω linear/angular velocities Reminder : R p unknown Vertical target assumption u = k 1 m sat δ (σ) k 2 m sat δ(v) VTOL UAV Visual servoing - 10/02/ /19

14 III.3 - Nonlinear approach : principle Principle and difficulties : Define an error vector adapted to the nonlinear context ; Consider fully-actuated then under-actuated ; Measurements model : σ = S (Hb 2 ) Hb 3 Hb 1 = R T Mp γ = ghb 3 = gr T b 3 v = R T ṗ ω With : σ uncertain position meas. M n 1 d I + S( n 2 d b 3 ) uncertain γ vertical meas. in body frame v, ω linear/angular velocities Reminder : R p unknown Vertical target assumption u = k 1 m sat δ (σ) k 2 m sat δ(v) VTOL UAV Visual servoing - 10/02/ /19

15 III.3 - Under-actuated case, results Result : one control design, with complex formulation so that Exist gains which render the system asymptotically stable and locally exp. stable, domain { µ(t = 0) µ(t = 0) b 3 } ; Proof by Lyapunov function : stability & robustness. Let us define the law, with k 4 >> 0 (measurements : H, σ, γ, v, ω) : µ γ + k 2 sat δ(v) + k 1 sat δ (σ) ω1 d = k 4 µ 2 ω 2 d = k 4 µ 1 ω3 d = k 5 H 21 { ( Γ = k6 ω d ω ) T = m µ 3 Similar properties (singular perturbations theory) ; VTOL UAV Visual servoing - 10/02/ /19

16 III.3 - Under-actuated case, results Result : one control design, with complex formulation so that Exist gains which render the system asymptotically stable and locally exp. stable, domain { µ(t = 0) µ(t = 0) b 3 } ; Proof by Lyapunov function : stability & robustness. Let us define the law, with k 4 >> 0 (measurements : H, σ, γ, v, ω) : µ γ + k 2 sat δ(v) + k 1 sat δ (σ) ω1 d = k 4 µ 2 ω 2 d = k 4 µ 1 ω3 d = k 5 H 21 { ( Γ = k6 ω d ω ) T = m µ 3 Similar properties (singular perturbations theory) ; VTOL UAV Visual servoing - 10/02/ /19

17 III.3 - Simulation results { φ0 = 78, θ 0 = 67, ψ 0 = 78 p 0 = [0.7, 0.2, 1] m Position (m) Orientation ( ) Temps (s) Result obtained with the complex control law Both control law stabilize the nonlinear system. VTOL UAV Visual servoing - 10/02/ / Figures legends Position (m) Orientation ( ) Temps (s) Result obtained with the simplified control law

18 III.4 - Linear complements Problematics : Unmodeled dynamic rejection (e.g. wind) ; Videocamera misalignment ; Proposed solutions : Accelerometers measurements exploitation ; Modified error vector definition ; Numerical approaches to robustness ; Robust synthesis & analysis techniques VTOL UAV Visual servoing - 10/02/ /19

19 III.4 - Nonlinear complements Problematics : Avoid the use of a velocity measurement ; Avoid the vertical target assumption ; Improve performances ; Follow a trajectory ; Proposed solutions : Exploit the optical flow ; Vertical direction estimation techniques ; Robustness to the lack of verticality ; Adaptation through online estimation of the normal vector to the plane ; Extension of the model to trajectory following ; VTOL UAV Visual servoing - 10/02/ /19

20 IV - Conclusion : prospectives Summary : Almost global, nonlinear stabilization ; Sensors context minimalist (vision, inertia) ; Generalization to trajectory following ; Improvements prospectives : Refined UAV modelling ; Exhaustive use of the tools for robust synthesis & analysis ; Maintain target inside the videocamera field of view ; Related projects at Onera : ANR project Visioland European FP7 project Aeroceptor Onera internal project Azur Figure 8 : Onera Turbo UAV VTOL UAV Visual servoing - 10/02/ /19

21 IV - Références Références : H. de Plinval, P. Morin, P. Mouyon, T. Hamel Visual servoing for underactuated VTOL UAVs : a linear, Homography-based approach., IEEE International Conference on Robotics and Automation, H. de Plinval, P. Morin, P. Mouyon. Nonlinear control of underactuated vehicles with uncertain position measurements and application to visual, American Control Conference, H. de Plinval, P. Morin, P. Mouyon, T. Hamel Visual servoing for underactuated VTOL UAVs : a linear, Homography-based framework, International Journal of Robust and Nonlinear Control, H. de Plinval, A. Eudes and P. Morin, Control and estimation algorithms for the stabilization of VTOL UAVs from mono-cameras measurements, to appear in Aerospace Lab Journal, VTOL UAV Visual servoing - 10/02/ /19

Nonlinear control of underactuated vehicles with uncertain position measurements and application to visual servoing

Nonlinear control of underactuated vehicles with uncertain position measurements and application to visual servoing Nonlinear control of underactuated vehicles with uncertain position measurements and application to visual servoing Henry de Plinval Pascal Morin Philippe Mouyon Abstract The paper concerns the stabilization

More information

Instrumentation Commande Architecture des Robots Evolués

Instrumentation Commande Architecture des Robots Evolués Instrumentation Commande Architecture des Robots Evolués Program 4a : Automatic Control, Robotics, Signal Processing Presentation General Orientation Research activities concern the modelling and control

More information

The PVTOL Aircraft. 2.1 Introduction

The PVTOL Aircraft. 2.1 Introduction 2 The PVTOL Aircraft 2.1 Introduction We introduce in this chapter the well-known Planar Vertical Take-Off and Landing (PVTOL) aircraft problem. The PVTOL represents a challenging nonlinear systems control

More information

Nonlinear Wind Estimator Based on Lyapunov

Nonlinear Wind Estimator Based on Lyapunov Nonlinear Based on Lyapunov Techniques Pedro Serra ISR/DSOR July 7, 2010 Pedro Serra Nonlinear 1/22 Outline 1 Motivation Problem 2 Aircraft Dynamics Guidance Control and Navigation structure Guidance Dynamics

More information

Introduction to Feedback Control of Underactuated VTOL Vehicles

Introduction to Feedback Control of Underactuated VTOL Vehicles Introduction to Feedback Control of Underactuated VTOL Vehicles Minh-Duc Hua, Tarek Hamel (Member, IEEE), Pascal Morin, Claude Samson Abstract The paper is an introduction to feedback control design for

More information

with Application to Autonomous Vehicles

with Application to Autonomous Vehicles Nonlinear with Application to Autonomous Vehicles (Ph.D. Candidate) C. Silvestre (Supervisor) P. Oliveira (Co-supervisor) Institute for s and Robotics Instituto Superior Técnico Portugal January 2010 Presentation

More information

Visual Servoing for a Quadrotor UAV in Target Tracking Applications. Marinela Georgieva Popova

Visual Servoing for a Quadrotor UAV in Target Tracking Applications. Marinela Georgieva Popova Visual Servoing for a Quadrotor UAV in Target Tracking Applications by Marinela Georgieva Popova A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate

More information

Adaptive Robust Control (ARC) for an Altitude Control of a Quadrotor Type UAV Carrying an Unknown Payloads

Adaptive Robust Control (ARC) for an Altitude Control of a Quadrotor Type UAV Carrying an Unknown Payloads 2 th International Conference on Control, Automation and Systems Oct. 26-29, 2 in KINTEX, Gyeonggi-do, Korea Adaptive Robust Control (ARC) for an Altitude Control of a Quadrotor Type UAV Carrying an Unknown

More information

Visual Servoing for Underactuated VTOL UAVs : a Linear, Homography-Based Framework

Visual Servoing for Underactuated VTOL UAVs : a Linear, Homography-Based Framework Visual Servoing for Uneractuate VTOL UAVs : a Linear, Homography-Base Framework Henry e Plinval, Pascal Morin, Philippe Mouyon, Tarek Hamel H. e Plinval an P. Mouyon are with ONERA-The French Aerospace

More information

Design and Control of Novel Tri-rotor UAV

Design and Control of Novel Tri-rotor UAV UKACC International Conference on Control Cardiff, UK, -5 September Design and Control of Novel Tri-rotor UAV Mohamed Kara Mohamed School of Electrical and Electronic Engineering The University of Manchester

More information

Adaptive position tracking of VTOL UAVs

Adaptive position tracking of VTOL UAVs Joint 48th IEEE Conference on Decision and Control and 8th Chinese Control Conference Shanghai, P.R. China, December 16-18, 009 Adaptive position tracking of VTOL UAVs Andrew Roberts and Abdelhamid Tayebi

More information

Adaptive Estimation of Measurement Bias in Six Degree of Freedom Inertial Measurement Units: Theory and Preliminary Simulation Evaluation

Adaptive Estimation of Measurement Bias in Six Degree of Freedom Inertial Measurement Units: Theory and Preliminary Simulation Evaluation Adaptive Estimation of Measurement Bias in Six Degree of Freedom Inertial Measurement Units: Theory and Preliminary Simulation Evaluation Andrew R. Spielvogel and Louis L. Whitcomb Abstract Six-degree

More information

Quadrotor Modeling and Control

Quadrotor Modeling and Control 16-311 Introduction to Robotics Guest Lecture on Aerial Robotics Quadrotor Modeling and Control Nathan Michael February 05, 2014 Lecture Outline Modeling: Dynamic model from first principles Propeller

More information

Nonlinear Robust Tracking Control of a Quadrotor UAV on SE(3)

Nonlinear Robust Tracking Control of a Quadrotor UAV on SE(3) 22 American Control Conference Fairmont Queen Elizabeth Montréal Canada June 27-June 29 22 Nonlinear Robust Tracking Control of a Quadrotor UAV on SE(3) Taeyoung Lee Melvin Leok and N. Harris McClamroch

More information

Autonomous Helicopter Landing A Nonlinear Output Regulation Perspective

Autonomous Helicopter Landing A Nonlinear Output Regulation Perspective Autonomous Helicopter Landing A Nonlinear Output Regulation Perspective Andrea Serrani Department of Electrical and Computer Engineering Collaborative Center for Control Sciences The Ohio State University

More information

Nonlinear Landing Control for Quadrotor UAVs

Nonlinear Landing Control for Quadrotor UAVs Nonlinear Landing Control for Quadrotor UAVs Holger Voos University of Applied Sciences Ravensburg-Weingarten, Mobile Robotics Lab, D-88241 Weingarten Abstract. Quadrotor UAVs are one of the most preferred

More information

Stable Limit Cycle Generation for Underactuated Mechanical Systems, Application: Inertia Wheel Inverted Pendulum

Stable Limit Cycle Generation for Underactuated Mechanical Systems, Application: Inertia Wheel Inverted Pendulum Stable Limit Cycle Generation for Underactuated Mechanical Systems, Application: Inertia Wheel Inverted Pendulum Sébastien Andary Ahmed Chemori Sébastien Krut LIRMM, Univ. Montpellier - CNRS, 6, rue Ada

More information

Position Control for a Class of Vehicles in SE(3)

Position Control for a Class of Vehicles in SE(3) Position Control for a Class of Vehicles in SE(3) Ashton Roza, Manfredi Maggiore Abstract A hierarchical design framework is presented to control the position of a class of vehicles in SE(3) that are propelled

More information

Multi-layer Flight Control Synthesis and Analysis of a Small-scale UAV Helicopter

Multi-layer Flight Control Synthesis and Analysis of a Small-scale UAV Helicopter Multi-layer Flight Control Synthesis and Analysis of a Small-scale UAV Helicopter Ali Karimoddini, Guowei Cai, Ben M. Chen, Hai Lin and Tong H. Lee Graduate School for Integrative Sciences and Engineering,

More information

A new large projection operator for the redundancy framework

A new large projection operator for the redundancy framework 21 IEEE International Conference on Robotics and Automation Anchorage Convention District May 3-8, 21, Anchorage, Alaska, USA A new large projection operator for the redundancy framework Mohammed Marey

More information

Trajectory tracking & Path-following control

Trajectory tracking & Path-following control Cooperative Control of Multiple Robotic Vehicles: Theory and Practice Trajectory tracking & Path-following control EECI Graduate School on Control Supélec, Feb. 21-25, 2011 A word about T Tracking and

More information

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT Journal of Computer Science and Cybernetics, V.31, N.3 (2015), 255 265 DOI: 10.15625/1813-9663/31/3/6127 CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT NGUYEN TIEN KIEM

More information

Design and modelling of an airship station holding controller for low cost satellite operations

Design and modelling of an airship station holding controller for low cost satellite operations AIAA Guidance, Navigation, and Control Conference and Exhibit 15-18 August 25, San Francisco, California AIAA 25-62 Design and modelling of an airship station holding controller for low cost satellite

More information

Adaptive Trim and Trajectory Following for a Tilt-Rotor Tricopter Ahmad Ansari, Anna Prach, and Dennis S. Bernstein

Adaptive Trim and Trajectory Following for a Tilt-Rotor Tricopter Ahmad Ansari, Anna Prach, and Dennis S. Bernstein 7 American Control Conference Sheraton Seattle Hotel May 4 6, 7, Seattle, USA Adaptive Trim and Trajectory Following for a Tilt-Rotor Tricopter Ahmad Ansari, Anna Prach, and Dennis S. Bernstein Abstract

More information

Underactuated Dynamic Positioning of a Ship Experimental Results

Underactuated Dynamic Positioning of a Ship Experimental Results 856 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 8, NO. 5, SEPTEMBER 2000 Underactuated Dynamic Positioning of a Ship Experimental Results Kristin Y. Pettersen and Thor I. Fossen Abstract The

More information

Aerobatic Maneuvering of Miniature Air Vehicles Using Attitude Trajectories

Aerobatic Maneuvering of Miniature Air Vehicles Using Attitude Trajectories Brigham Young University BYU ScholarsArchive All Faculty Publications 28-8 Aerobatic Maneuvering of Miniature Air Vehicles Using Attitude Trajectories James K. Hall Brigham Young University - Provo, hallatjk@gmail.com

More information

Further results on global stabilization of the PVTOL aircraft

Further results on global stabilization of the PVTOL aircraft Further results on global stabilization of the PVTOL aircraft Ahmad Hably, Farid Kendoul 2, Nicolas Marchand, and Pedro Castillo 2 Laboratoire d Automatique de Grenoble, ENSIEG BP 46, 3842 Saint Martin

More information

Robot Dynamics - Rotary Wing UAS: Control of a Quadrotor

Robot Dynamics - Rotary Wing UAS: Control of a Quadrotor Robot Dynamics Rotary Wing AS: Control of a Quadrotor 5-85- V Marco Hutter, Roland Siegwart and Thomas Stastny Robot Dynamics - Rotary Wing AS: Control of a Quadrotor 7..6 Contents Rotary Wing AS. Introduction

More information

TTK4190 Guidance and Control Exam Suggested Solution Spring 2011

TTK4190 Guidance and Control Exam Suggested Solution Spring 2011 TTK4190 Guidance and Control Exam Suggested Solution Spring 011 Problem 1 A) The weight and buoyancy of the vehicle can be found as follows: W = mg = 15 9.81 = 16.3 N (1) B = 106 4 ( ) 0.6 3 3 π 9.81 =

More information

Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels

Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels Fuyuto Terui a, Nobutada Sako b, Keisuke Yoshihara c, Toru Yamamoto c, Shinichi Nakasuka b a National Aerospace Laboratory

More information

Rao-Blackwellized Particle Filtering for 6-DOF Estimation of Attitude and Position via GPS and Inertial Sensors

Rao-Blackwellized Particle Filtering for 6-DOF Estimation of Attitude and Position via GPS and Inertial Sensors Rao-Blackwellized Particle Filtering for 6-DOF Estimation of Attitude and Position via GPS and Inertial Sensors GRASP Laboratory University of Pennsylvania June 6, 06 Outline Motivation Motivation 3 Problem

More information

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 5, JUNE

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 5, JUNE IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 53, NO 5, JUNE 2008 1203 Nonlinear Complementary Filters on the Special Orthogonal Group Robert Mahony, Senior Member, IEEE, Tarek Hamel, Member, IEEE, and Jean-Michel

More information

NDI-BASED STRUCTURED LPV CONTROL A PROMISING APPROACH FOR AERIAL ROBOTICS

NDI-BASED STRUCTURED LPV CONTROL A PROMISING APPROACH FOR AERIAL ROBOTICS NDI-BASED STRUCTURED LPV CONTROL A PROMISING APPROACH FOR AERIAL ROBOTICS J-M. Biannic AERIAL ROBOTICS WORKSHOP OCTOBER 2014 CONTENT 1 Introduction 2 Proposed LPV design methodology 3 Applications to Aerospace

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Micro Aerial Vehicle Dynamics Dr. Kostas Alexis (CSE) Goal of this lecture The goal of this lecture is to derive the equations of motion that describe the motion of

More information

Problem 1: Ship Path-Following Control System (35%)

Problem 1: Ship Path-Following Control System (35%) Problem 1: Ship Path-Following Control System (35%) Consider the kinematic equations: Figure 1: NTNU s research vessel, R/V Gunnerus, and Nomoto model: T ṙ + r = Kδ (1) with T = 22.0 s and K = 0.1 s 1.

More information

Modeling and Control of Convertible Micro Air Vehicles

Modeling and Control of Convertible Micro Air Vehicles Modeling and Control of Convertible Micro Air Vehicles P. Morin Institut des Systèmes Intelligents et de Robotique (ISIR) Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7222 4 Place Jussieu, 75252

More information

CS491/691: Introduction to Aerial Robotics

CS491/691: Introduction to Aerial Robotics CS491/691: Introduction to Aerial Robotics Topic: Midterm Preparation Dr. Kostas Alexis (CSE) Areas of Focus Coordinate system transformations (CST) MAV Dynamics (MAVD) Navigation Sensors (NS) State Estimation

More information

Unit quaternion observer based attitude stabilization of a rigid spacecraft without velocity measurement

Unit quaternion observer based attitude stabilization of a rigid spacecraft without velocity measurement Proceedings of the 45th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel San Diego, CA, USA, December 3-5, 6 Unit quaternion observer based attitude stabilization of a rigid spacecraft

More information

Quaternion-Based Tracking Control Law Design For Tracking Mode

Quaternion-Based Tracking Control Law Design For Tracking Mode A. M. Elbeltagy Egyptian Armed forces Conference on small satellites. 2016 Logan, Utah, USA Paper objectives Introduction Presentation Agenda Spacecraft combined nonlinear model Proposed RW nonlinear attitude

More information

Adaptive Backstepping Control for Optimal Descent with Embedded Autonomy

Adaptive Backstepping Control for Optimal Descent with Embedded Autonomy Adaptive Backstepping Control for Optimal Descent with Embedded Autonomy Maodeng Li, Wuxing Jing Department of Aerospace Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China

More information

Velocity Aided Attitude Estimation for Aerial Robotic Vehicles Using Latent Rotation Scaling

Velocity Aided Attitude Estimation for Aerial Robotic Vehicles Using Latent Rotation Scaling Velocity Aided Attitude Estimation for Aerial Robotic Vehicles Using Latent Rotation Scaling Guillaume Allibert, Robert Mahony, Moses Bangura To cite this version: Guillaume Allibert, Robert Mahony, Moses

More information

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties Australian Journal of Basic and Applied Sciences, 3(1): 308-322, 2009 ISSN 1991-8178 Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties M.R.Soltanpour, M.M.Fateh

More information

Experimental Results for Almost Global Asymptotic and Locally Exponential Stabilization of the Natural Equilibria of a 3D Pendulum

Experimental Results for Almost Global Asymptotic and Locally Exponential Stabilization of the Natural Equilibria of a 3D Pendulum Proceedings of the 26 American Control Conference Minneapolis, Minnesota, USA, June 4-6, 26 WeC2. Experimental Results for Almost Global Asymptotic and Locally Exponential Stabilization of the Natural

More information

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar Video 8.1 Vijay Kumar 1 Definitions State State equations Equilibrium 2 Stability Stable Unstable Neutrally (Critically) Stable 3 Stability Translate the origin to x e x(t) =0 is stable (Lyapunov stable)

More information

Quadcopter Dynamics 1

Quadcopter Dynamics 1 Quadcopter Dynamics 1 Bréguet Richet Gyroplane No. 1 1907 Brothers Louis Bréguet and Jacques Bréguet Guidance of Professor Charles Richet The first flight demonstration of Gyroplane No. 1 with no control

More information

Control of a Quadrotor Mini-Helicopter via Full State Backstepping Technique

Control of a Quadrotor Mini-Helicopter via Full State Backstepping Technique Proceedings of the 45th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel San Diego, CA, USA, December 3-5, 006 Control of a Quadrotor Mini-Helicopter via Full State Backstepping Technique

More information

Mathematical Modelling and Dynamics Analysis of Flat Multirotor Configurations

Mathematical Modelling and Dynamics Analysis of Flat Multirotor Configurations Mathematical Modelling and Dynamics Analysis of Flat Multirotor Configurations DENIS KOTARSKI, Department of Mechanical Engineering, Karlovac University of Applied Sciences, J.J. Strossmayera 9, Karlovac,

More information

Coupling Visual Servoing with Active Structure from Motion

Coupling Visual Servoing with Active Structure from Motion Coupling Visual Servoing with Active Structure from Motion Riccardo Spica, Paolo Robuffo Giordano, and François Chaumette Abstract In this paper we propose a solution for coupling the execution of a visual

More information

Load transportation using rotary-wing UAVs

Load transportation using rotary-wing UAVs Load transportation using rotary-wing UAVs Rafael José Figueiras dos Santos rafael.j.f.santos@tecnico.ulisboa.pt Instituto Superior Técnico, Lisboa, Portugal December 5 Abstract The problem of slung load

More information

Geometric path following control of a rigid body based on the stabilization of sets

Geometric path following control of a rigid body based on the stabilization of sets Preprints of the 19th World Congress The International Federation of Automatic Control Geometric path following control of a rigid body based on the stabilization of sets uri A. Kapitanyuk Sergey A. Chepinskiy

More information

Nonlinear observers in vision system: Application to civil aircraft landing

Nonlinear observers in vision system: Application to civil aircraft landing Nonlinear observers in vision system: Application to civil aircraft landing Victor Gibert, Laurent Burlion, Abdelhamid Chriette, Josep Boada, Franck Plestan o cite this version: Victor Gibert, Laurent

More information

TERMINAL ATTITUDE-CONSTRAINED GUIDANCE AND CONTROL FOR LUNAR SOFT LANDING

TERMINAL ATTITUDE-CONSTRAINED GUIDANCE AND CONTROL FOR LUNAR SOFT LANDING IAA-AAS-DyCoSS2-14 -02-05 TERMINAL ATTITUDE-CONSTRAINED GUIDANCE AND CONTROL FOR LUNAR SOFT LANDING Zheng-Yu Song, Dang-Jun Zhao, and Xin-Guang Lv This work concentrates on a 3-dimensional guidance and

More information

Geometric Tracking Control of a Quadrotor UAV on SE(3)

Geometric Tracking Control of a Quadrotor UAV on SE(3) 49th IEEE Conference on Decision and Control December 5-7, 2 Hilton Atlanta Hotel, Atlanta, GA, USA Geometric Tracking Control of a Quadrotor UAV on SE(3) Taeyoung Lee, Melvin Leok, and N. Harris McClamroch

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction Linear geometric control theory was initiated in the beginning of the 1970 s, see for example, [1, 7]. A good summary of the subject is the book by Wonham [17]. The term geometric

More information

A Comparison of Closed-Loop Performance of Multirotor Configurations Using Non-Linear Dynamic Inversion Control

A Comparison of Closed-Loop Performance of Multirotor Configurations Using Non-Linear Dynamic Inversion Control Aerospace 2015, 2, 325-352; doi:10.3390/aerospace2020325 OPEN ACCESS aerospace ISSN 2226-4310 www.mdpi.com/journal/aerospace Article A Comparison of Closed-Loop Performance of Multirotor Configurations

More information

Modeling Verticality Estimation During Locomotion

Modeling Verticality Estimation During Locomotion Proceedings of the 19th CISM-IFToMM Symposium on Robot Design, Dynamics, and Control, Romansy 212. pp. 651-656 Modeling Verticality Estimation During Locomotion Ildar Farkhatdinov 1 Hannah Michalska 2

More information

Control and Navigation Framework for Quadrotor Helicopters

Control and Navigation Framework for Quadrotor Helicopters DOI 1.17/s1846-1-9789-z Control and Navigation Framework for Quadrotor Helicopters Amr Nagaty Sajad Saeedi Carl Thibault Mae Seto Howard Li Received: September 1 / Accepted: September 1 Springer Science+Business

More information

Spacecraft Attitude Control using CMGs: Singularities and Global Controllability

Spacecraft Attitude Control using CMGs: Singularities and Global Controllability 1 / 28 Spacecraft Attitude Control using CMGs: Singularities and Global Controllability Sanjay Bhat TCS Innovation Labs Hyderabad International Workshop on Perspectives in Dynamical Systems and Control

More information

Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor

Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor Proceedings of the 2005 IEEE International Conference on Robotics and Automation Barcelona, Spain, April 2005 Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor Samir Bouabdallah

More information

Position in the xy plane y position x position

Position in the xy plane y position x position Robust Control of an Underactuated Surface Vessel with Thruster Dynamics K. Y. Pettersen and O. Egeland Department of Engineering Cybernetics Norwegian Uniersity of Science and Technology N- Trondheim,

More information

Haptic-based bilateral teleoperation of underactuated Unmanned Aerial Vehicles

Haptic-based bilateral teleoperation of underactuated Unmanned Aerial Vehicles Haptic-based bilateral teleoperation of underactuated Unmanned Aerial Vehicles Hala Rifaï, Minh-Duc Hua, Tarek Hamel, Pascal Morin I3S UNS-CNRS, Sophia Antipolis, France (e-mails: rifai@u-pec.fr, minh.hua@polytechnique.org,

More information

Lecture AC-1. Aircraft Dynamics. Copy right 2003 by Jon at h an H ow

Lecture AC-1. Aircraft Dynamics. Copy right 2003 by Jon at h an H ow Lecture AC-1 Aircraft Dynamics Copy right 23 by Jon at h an H ow 1 Spring 23 16.61 AC 1 2 Aircraft Dynamics First note that it is possible to develop a very good approximation of a key motion of an aircraft

More information

Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles

Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles Technical Paper Int l J. of Aeronautical & Space Sci. 11(3), 167 174 (010) DOI:10.5139/IJASS.010.11.3.167 Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles Dong-Wan Yoo*,

More information

Quadrotors Flight Formation Control Using a Leader-Follower Approach*

Quadrotors Flight Formation Control Using a Leader-Follower Approach* 23 European Conference (ECC) July 7-9, 23, Zürich, Switzerland. Quadrotors Flight Formation Using a Leader-Follower Approach* D. A. Mercado, R. Castro and R. Lozano 2 Abstract In this paper it is presented

More information

Chapter 1. Introduction. 1.1 System Architecture

Chapter 1. Introduction. 1.1 System Architecture Chapter 1 Introduction 1.1 System Architecture The objective of this book is to prepare the reader to do research in the exciting and rapidly developing field of autonomous navigation, guidance, and control

More information

Distributed Structural Stabilization and Tracking for Formations of Dynamic Multi-Agents

Distributed Structural Stabilization and Tracking for Formations of Dynamic Multi-Agents CDC02-REG0736 Distributed Structural Stabilization and Tracking for Formations of Dynamic Multi-Agents Reza Olfati-Saber Richard M Murray California Institute of Technology Control and Dynamical Systems

More information

Differential Kinematics

Differential Kinematics Differential Kinematics Relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space) Instantaneous velocity mappings can be obtained through

More information

ADAPTIVE VISION-BASED PATH FOLLOWING CONTROL OF A WHEELED ROBOT

ADAPTIVE VISION-BASED PATH FOLLOWING CONTROL OF A WHEELED ROBOT ADAPTIVE VISION-BASED PATH FOLLOWING CONTROL OF A WHEELED ROBOT L. LAPIERRE, D. SOETANTO, A. PASCOAL Institute for Systems and Robotics - IST, Torre Norte, Piso 8, Av. Rovisco Pais,, 49- Lisbon, Portugal.

More information

Revised Propeller Dynamics and Energy-Optimal Hovering in a Monospinner

Revised Propeller Dynamics and Energy-Optimal Hovering in a Monospinner Proceedings of the 4 th International Conference of Control, Dynamic Systems, and Robotics (CDSR'17) Toronto, Canada August 21 23, 2017 Paper No. 135 DOI: 10.11159/cdsr17.135 Revised Propeller Dynamics

More information

Optimal Fault-Tolerant Configurations of Thrusters

Optimal Fault-Tolerant Configurations of Thrusters Optimal Fault-Tolerant Configurations of Thrusters By Yasuhiro YOSHIMURA ) and Hirohisa KOJIMA, ) ) Aerospace Engineering, Tokyo Metropolitan University, Hino, Japan (Received June st, 7) Fault tolerance

More information

Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer

Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer Oscar De Silva, George K.I. Mann and Raymond G. Gosine Faculty of Engineering and Applied Sciences, Memorial

More information

Experiments on Stabilization of the Hanging Equilibrium of a 3D Asymmetric Rigid Pendulum

Experiments on Stabilization of the Hanging Equilibrium of a 3D Asymmetric Rigid Pendulum Proceedings of the 25 IEEE Conference on Control Applications Toronto, Canada, August 28-3, 25 MB4.5 Experiments on Stabilization of the Hanging Equilibrium of a 3D Asymmetric Rigid Pendulum Mario A. Santillo,

More information

Gyroscopic Obstacle Avoidance in 3-D

Gyroscopic Obstacle Avoidance in 3-D Gyroscopic Obstacle Avoidance in 3-D Marin Kobilarov Johns Hopkins University marin@jhu.edu Abstract The paper studies gyroscopic obstacle avoidance for autonomous vehicles. The goal is to obtain a simple

More information

A nonlinear approach to the control of a disc-shaped aircraft

A nonlinear approach to the control of a disc-shaped aircraft A nonlinear approach to the control of a disc-shaped aircraft Jean-Marie Kai, Tarek Hamel, Claude Samson To cite this version: Jean-Marie Kai, Tarek Hamel, Claude Samson. A nonlinear approach to the control

More information

Design and Implementation of an Unmanned Tail-sitter

Design and Implementation of an Unmanned Tail-sitter 1 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Congress Center Hamburg Sept 8 - Oct, 1. Hamburg, Germany Design and Implementation of an Unmanned Tail-sitter Roman Bapst,

More information

One Approach to the Integration of Inertial and Visual Navigation Systems

One Approach to the Integration of Inertial and Visual Navigation Systems FATA UNIVERSITATIS (NIŠ) SER.: ELE. ENERG. vol. 18, no. 3, December 2005, 479-491 One Approach to the Integration of Inertial and Visual Navigation Systems Dedicated to Professor Milić Stojić on the occasion

More information

On the Observability and Self-Calibration of Visual-Inertial Navigation Systems

On the Observability and Self-Calibration of Visual-Inertial Navigation Systems Center for Robotics and Embedded Systems University of Southern California Technical Report CRES-08-005 R B TIC EMBEDDED SYSTEMS LABORATORY On the Observability and Self-Calibration of Visual-Inertial

More information

TTK4150 Nonlinear Control Systems Solution 6 Part 2

TTK4150 Nonlinear Control Systems Solution 6 Part 2 TTK4150 Nonlinear Control Systems Solution 6 Part 2 Department of Engineering Cybernetics Norwegian University of Science and Technology Fall 2003 Solution 1 Thesystemisgivenby φ = R (φ) ω and J 1 ω 1

More information

Chapter 10. Path Following. Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012, Chapter 10, Slide 1

Chapter 10. Path Following. Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012, Chapter 10, Slide 1 Chapter 10 Path Following Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012, Chapter 10, Slide 1 Control Architecture destination, obstacles map path planner waypoints status path

More information

Robot Dynamics II: Trajectories & Motion

Robot Dynamics II: Trajectories & Motion Robot Dynamics II: Trajectories & Motion Are We There Yet? METR 4202: Advanced Control & Robotics Dr Surya Singh Lecture # 5 August 23, 2013 metr4202@itee.uq.edu.au http://itee.uq.edu.au/~metr4202/ 2013

More information

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics DIFFERENTIAL KINEMATICS relationship between joint velocities and end-effector velocities Geometric Jacobian Analytical Jacobian Kinematic singularities Kinematic redundancy Inverse differential kinematics

More information

NONLINEAR CONTROL OF A HELICOPTER BASED UNMANNED AERIAL VEHICLE MODEL

NONLINEAR CONTROL OF A HELICOPTER BASED UNMANNED AERIAL VEHICLE MODEL NONLINEAR CONTROL OF A HELICOPTER BASED UNMANNED AERIAL VEHICLE MODEL T JOHN KOO, YI MA, AND S SHANKAR SASTRY Abstract In this paper, output tracking control of a helicopter based unmanned aerial vehicle

More information

Nonlinear Attitude and Position Control of a Micro Quadrotor using Sliding Mode and Backstepping Techniques

Nonlinear Attitude and Position Control of a Micro Quadrotor using Sliding Mode and Backstepping Techniques 3rd US-European Competition and Workshop on Micro Air Vehicle Systems (MAV7 & European Micro Air Vehicle Conference and light Competition (EMAV27, 17-21 September 27, Toulouse, rance Nonlinear Attitude

More information

Model Reference Adaptive Control of Underwater Robotic Vehicle in Plane Motion

Model Reference Adaptive Control of Underwater Robotic Vehicle in Plane Motion Proceedings of the 11th WSEAS International Conference on SSTEMS Agios ikolaos Crete Island Greece July 23-25 27 38 Model Reference Adaptive Control of Underwater Robotic Vehicle in Plane Motion j.garus@amw.gdynia.pl

More information

Directional Redundancy for Robot Control

Directional Redundancy for Robot Control ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON AUTOMATIC CONTROL Directional Redundancy for Robot Control Nicolas Mansard, François Chaumette, Member, IEEE Abstract The paper presents a new approach

More information

Fuzzy Control for an Unmanned Helicopter

Fuzzy Control for an Unmanned Helicopter Linköping Studies in Science and Technology Thesis No. 938 Fuzzy Control for an Unmanned Helicopter by Bourhane Kadmiry Submitted to the School of Engineering at Linköping University in partial fulfilment

More information

Research on Balance of Unmanned Aerial Vehicle with Intelligent Algorithms for Optimizing Four-Rotor Differential Control

Research on Balance of Unmanned Aerial Vehicle with Intelligent Algorithms for Optimizing Four-Rotor Differential Control 2019 2nd International Conference on Computer Science and Advanced Materials (CSAM 2019) Research on Balance of Unmanned Aerial Vehicle with Intelligent Algorithms for Optimizing Four-Rotor Differential

More information

Chapter 2 Coordinate Systems and Transformations

Chapter 2 Coordinate Systems and Transformations Chapter 2 Coordinate Systems and Transformations 2.1 Coordinate Systems This chapter describes the coordinate systems used in depicting the position and orientation (pose) of the aerial robot and its manipulator

More information

Hover Control for Helicopter Using Neural Network-Based Model Reference Adaptive Controller

Hover Control for Helicopter Using Neural Network-Based Model Reference Adaptive Controller Vol.13 No.1, 217 مجلد 13 العدد 217 1 Hover Control for Helicopter Using Neural Network-Based Model Reference Adaptive Controller Abdul-Basset A. Al-Hussein Electrical Engineering Department Basrah University

More information

Nonlinear Tracking Control of Underactuated Surface Vessel

Nonlinear Tracking Control of Underactuated Surface Vessel American Control Conference June -. Portland OR USA FrB. Nonlinear Tracking Control of Underactuated Surface Vessel Wenjie Dong and Yi Guo Abstract We consider in this paper the tracking control problem

More information

ADAPTIVE SLIDING MODE CONTROL OF UNMANNED FOUR ROTOR FLYING VEHICLE

ADAPTIVE SLIDING MODE CONTROL OF UNMANNED FOUR ROTOR FLYING VEHICLE International Journal of Robotics and Automation, Vol. 30, No. 2, 205 ADAPTIVE SLIDING MODE CONTROL OF UNMANNED FOUR ROTOR FLYING VEHICLE Shafiqul Islam, Xiaoping P. Liu, and Abdulmotaleb El Saddik Abstract

More information

Investigation of the Dynamics and Modeling of a Triangular Quadrotor Configuration

Investigation of the Dynamics and Modeling of a Triangular Quadrotor Configuration Investigation of the Dynamics and Modeling of a Triangular Quadrotor Configuration TONI AXELSSON Master s Thesis at Aerospace Engineering Supervisor: Arne Karlsson Examiner: Arne Karlsson ISSN 1651-7660

More information

Quadrotor Modeling and Control for DLO Transportation

Quadrotor Modeling and Control for DLO Transportation Quadrotor Modeling and Control for DLO Transportation Thesis dissertation Advisor: Prof. Manuel Graña Computational Intelligence Group University of the Basque Country (UPV/EHU) Donostia Jun 24, 2016 Abstract

More information

ENHANCED PROPORTIONAL-DERIVATIVE CONTROL OF A MICRO QUADCOPTER

ENHANCED PROPORTIONAL-DERIVATIVE CONTROL OF A MICRO QUADCOPTER ENHANCED PROPORTIONAL-DERIVATIVE CONTROL OF A MICRO QUADCOPTER Norman L. Johnson and Kam K. Leang Department of Mechanical Engineering University of Nevada, Reno Reno, Nevada 897-312, USA ABSTRACT This

More information

NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT

NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT Plamen PETROV Lubomir DIMITROV Technical University of Sofia Bulgaria Abstract. A nonlinear feedback path controller for a differential drive

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Inertial Measurement Unit Dr. Kostas Alexis (CSE) Where am I? What is my environment? Robots use multiple sensors to understand where they are and how their environment

More information

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions.

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions. Robotics II March 7, 018 Exercise 1 An automated crane can be seen as a mechanical system with two degrees of freedom that moves along a horizontal rail subject to the actuation force F, and that transports

More information

Nonlinear Control of a Quadrotor Micro-UAV using Feedback-Linearization

Nonlinear Control of a Quadrotor Micro-UAV using Feedback-Linearization Proceedings of the 2009 IEEE International Conference on Mechatronics. Malaga, Spain, April 2009. Nonlinear Control of a Quadrotor Micro-UAV using Feedback-Linearization Holger Voos University of Applied

More information

VISUAL SERVO TRACKING CONTROL VIA A LYAPUNOV-BASED APPROACH

VISUAL SERVO TRACKING CONTROL VIA A LYAPUNOV-BASED APPROACH VISUAL SERVO TRACKING CONTROL VIA A LYAPUNOV-BASED APPROACH By GUOQIANG HU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

More information

Nonlinear Control of a Multirotor UAV with Suspended Load

Nonlinear Control of a Multirotor UAV with Suspended Load Nonlinear Control of a Multirotor UAV with Suspended Load Kristian Klausen, Thor I. Fossen, Tor Arne Johansen Centre for Autonomous Marine Operations and Systems (AMOS) Department of Engineering Cybernetics,

More information