Camera calibration. Outline. Pinhole camera. Camera projection models. Nonlinear least square methods A camera calibration tool

Size: px
Start display at page:

Download "Camera calibration. Outline. Pinhole camera. Camera projection models. Nonlinear least square methods A camera calibration tool"

Transcription

1 Outline Camera calibration Camera projection models Camera calibration i Nonlinear least square methods A camera calibration tool Applications Digital Visual Effects Yung-Yu Chuang with slides b Richard Szeliski, Steve Seitz,, Fred Pighin and Marc Pollefes Pinhole camera Camera projection models

2 Pinhole camera model P (X,Y,Z origin P p (, principal point (optical center Pinhole camera model Z fx Z fy Z principal X Z principal point Y X f f fy fx ~ Z f Z fy Pinhole camera model principal X principal point Y X f f fy fx ~ Z f Z fy Principal point offset principal point intrinsic matri X X K I ~ onl related to camera projection Y X f f fy fx ~ Z f Z fy

3 Intrinsic matri Distortion Is this form of K good enough? f K f non-square piels (digital video skew fa s radial distortion K f Radial distortion of the image No distortion Pin cushion Barrel Caused b imperfect lenses Deviations are most noticeable for ras that pass through the edge of the lens Camera rotation and translation X ' X Y ' R3 3 Y t Z' Z X f ~ KR tx Y ~ f R t Z etrinsic matri wo kinds of parameters internal or intrinsic parameters such as focal length, optical center, aspect ratio: what kind of camera? eternal or etrinsic (pose parameters including rotation and translation: where is the camera?

4 Other projection models Orthographic projection Special case of perspective projection Distance from the COP to the PP is infinite it Image World Also called parallel projection : (,, z (, Other tpes of projections Illusion Scaled orthographic Also called weak k perspective Affine projection Also called paraperspective

5 Illusion Fun with perspective Perspective cues Perspective cues

6 Fun with perspective Forced perspective in LOR Ames room Ames video BBC stor Camera calibration Camera calibration Estimate both intrinsic and etrinsic parameters. wo main categories:. Photometric calibration: uses reference objects with known geometr 2. Self calibration: onl assumes static scene, e.g. structure from motion

7 Camera calibration approaches Chromaglphs (HP research. linear regression (least squares 2. nonlinear optimization i i Linear regression ~ K R t X MX Camera calibration

8 Linear regression Linear regression Directl estimate unknowns in the M matri using known 3D points (X i,yy i,zz i and measured feature positions (u i,v i Linear regression Linear regression Solve for Projection Matri M using least-square techniques

9 Normal equation Given an overdetermined sstem A b the normal equation is that which minimizes the sum of the square differences between left and right sides A A A b Linear regression Advantages: All specifics of the camera summarized in one matri Can predict where an world point will map to in the image Disadvantages: Doesn t tell us about particular parameters Mies up internal and eternal parameters pose specific: move the camera and everthing breaks More unknowns than true degrees of freedom Nonlinear optimization A probabilistic view of least square Feature measurement equations Probabilit of M given {(u i,v i } P Optimal estimation Likelihood of M given {(u i,v i } L P It is a least square problem (but not necessaril linear least square How do we minimize L?

10 Optimal estimation Non-linear regression (least squares, because the relations between û i and u i are non-linear functions of M unknown parameters We could have terms like f cos in this u uˆ ~ u K R t X Nonlinear least square methods known constant We can use Levenberg-Marquardt method to minimize it Least square fitting Linear least square fitting t number of data points number of parameters

11 Linear least square fitting Linear least square fitting model parameters model parameters ( t M ( t ; t ( t M ( t ; t t t Linear least square fitting Linear least square fitting model parameters model parameters ( t M ( t ; t t fi ( i M ( ti ; ( t M ( t ; t t fi ( i M ( ti ; residual prediction residual prediction M ( t ; t 3 t 2 i li t is linear, too.

12 Nonlinear least square fitting Function minimization Least square is related to function minimization. model parameters residuals t 2t M ( t; 3e 4e i [ 2 4 4,,, ] f ( M ( t ; i t 2t i 3 e 4 e i It is ver hard to solve in general. Here, we onl consider a simpler problem of finding local minimum. Function minimization Quadratic functions Approimate the function with a quadratic function within a small neighborhood

13 Quadratic functions A is positive definite. All eigenvalues are positive. For all, A>. negative definite Function minimization Wh? * B definition, if is a local minimizer, h is small enough * * F( h F( F( * * * h F( h F'( O( h 2 A is singular A is indefinite Function minimization Function minimization

14 Descent methods Descent direction Steepest descent method Line search Find so that ( F( αh is minimum the decrease of F( per unit along h direction h sd is a descent direction because h sd F ( = -F ( 2 < ( F( αh F h F' ( αh h F'(

15 Line search Steepest descent method h F' ( αh h F'( h h F'( h h αh ' '' F ( α F ( h h αh h h h Hh Hh isocontour gradient Steepest descent method Newton s method It has good performance in the initial stage of the iterative process. Converge ver slow with a linear rate.

16 Newton s method Another view E( h F( h F( h g Minimizer satisfies * E'( h E' ( h g Hh h 2 Hh Newton s method h H It requires solving a linear sstem and H is not alwas positive definite. It has good performance in the final stage of the iterative process, where is close to *. g h H g Gauss-Newton method Hbrid method Use the approimate Hessian H J J No need for second derivative H is positive semi-definite his needs to calculate second-order derivative which might not be available.

17 Levenberg-Marquardt method LM can be thought of as a combination of steepest descent and the Newton method. When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to converge. When the current solution is close to the correct solution, it becomes a Newton s method. Nonlinear least square Given a set of measurements, tr to find the best parameter vector p so that the squared distance is minimal. Here, ˆ, with ˆ f ( p. Levenberg-Marquardt method Levenberg-Marquardt method (J J Ih g μ= Newton s method μ steepest descent method Strateg for choosing μ Start t with some small μ If F is not reduced, keep tring larger μ until it does If F is reduced, d accept it and reduce μ for the net iteration

18 Recap (the Rosenbrock function Steepest descent k k g h h h Hh z f (, ( ( 2 Global l minimum i at (, k k F' ' k g g 2 min k min 2 k

19 In the plane of the steepest descent direction Steepest descent ( iterations h hh h Hh k k Regularized Least- Gauss-Newton method k k H g With the approimate Hessian J H J No need for second derivative H is positive semi-definite min 2 k - H g k

20 Newton s method (48 evaluations Levenberg-Marquardt Blends steepest descent and Gauss-Newton At each step, solve for the descent direction i h (J J Ih g h gg If μ large,, steepest descent h (J J If μ small,, Gauss-Newton g Regularized Least- Levenberg-Marquardt (9 evaluations A popular calibration tool Regularized Least-

21 Multi-plane calibration Step : data acquisition Images courtes Jean-Yves Bouguet, Intel Corp. Advantage Onl requires a plane Don t have to know positions/orientations Good code available online! Intel s OpenCV librar: Matlab version b Jean-Yves Bouget: Zhengou Zhang s web site: Step 2: specif corner order Step 3: corner etraction

22 Step 3: corner etraction Step 4: minimize projection error Step 4: camera calibration Step 4: camera calibration

23 Step 5: refinement Optimized parameters How is calibration used? Applications Good for recovering intrinsic parameters; It is thus useful for man vision applications Since it requires a calibration pattern, it is often necessar to remove or replace the pattern from the footage or utilize it in some was

24 Eample of calibration Eample of calibration Eample of calibration PhotoBook Videos from Gaech Dasatoo, MakeOf P!NG, MakeOf Work, MakeOf LifeInPaints, MakeOf PhotoBook MakeOf

EPIPOLAR GEOMETRY WITH MANY DETAILS

EPIPOLAR GEOMETRY WITH MANY DETAILS EPIPOLAR GEOMERY WIH MANY DEAILS hank ou for the slides. he come mostl from the following source. Marc Pollefes U. of North Carolina hree questions: (i) Correspondence geometr: Given an image point in

More information

3D from Photographs: Camera Calibration. Dr Francesco Banterle

3D from Photographs: Camera Calibration. Dr Francesco Banterle 3D from Photographs: Camera Calibration Dr Francesco Banterle francesco.banterle@isti.cnr.it 3D from Photographs Automatic Matching of Images Camera Calibration Photographs Surface Reconstruction Dense

More information

Motion estimation. Digital Visual Effects Yung-Yu Chuang. with slides by Michael Black and P. Anandan

Motion estimation. Digital Visual Effects Yung-Yu Chuang. with slides by Michael Black and P. Anandan Motion estimation Digital Visual Effects Yung-Yu Chuang with slides b Michael Black and P. Anandan Motion estimation Parametric motion image alignment Tracking Optical flow Parametric motion direct method

More information

Numerical computation II. Reprojection error Bundle adjustment Family of Newtonʼs methods Statistical background Maximum likelihood estimation

Numerical computation II. Reprojection error Bundle adjustment Family of Newtonʼs methods Statistical background Maximum likelihood estimation Numerical computation II Reprojection error Bundle adjustment Family of Newtonʼs methods Statistical background Maximum likelihood estimation Reprojection error Reprojection error = Distance between the

More information

Robert Collins CSE486, Penn State. Lecture 25: Structure from Motion

Robert Collins CSE486, Penn State. Lecture 25: Structure from Motion Lecture 25: Structure from Motion Structure from Motion Given a set of flow fields or displacement vectors from a moving camera over time, determine: the sequence of camera poses the 3D structure of the

More information

Theory of Bouguet s MatLab Camera Calibration Toolbox

Theory of Bouguet s MatLab Camera Calibration Toolbox Theory of Bouguet s MatLab Camera Calibration Toolbox Yuji Oyamada 1 HVRL, University 2 Chair for Computer Aided Medical Procedure (CAMP) Technische Universität München June 26, 2012 MatLab Camera Calibration

More information

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization Linear and Nonlinear Optimization German University in Cairo October 10, 2016 Outline Introduction Gradient descent method Gauss-Newton method Levenberg-Marquardt method Case study: Straight lines have

More information

Optical flow. Subhransu Maji. CMPSCI 670: Computer Vision. October 20, 2016

Optical flow. Subhransu Maji. CMPSCI 670: Computer Vision. October 20, 2016 Optical flow Subhransu Maji CMPSC 670: Computer Vision October 20, 2016 Visual motion Man slides adapted from S. Seitz, R. Szeliski, M. Pollefes CMPSC 670 2 Motion and perceptual organization Sometimes,

More information

Visual Object Recognition

Visual Object Recognition Visual Object Recognition Lecture 2: Image Formation Per-Erik Forssén, docent Computer Vision Laboratory Department of Electrical Engineering Linköping University Lecture 2: Image Formation Pin-hole, and

More information

Camera calibration by Zhang

Camera calibration by Zhang Camera calibration by Zhang Siniša Kolarić September 2006 Abstract In this presentation, I present a way to calibrate a camera using the method by Zhang. NOTE. This

More information

EE Camera & Image Formation

EE Camera & Image Formation Electric Electronic Engineering Bogazici University February 21, 2018 Introduction Introduction Camera models Goal: To understand the image acquisition process. Function of the camera Similar to that of

More information

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are Quadratic forms We consider the quadratic function f : R 2 R defined by f(x) = 2 xt Ax b T x with x = (x, x 2 ) T, () where A R 2 2 is symmetric and b R 2. We will see that, depending on the eigenvalues

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil nfrastructure Eng. & Mgmt. Session 9- mage Detectors, Part Mani Golparvar-Fard Department of Civil and Environmental Engineering 3129D, Newmark Civil Engineering Lab e-mail:

More information

Instance-level l recognition. Cordelia Schmid INRIA

Instance-level l recognition. Cordelia Schmid INRIA nstance-level l recognition Cordelia Schmid NRA nstance-level recognition Particular objects and scenes large databases Application Search photos on the web for particular places Find these landmars...in

More information

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes Mathematics 309 Conic sections and their applicationsn Chapter 2. Quadric figures In this chapter want to outline quickl how to decide what figure associated in 2D and 3D to quadratic equations look like.

More information

Basic Math for

Basic Math for Basic Math for 16-720 August 23, 2002 1 Linear Algebra 1.1 Vectors and Matrices First, a reminder of a few basic notations, definitions, and terminology: Unless indicated otherwise, vectors are always

More information

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares Robert Bridson October 29, 2008 1 Hessian Problems in Newton Last time we fixed one of plain Newton s problems by introducing line search

More information

Keypoint extraction: Corners Harris Corners Pkwy, Charlotte, NC

Keypoint extraction: Corners Harris Corners Pkwy, Charlotte, NC Kepoint etraction: Corners 9300 Harris Corners Pkw Charlotte NC Wh etract kepoints? Motivation: panorama stitching We have two images how do we combine them? Wh etract kepoints? Motivation: panorama stitching

More information

Visual SLAM Tutorial: Bundle Adjustment

Visual SLAM Tutorial: Bundle Adjustment Visual SLAM Tutorial: Bundle Adjustment Frank Dellaert June 27, 2014 1 Minimizing Re-projection Error in Two Views In a two-view setting, we are interested in finding the most likely camera poses T1 w

More information

Instance-level l recognition. Cordelia Schmid & Josef Sivic INRIA

Instance-level l recognition. Cordelia Schmid & Josef Sivic INRIA nstance-level l recognition Cordelia Schmid & Josef Sivic NRA nstance-level recognition Particular objects and scenes large databases Application Search photos on the web for particular places Find these

More information

Instance-level recognition: Local invariant features. Cordelia Schmid INRIA, Grenoble

Instance-level recognition: Local invariant features. Cordelia Schmid INRIA, Grenoble nstance-level recognition: ocal invariant features Cordelia Schmid NRA Grenoble Overview ntroduction to local features Harris interest t points + SSD ZNCC SFT Scale & affine invariant interest point detectors

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 2 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization 1 Outline 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization Summary 2 Outline 3.2

More information

2 Nonlinear least squares algorithms

2 Nonlinear least squares algorithms 1 Introduction Notes for 2017-05-01 We briefly discussed nonlinear least squares problems in a previous lecture, when we described the historical path leading to trust region methods starting from the

More information

13. Nonlinear least squares

13. Nonlinear least squares L. Vandenberghe ECE133A (Fall 2018) 13. Nonlinear least squares definition and examples derivatives and optimality condition Gauss Newton method Levenberg Marquardt method 13.1 Nonlinear least squares

More information

Instance-level recognition: Local invariant features. Cordelia Schmid INRIA, Grenoble

Instance-level recognition: Local invariant features. Cordelia Schmid INRIA, Grenoble nstance-level recognition: ocal invariant features Cordelia Schmid NRA Grenoble Overview ntroduction to local features Harris interest points + SSD ZNCC SFT Scale & affine invariant interest point detectors

More information

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent Nonlinear Optimization Steepest Descent and Niclas Börlin Department of Computing Science Umeå University niclas.borlin@cs.umu.se A disadvantage with the Newton method is that the Hessian has to be derived

More information

Instance-level recognition: Local invariant features. Cordelia Schmid INRIA, Grenoble

Instance-level recognition: Local invariant features. Cordelia Schmid INRIA, Grenoble nstance-level recognition: ocal invariant features Cordelia Schmid NRA Grenoble Overview ntroduction to local features Harris interest points + SSD ZNCC SFT Scale & affine invariant interest point detectors

More information

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit Augmented Reality VU Camera Registration Prof. Vincent Lepetit Different Approaches to Vision-based 3D Tracking [From D. Wagner] [From Drummond PAMI02] [From Davison ICCV01] Consider natural features Consider

More information

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/! Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!! WARNING! this class will be dense! will learn how to use nonlinear optimization

More information

CS4495/6495 Introduction to Computer Vision. 3C-L3 Calibrating cameras

CS4495/6495 Introduction to Computer Vision. 3C-L3 Calibrating cameras CS4495/6495 Introducton to Computer Vson 3C-L3 Calbratng cameras Fnally (last tme): Camera parameters Projecton equaton the cumulatve effect of all parameters: M (3x4) f s x ' 1 0 0 0 c R 0 I T 3 3 3 x1

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

Lecture 16: Projection and Cameras. October 17, 2017

Lecture 16: Projection and Cameras. October 17, 2017 Lecture 6: Projection and Cameras October 7 207 3D Viewing as Virtual Camera To take a picture with a camera or to render an image with computer graphics we need to:. Position the camera/viewpoint in 3D

More information

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes)

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes) AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 5: Nonlinear Equations Dianne P. O Leary c 2001, 2002, 2007 Solving Nonlinear Equations and Optimization Problems Read Chapter 8. Skip Section 8.1.1.

More information

GRADIENT = STEEPEST DESCENT

GRADIENT = STEEPEST DESCENT GRADIENT METHODS GRADIENT = STEEPEST DESCENT Convex Function Iso-contours gradient 0.5 0.4 4 2 0 8 0.3 0.2 0. 0 0. negative gradient 6 0.2 4 0.3 2.5 0.5 0 0.5 0.5 0 0.5 0.4 0.5.5 0.5 0 0.5 GRADIENT DESCENT

More information

Pose estimation from point and line correspondences

Pose estimation from point and line correspondences Pose estimation from point and line correspondences Giorgio Panin October 17, 008 1 Problem formulation Estimate (in a LSE sense) the pose of an object from N correspondences between known object points

More information

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011 Introduction to Differential Equations National Chiao Tung Universit Chun-Jen Tsai 9/14/011 Differential Equations Definition: An equation containing the derivatives of one or more dependent variables,

More information

Shai Avidan Tel Aviv University

Shai Avidan Tel Aviv University Image Editing in the Gradient Domain Shai Avidan Tel Aviv Universit Slide Credits (partial list) Rick Szeliski Steve Seitz Alosha Eros Yacov Hel-Or Marc Levo Bill Freeman Fredo Durand Slvain Paris Image

More information

Optimization Methods. Lecture 18: Optimality Conditions and. Gradient Methods. for Unconstrained Optimization

Optimization Methods. Lecture 18: Optimality Conditions and. Gradient Methods. for Unconstrained Optimization 5.93 Optimization Methods Lecture 8: Optimality Conditions and Gradient Methods for Unconstrained Optimization Outline. Necessary and sucient optimality conditions Slide. Gradient m e t h o d s 3. The

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Unit 2: Multivariable optimization problems Che-Rung Lee Scribe: February 28, 2011 (UNIT 2) Numerical Optimization February 28, 2011 1 / 17 Partial derivative of a two variable function

More information

8 Numerical methods for unconstrained problems

8 Numerical methods for unconstrained problems 8 Numerical methods for unconstrained problems Optimization is one of the important fields in numerical computation, beside solving differential equations and linear systems. We can see that these fields

More information

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3. Separable ODE s

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3. Separable ODE s Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3 Separable ODE s What ou need to know alread: What an ODE is and how to solve an eponential ODE. What ou can learn

More information

Unconstrained minimization of smooth functions

Unconstrained minimization of smooth functions Unconstrained minimization of smooth functions We want to solve min x R N f(x), where f is convex. In this section, we will assume that f is differentiable (so its gradient exists at every point), and

More information

Statistical Geometry Processing Winter Semester 2011/2012

Statistical Geometry Processing Winter Semester 2011/2012 Statistical Geometry Processing Winter Semester 2011/2012 Linear Algebra, Function Spaces & Inverse Problems Vector and Function Spaces 3 Vectors vectors are arrows in space classically: 2 or 3 dim. Euclidian

More information

Affine transformations. Brian Curless CSE 557 Fall 2014

Affine transformations. Brian Curless CSE 557 Fall 2014 Affine transformations Brian Curless CSE 557 Fall 2014 1 Reading Required: Shirle, Sec. 2.4, 2.7 Shirle, Ch. 5.1-5.3 Shirle, Ch. 6 Further reading: Fole, et al, Chapter 5.1-5.5. David F. Rogers and J.

More information

Topic 8c Multi Variable Optimization

Topic 8c Multi Variable Optimization Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu Topic 8c Multi Variable Optimization EE 4386/5301 Computational Methods in EE Outline Mathematical Preliminaries

More information

Cross-validation for detecting and preventing overfitting

Cross-validation for detecting and preventing overfitting Cross-validation for detecting and preventing overfitting A Regression Problem = f() + noise Can we learn f from this data? Note to other teachers and users of these slides. Andrew would be delighted if

More information

Augmented Reality VU numerical optimization algorithms. Prof. Vincent Lepetit

Augmented Reality VU numerical optimization algorithms. Prof. Vincent Lepetit Augmented Reality VU numerical optimization algorithms Prof. Vincent Lepetit P3P: can exploit only 3 correspondences; DLT: difficult to exploit the knowledge of the internal parameters correctly, and the

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

Broken Extremals. Variational Methods & Optimal Control lecture 20. Broken extremals. Broken extremals

Broken Extremals. Variational Methods & Optimal Control lecture 20. Broken extremals. Broken extremals Broken etremals Variational Methods & Optimal Control lecture 2 Matthew Roughan Discipline of Applied Mathematics School of Mathematical Sciences Universit of Adelaide

More information

Determinants. We said in Section 3.3 that a 2 2 matrix a b. Determinant of an n n Matrix

Determinants. We said in Section 3.3 that a 2 2 matrix a b. Determinant of an n n Matrix 3.6 Determinants We said in Section 3.3 that a 2 2 matri a b is invertible if and onl if its c d erminant, ad bc, is nonzero, and we saw the erminant used in the formula for the inverse of a 2 2 matri.

More information

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23 Optimization: Nonlinear Optimization without Constraints Nonlinear Optimization without Constraints 1 / 23 Nonlinear optimization without constraints Unconstrained minimization min x f(x) where f(x) is

More information

CS4495/6495 Introduction to Computer Vision. 3D-L3 Fundamental matrix

CS4495/6495 Introduction to Computer Vision. 3D-L3 Fundamental matrix CS4495/6495 Introduction to Computer Vision 3D-L3 Fundamental matrix Weak calibration Main idea: Estimate epipolar geometry from a (redundant) set of point correspondences between two uncalibrated cameras

More information

4 Newton Method. Unconstrained Convex Optimization 21. H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion:

4 Newton Method. Unconstrained Convex Optimization 21. H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion: Unconstrained Convex Optimization 21 4 Newton Method H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion: f(x + p) f(x)+p T f(x)+ 1 2 pt H(x)p ˆf(p) In general, ˆf(p) won

More information

Unit 12 Study Notes 1 Systems of Equations

Unit 12 Study Notes 1 Systems of Equations You should learn to: Unit Stud Notes Sstems of Equations. Solve sstems of equations b substitution.. Solve sstems of equations b graphing (calculator). 3. Solve sstems of equations b elimination. 4. Solve

More information

An Iterative Descent Method

An Iterative Descent Method Conjugate Gradient: An Iterative Descent Method The Plan Review Iterative Descent Conjugate Gradient Review : Iterative Descent Iterative Descent is an unconstrained optimization process x (k+1) = x (k)

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-3: Unconstrained optimization II Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428

More information

Vision par ordinateur

Vision par ordinateur Vision par ordinateur Géométrie épipolaire Frédéric Devernay Avec des transparents de Marc Pollefeys Epipolar geometry π Underlying structure in set of matches for rigid scenes C1 m1 l1 M L2 L1 l T 1 l

More information

Image Alignment Computer Vision (Kris Kitani) Carnegie Mellon University

Image Alignment Computer Vision (Kris Kitani) Carnegie Mellon University Lucas Kanade Image Alignment 16-385 Comuter Vision (Kris Kitani) Carnegie Mellon University htt://www.humansensing.cs.cmu.edu/intraface/ How can I find in the image? Idea #1: Temlate Matching Slow, combinatory,

More information

1 HOMOGENEOUS TRANSFORMATIONS

1 HOMOGENEOUS TRANSFORMATIONS HOMOGENEOUS TRANSFORMATIONS Purpose: The purpose of this chapter is to introduce ou to the Homogeneous Transformation. This simple 4 4 transformation is used in the geometr engines of CAD sstems and in

More information

Position & motion in 2D and 3D

Position & motion in 2D and 3D Position & motion in 2D and 3D! METR4202: Guest lecture 22 October 2014 Peter Corke Peter Corke Robotics, Vision and Control FUNDAMENTAL ALGORITHMS IN MATLAB 123 Sections 11.1, 15.2 Queensland University

More information

ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, Please leave fractions as fractions, but simplify them, etc.

ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, Please leave fractions as fractions, but simplify them, etc. ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, 2015 1 Name: Solution Score: /100 This exam is closed-book. You must show ALL of your work for full credit. Please read the questions carefully.

More information

Affine transformations

Affine transformations Reading Required: Affine transformations Brian Curless CSE 557 Fall 2009 Shirle, Sec. 2.4, 2.7 Shirle, Ch. 5.-5.3 Shirle, Ch. 6 Further reading: Fole, et al, Chapter 5.-5.5. David F. Rogers and J. Alan

More information

NonlinearOptimization

NonlinearOptimization 1/35 NonlinearOptimization Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Jiří Kašpar, Pavel Tvrdík, 2011 Unconstrained nonlinear optimization,

More information

Unconstrained Multivariate Optimization

Unconstrained Multivariate Optimization Unconstrained Multivariate Optimization Multivariate optimization means optimization of a scalar function of a several variables: and has the general form: y = () min ( ) where () is a nonlinear scalar-valued

More information

Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s =

Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s = Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s = cotα), and the lens distortion (radial distortion coefficient

More information

Interest Operators. All lectures are from posted research papers. Harris Corner Detector: the first and most basic interest operator

Interest Operators. All lectures are from posted research papers. Harris Corner Detector: the first and most basic interest operator Interest Operators All lectures are from posted research papers. Harris Corner Detector: the first and most basic interest operator SIFT interest point detector and region descriptor Kadir Entrop Detector

More information

3.1 Exponential Functions and Their Graphs

3.1 Exponential Functions and Their Graphs .1 Eponential Functions and Their Graphs Sllabus Objective: 9.1 The student will sketch the graph of a eponential, logistic, or logarithmic function. 9. The student will evaluate eponential or logarithmic

More information

Geometric Modeling Summer Semester 2010 Mathematical Tools (1)

Geometric Modeling Summer Semester 2010 Mathematical Tools (1) Geometric Modeling Summer Semester 2010 Mathematical Tools (1) Recap: Linear Algebra Today... Topics: Mathematical Background Linear algebra Analysis & differential geometry Numerical techniques Geometric

More information

Optimization Methods. Lecture 19: Line Searches and Newton s Method

Optimization Methods. Lecture 19: Line Searches and Newton s Method 15.93 Optimization Methods Lecture 19: Line Searches and Newton s Method 1 Last Lecture Necessary Conditions for Optimality (identifies candidates) x local min f(x ) =, f(x ) PSD Slide 1 Sufficient Conditions

More information

Linear regression Class 25, Jeremy Orloff and Jonathan Bloom

Linear regression Class 25, Jeremy Orloff and Jonathan Bloom 1 Learning Goals Linear regression Class 25, 18.05 Jerem Orloff and Jonathan Bloom 1. Be able to use the method of least squares to fit a line to bivariate data. 2. Be able to give a formula for the total

More information

Generalization. A cat that once sat on a hot stove will never again sit on a hot stove or on a cold one either. Mark Twain

Generalization. A cat that once sat on a hot stove will never again sit on a hot stove or on a cold one either. Mark Twain Generalization Generalization A cat that once sat on a hot stove will never again sit on a hot stove or on a cold one either. Mark Twain 2 Generalization The network input-output mapping is accurate for

More information

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by:

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by: Newton s Method Suppose we want to solve: (P:) min f (x) At x = x, f (x) can be approximated by: n x R. f (x) h(x) := f ( x)+ f ( x) T (x x)+ (x x) t H ( x)(x x), 2 which is the quadratic Taylor expansion

More information

Mechanics Departmental Exam Last updated November 2013

Mechanics Departmental Exam Last updated November 2013 Mechanics Departmental Eam Last updated November 213 1. Two satellites are moving about each other in circular orbits under the influence of their mutual gravitational attractions. The satellites have

More information

Affine transformations

Affine transformations Reading Optional reading: Affine transformations Brian Curless CSE 557 Autumn 207 Angel and Shreiner: 3., 3.7-3. Marschner and Shirle: 2.3, 2.4.-2.4.4, 6..-6..4, 6.2., 6.3 Further reading: Angel, the rest

More information

Super-Resolution. Dr. Yossi Rubner. Many slides from Miki Elad - Technion

Super-Resolution. Dr. Yossi Rubner. Many slides from Miki Elad - Technion Super-Resolution Dr. Yossi Rubner yossi@rubner.co.il Many slides from Mii Elad - Technion 5/5/2007 53 images, ratio :4 Example - Video 40 images ratio :4 Example Surveillance Example Enhance Mosaics Super-Resolution

More information

Single view metrology

Single view metrology EECS 44 Computer vision Single view metrology Review calibration Lines and planes at infinity Absolute conic Estimating geometry from a single image Etensions Reading: [HZ] Chapters,3,8 Calibration Problem

More information

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09 Numerical Optimization 1 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2 Overview of Methods

More information

Optimization and Root Finding. Kurt Hornik

Optimization and Root Finding. Kurt Hornik Optimization and Root Finding Kurt Hornik Basics Root finding and unconstrained smooth optimization are closely related: Solving ƒ () = 0 can be accomplished via minimizing ƒ () 2 Slide 2 Basics Root finding

More information

Quasi-Newton Methods

Quasi-Newton Methods Newton s Method Pros and Cons Quasi-Newton Methods MA 348 Kurt Bryan Newton s method has some very nice properties: It s extremely fast, at least once it gets near the minimum, and with the simple modifications

More information

Learning From Data Lecture 7 Approximation Versus Generalization

Learning From Data Lecture 7 Approximation Versus Generalization Learning From Data Lecture 7 Approimation Versus Generalization The VC Dimension Approimation Versus Generalization Bias and Variance The Learning Curve M. Magdon-Ismail CSCI 4100/6100 recap: The Vapnik-Chervonenkis

More information

ECE580 Exam 1 October 4, Please do not write on the back of the exam pages. Extra paper is available from the instructor.

ECE580 Exam 1 October 4, Please do not write on the back of the exam pages. Extra paper is available from the instructor. ECE580 Exam 1 October 4, 2012 1 Name: Solution Score: /100 You must show ALL of your work for full credit. This exam is closed-book. Calculators may NOT be used. Please leave fractions as fractions, etc.

More information

j=1 r 1 x 1 x n. r m r j (x) r j r j (x) r j (x). r j x k

j=1 r 1 x 1 x n. r m r j (x) r j r j (x) r j (x). r j x k Maria Cameron Nonlinear Least Squares Problem The nonlinear least squares problem arises when one needs to find optimal set of parameters for a nonlinear model given a large set of data The variables x,,

More information

Monte Carlo integration

Monte Carlo integration Monte Carlo integration Eample of a Monte Carlo sampler in D: imagine a circle radius L/ within a square of LL. If points are randoml generated over the square, what s the probabilit to hit within circle?

More information

Lab 5 Forces Part 1. Physics 225 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces.

Lab 5 Forces Part 1. Physics 225 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces. b Lab 5 orces Part 1 Introduction his is the first week of a two part lab that deals with forces and related concepts. A force is a push or a pull on an object that can be caused b a variet of reasons.

More information

14.1 Systems of Linear Equations in Two Variables

14.1 Systems of Linear Equations in Two Variables 86 Chapter 1 Sstems of Equations and Matrices 1.1 Sstems of Linear Equations in Two Variables Use the method of substitution to solve sstems of equations in two variables. Use the method of elimination

More information

Introduction to pinhole cameras

Introduction to pinhole cameras Introduction to pinhole cameras Lesson given by Sébastien Piérard in the course Introduction aux techniques audio et vidéo (ULg, Pr JJ Embrechts) INTELSIG, Montefiore Institute, University of Liège, Belgium

More information

Optimization. Totally not complete this is...don't use it yet...

Optimization. Totally not complete this is...don't use it yet... Optimization Totally not complete this is...don't use it yet... Bisection? Doing a root method is akin to doing a optimization method, but bi-section would not be an effective method - can detect sign

More information

6.869 Advances in Computer Vision. Prof. Bill Freeman March 1, 2005

6.869 Advances in Computer Vision. Prof. Bill Freeman March 1, 2005 6.869 Advances in Computer Vision Prof. Bill Freeman March 1 2005 1 2 Local Features Matching points across images important for: object identification instance recognition object class recognition pose

More information

Multi-Frame Factorization Techniques

Multi-Frame Factorization Techniques Multi-Frame Factorization Techniques Suppose { x j,n } J,N j=1,n=1 is a set of corresponding image coordinates, where the index n = 1,...,N refers to the n th scene point and j = 1,..., J refers to the

More information

Least-Squares Fitting of Model Parameters to Experimental Data

Least-Squares Fitting of Model Parameters to Experimental Data Least-Squares Fitting of Model Parameters to Experimental Data Div. of Mathematical Sciences, Dept of Engineering Sciences and Mathematics, LTU, room E193 Outline of talk What about Science and Scientific

More information

Feature extraction: Corners and blobs

Feature extraction: Corners and blobs Featre etraction: Corners and blobs Wh etract featres? Motiation: panorama stitching We hae two images how do we combine them? Wh etract featres? Motiation: panorama stitching We hae two images how do

More information

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector.

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector. LESSON 5: EIGENVALUES AND EIGENVECTORS APRIL 2, 27 In this contet, a vector is a column matri E Note 2 v 2, v 4 5 6 () We might also write v as v Both notations refer to a vector (2) A vector can be man

More information

Matrix Derivatives and Descent Optimization Methods

Matrix Derivatives and Descent Optimization Methods Matrix Derivatives and Descent Optimization Methods 1 Qiang Ning Department of Electrical and Computer Engineering Beckman Institute for Advanced Science and Techonology University of Illinois at Urbana-Champaign

More information

Linear and Nonlinear Systems of Equations. The Method of Substitution. Equation 1 Equation 2. Check (2, 1) in Equation 1 and Equation 2: 2x y 5?

Linear and Nonlinear Systems of Equations. The Method of Substitution. Equation 1 Equation 2. Check (2, 1) in Equation 1 and Equation 2: 2x y 5? 3330_070.qd 96 /5/05 Chapter 7 7. 9:39 AM Page 96 Sstems of Equations and Inequalities Linear and Nonlinear Sstems of Equations What ou should learn Use the method of substitution to solve sstems of linear

More information

Data Fitting and Uncertainty

Data Fitting and Uncertainty TiloStrutz Data Fitting and Uncertainty A practical introduction to weighted least squares and beyond With 124 figures, 23 tables and 71 test questions and examples VIEWEG+ TEUBNER IX Contents I Framework

More information

Biostatistics in Research Practice - Regression I

Biostatistics in Research Practice - Regression I Biostatistics in Research Practice - Regression I Simon Crouch 30th Januar 2007 In scientific studies, we often wish to model the relationships between observed variables over a sample of different subjects.

More information

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng Optimization 2 CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Optimization 2 1 / 38

More information

What is Fuzzy Logic? Fuzzy logic is a tool for embedding human knowledge (experience, expertise, heuristics) Fuzzy Logic

What is Fuzzy Logic? Fuzzy logic is a tool for embedding human knowledge (experience, expertise, heuristics) Fuzzy Logic Fuzz Logic Andrew Kusiak 239 Seamans Center Iowa Cit, IA 52242 527 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak (Based on the material provided b Professor V. Kecman) What is Fuzz Logic?

More information

Motion Estimation (I)

Motion Estimation (I) Motion Estimation (I) Ce Liu celiu@microsoft.com Microsoft Research New England We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

LECTURE 22: SWARM INTELLIGENCE 3 / CLASSICAL OPTIMIZATION

LECTURE 22: SWARM INTELLIGENCE 3 / CLASSICAL OPTIMIZATION 15-382 COLLECTIVE INTELLIGENCE - S19 LECTURE 22: SWARM INTELLIGENCE 3 / CLASSICAL OPTIMIZATION TEACHER: GIANNI A. DI CARO WHAT IF WE HAVE ONE SINGLE AGENT PSO leverages the presence of a swarm: the outcome

More information