11. DUAL NATURE OF RADIATION AND MATTER

Size: px
Start display at page:

Download "11. DUAL NATURE OF RADIATION AND MATTER"

Transcription

1 11. DUAL NATURE OF RADIATION AND MATTER Very shrt answer and shrt answer questins 1. Define wrk functin f a metal? The minimum energy required fr an electrn t escape frm the metal surface is called the wrk functin f the metal 2. Define 1eV 1eV is the energy gained by an electrn when it is accelerated thrugh a ptential difference f ne vlt. 3. Define therminic emissin? Emissin f electrn frm a metal surface when it is heated t sufficiently high temperature is called therminic emissin. 4. Define field emissin? Emissin f electrn frm metal surface when it is subjected t high electric field (f the rder f 10 8 V) is called field emissin. 5. Define phtelectric emissin? Emissin f electrns frm metal surface, when it is illuminated with light f suitable frequency is called phtelectric effect. 6. Wh discvered phtelectric effect? Henrich Hertz discvered phtelectric effect. 7. Define threshld frequency f a metal? Threshld frequency f a metal is the minimum cut-ff frequency f incident light belw which n phtelectric emissin takes place irrespective f intensity f incident light. 8. Hw pht electric current depends n intensity f incident light? Abve threshld frequency, phtelectric current is directly prprtinal t intensity f incident light. 9. What d yu mean by saturatin current? As the ptential f cllectr is increased fr a radiatin f certain high frequency and intensity, phtelectric current increases and reaches t a imum cnstant value. This cnstant current is called saturatin current. 10. Define stpping ptential f a given phtsensitive metal? Stpping ptential f a phtsensitive metal is defined as the minimum negative ptential applied t the cllectr at which the phtelectric current just drps zer. 11. Give the mathematical relatin between stpping ptential and imum kinetic energy f phtelectrn. ev imum kinetic energy e Charg e f electrn V Magnitude f stpping ptential 12. Give the graphical representatin f the variatin f phtelectric current with cllectr plate ptential.

2 13. Represent the variatin f stpping ptential with frequency f incident light graphically. 14. Give the graphical representatin f effect f frequency f incident radiatin n stpping ptential. 15. Define quanta? Radiatin energy is made up f discrete unit f energy called quanta. 16. What is a de-brglie wave? A wave assciated with mving particle is called de-brglie wave. 17. What is the experimental utcme f Davissn and Germer experiment? Davissn and Germer prvided experimental prf fr the wave nature f matter particle and verified the de-brglie s expressin fr wavelength f matter wave. 18. What happens t the kinetic energy f phtelectrns if the intensity f incident radiatin is increased? inetic energy remains same as kinetic energy is independent f intensity f incident radiatin 19. Why sufficiently pwerful AM radi signal cannt prduce phtelectric effect? The energy f radi phtn is less than the wrk functin f any metal s even sufficiently pwerful AM radi signal cannt prduce phtelectric effect. 20. Give the labeled schematic representatin f experimental arrangement fr the study f phtelectric effect.

3 21. Name the factrs n which imum kinetic energy f phtelectrns depends. Maximum kinetic energy f phtelectrns depends n the nature f the emitter and the frequency f incident radiatin. 22. Give the Einstein s phtelectric equatin and explain the terms. Einstein s phtelectric equatin is given by where h Wrk functin Maximum kinetic energy h plank ' s cns tan t Frequency f incident radiatin 23. What is the threshld frequency f a phtn fr phtelectric emissin frm a metal f wrk functin 1eV 19 1x1.6 x10 14 Threshld frequency 2.41x10 Hz 34 h 6.625x Why the phtelectrns emitted frm a metal surface fr a certain radiatin have different energies even if wrk functin f metal is a cnstant? Wrk functin is the minimum energy required fr the electrn in the highest level f the cnductin band t get ut f the metal. Nt all electrns in the metal belng t this level. They ccupy a cntinuus band f levels. Cnsequently, fr the same incident radiatin, electrns kncked ff frm different levels cme ut with different energies. 25. What is the significance f the slpe f graph f stpping ptential f an emitter verses frequency f incident radiatin? The slpe f graph f stpping ptential f an emitter verses frequency f incident radiatin is bserved t be a cnstant. The value f slpe is measured t be h/e which is independent f nature f emitter. Millikan calculated the value f h with the help f experimental value f slpe and knwn value f e. The calculated value bserved t be matching with Plank s cnstant exactly. 26. Draw labeled schematics diagram t shw the experimental arrangement f Davissn and Germer experiment.

4 27. Mentin the relatin fr de-brglie wavelength. Accrding t de-brglie thery, wavelength f matter wave assciated with particle f mmentum p (p=mv) is given by h...(2) p 28. Give the relatinship between the accelerating ptential and the de-brglie wavelength assciated with a charged particle. h de-brglie wavelength assciated with a charged particle is given 2mqV Where q=charge f the particle V=ptential thrugh particle is accelerated m=mass f the particle Lng answer questins 1. Explain Hallwachs and Lenard s experimental bservatins. Wilhelm Hallwachs and Philipp Lenard cnducted a detailed study f the phenmenn f phtelectric emissin. Lenard bserved that when ultravilet radiatins were allwed t fall n the emitter plate f an evacuated glass tube enclsing tw electrdes (metal plates), current flws in the circuit. As sn as the ultravilet radiatin is stpped, the current flw als stps. Thus, light falling n the surface f the emitter causes current in the external circuit. Hallwachs bserved that the uncharged zinc plate became psitively charged when it is irradiated by ultravilet light. Als psitive charge n a psitively charged zinc plate gets enhanced when it is illuminated by ultravilet light. Frm the experimental bservatins he cncluded that zinc plate emits negatively charged particles under the actin f ultravilet light.

5 2. Explain the effect f phtelectric current with cllectr plate ptential Phtelectric current increases with increase in accelerating (psitive) ptential. At sme stage, fr a certain psitive ptential f plate A, the phtelectric current becmes imum r saturates. If ptential f plate A is further increased, the phtcurrent remains same. This imum value f the phtelectric current is called saturatin current. When the ptential f the cllectr plate is made mre and mre negative (retarding) with respect t the plate emitter, the electrns are repelled and nly the mst energetic electrns reach the cllectr. The phtcurrent decreases rapidly until it drps t zer at a certain sharply defined, critical value f the negative ptential V 0. Fr a particular frequency f incident radiatin, the minimum negative (retarding) ptential V 0 given t the cllectr plate fr which the phtelectrns are cmpletely stpped frm reaching cllectr r phtcurrent becmes zer is called the cut-ff r stpping ptential. 3. Mentin the experimental bservatins f phtelectric effect. (i) Fr a given phtsensitive material and frequency f incident radiatin(abve the threshld frequency), the phtelectric current is directly prprtinal t the intensity f incident light. (ii) Fr a given phtsensitive material and frequency f incident radiatin, saturatin current is fund t be prprtinal t the intensity f incident radiatin whereas the stpping ptential is independent f its intensity. (iii) Fr a given phtsensitive material, there exists a certain minimum cut-ff frequency f the incident radiatin, called the threshld frequency, belw which n emissin f phtelectrns takes place, n matter hw intense the incident light is. Abve the threshld v frequency, the stpping ptential and the imum kinetic energy f the emitted phtelectrns increases linearly with the frequency f the incident radiatin, but is independent f its intensity. (iv) The phtelectric emissin is an instantaneus prcess, irrespective f intensity f the incident radiatin. 4. Explain the experimental bservatins with the help f Einstein s phtelectric equatin. a) Accrding t Einstein s thery, the basic elementary prcess invlved in phtelectric effect is the absrptin f a light quantum by an electrn. This prcess is instantaneus. Thus, irrespective f the intensity, phtelectric emissin is instantaneus. b) Accrding t Einstein s equatin, h depends linearly n as is a cnstant fr a given metal. Als is independent f intensity f radiatin. Abve cncepts are in gd agreement with the experimental bservatin. This is due t the fact that accrding t Einstein s thery, phtelectric effect arises frm the absrptin f a single quantum f radiatin by a single electrn.. c) is always nn-negative, Phtelectric emissin is pssible nly if h where h Thus, there exists a threshld frequency fr the metal surface, belw which n phtelectric emissin pssible, n matter hw intense the incident radiatin may be r hw lng it falls n the surface. d) Intensity f radiatin is prprtinal t the number f energy quanta per unit area per unit time. The greater the number f energy quanta available, the greater is the number f electrns absrbing the

6 energy. Hence the number f electrns cming ut f the metal is als higher. This explains why, fr >, phtelectric current is prprtinal t intensity. 5. Give the characteristics f phtn. (i) In interactin f radiatin with matter, radiatin behaves as if it is made up f particles called phtns. h (ii) Each phtn has energy E h where is the frequency, mmentum p where c is the c speed f light. (iii) All phtns f light f a particular frequency, r wavelength, have the same energy and mmentum, whatever the intensity f radiatin may be. By increasing the intensity f light f given wavelength, there is nly an increase in the number f phtns per secnd crssing a given area, with each phtn having the same energy. Thus, phtn energy is independent f intensity f radiatin. (iv) Phtns are electrically neutral and are nt deflected by electric and magnetic fields. (v) In a phtn-particle cllisin (such as phtn-electrn cllisin), the ttal energy and ttal mmentum are cnserved. Hwever, the number f phtns may nt be cnserved in a cllisin. The phtn may be absrbed r a new phtn may be created.. 6. Explain Davissn and Germer experiment. The experiment is perfrmed by varying the accelerating vltage frm 44 V t 68 V. A strng peak bserved in the intensity (I ) f the scattered electrn fr an accelerating vltage f 54V at a scattering angle 50 The appearance f the peak in a particular directin is due t the cnstructive interference f electrns scattered frm different layers f the regularly spaced atms f the crystals. Frm the electrn diffractin thery, the wavelength f matter waves prducing ima at 50 is calculated t be = nm Accrding t de-brglie thery nm V

7 Fr V = 54 V nm 54 Thus, there is an excellent agreement between the theretical value and the experimentally btained value f de Brglie wavelength. Davissn- Germer experiment thus strikingly cnfirms the wave nature f electrns, particles in general and the de Brglie relatin. *************************************************************************************

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantizatin Light 9.1 Planck s Quantum Thery 9.1.1 Distinguish between Planck s quantum thery and classical thery energy The undatin the Planck s quantum thery is a thery black bdy radiatin.

More information

TOPPER SAMPLE PAPER 2 Class XII- Physics

TOPPER SAMPLE PAPER 2 Class XII- Physics TOPPER SAMPLE PAPER 2 Class XII- Physics Time: Three Hurs Maximum Marks: 70 General Instructins (a) All questins are cmpulsry. (b) There are 30 questins in ttal. Questins 1 t 8 carry ne mark each, questins

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY 013 SUBJECT: ENGINEERING PHYSICS (PHY101/10) Time: 3 Hrs. Max. Marks: 50 Nte: Answer any

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

Chapter 23 Electromagnetic Waves Lecture 14

Chapter 23 Electromagnetic Waves Lecture 14 Chapter 23 Electrmagnetic Waves Lecture 14 23.1 The Discvery f Electrmagnetic Waves 23.2 Prperties f Electrmagnetic Waves 23.3 Electrmagnetic Waves Carry Energy and Mmentum 23.4 Types f Electrmagnetic

More information

d sinθ = mλ Interference and diffraction double slit or diffraction grating d sinθ = mλ d sinθ is the path difference x (small angle approximation)

d sinθ = mλ Interference and diffraction double slit or diffraction grating d sinθ = mλ d sinθ is the path difference x (small angle approximation) Wave Optics Wave prperties f light The clrs in a rainbw are ROY G. BIV (Red, range, yellw, green, blue, indig, vilet). White light is a cmbinatin f all clrs Black is the absence f light Wavelength determines

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

Dispersion Ref Feynman Vol-I, Ch-31

Dispersion Ref Feynman Vol-I, Ch-31 Dispersin Ref Feynman Vl-I, Ch-31 n () = 1 + q N q /m 2 2 2 0 i ( b/m) We have learned that the index f refractin is nt just a simple number, but a quantity that varies with the frequency f the light.

More information

To get you thinking...

To get you thinking... T get yu thinking... 1.) What is an element? Give at least 4 examples f elements. 2.) What is the atmic number f hydrgen? What des a neutral hydrgen atm cnsist f? Describe its "mtin". 3.) Hw des an atm

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 10: Electricity and circuits Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin The Structure f the Atm Psitively charged nucleus surrunded by negatively charged electrns

More information

Dual Nature of Radiation and Matter-I

Dual Nature of Radiation and Matter-I Dual Nature of Radiation and Matter-I Physics Without Fear CONTENTS ELECTRON EMISSION PHOTOELECTRIC EFFECT; HERTZ S OBSERVATIONS HALLWACHS AND LENARD S OBSERVATIONS EXPERIMENTAL STUDY OF PHOTOELECTRIC

More information

NGSS High School Physics Domain Model

NGSS High School Physics Domain Model NGSS High Schl Physics Dmain Mdel Mtin and Stability: Frces and Interactins HS-PS2-1: Students will be able t analyze data t supprt the claim that Newtn s secnd law f mtin describes the mathematical relatinship

More information

The Evidence for the Photon

The Evidence for the Photon The Evidence fr the Phtn The Atmic Nature f Matter and the Elementary Structure f the Atm The first evidence that nature is quantized arse frm the realizatin that there ere nly a small number f fundamental

More information

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra Chem 115 POGIL Wrksheet - Week 8 Thermchemistry (Cntinued), Electrmagnetic Radiatin, and Line Spectra Why? As we saw last week, enthalpy and internal energy are state functins, which means that the sum

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

ABSORPTION OF GAMMA RAYS

ABSORPTION OF GAMMA RAYS 6 Sep 11 Gamma.1 ABSORPTIO OF GAMMA RAYS Gamma rays is the name given t high energy electrmagnetic radiatin riginating frm nuclear energy level transitins. (Typical wavelength, frequency, and energy ranges

More information

Lecture 18 Title : Fine Structure : multi-electron atoms

Lecture 18 Title : Fine Structure : multi-electron atoms Lecture 8 Title : Fine Structure : multi-electrn atms Page-0 In this lecture we will cncentrate n the fine structure f the multielectrn atms. As discussed in the previus lecture that the fine structure

More information

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition)

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition) Name Chem 163 Sectin: Team Number: ALE 24. Vltaic Cells and Standard Cell Ptentials (Reference: 21.2 and 21.3 Silberberg 5 th editin) What des a vltmeter reading tell us? The Mdel: Standard Reductin and

More information

Study Guide Physics Pre-Comp 2013

Study Guide Physics Pre-Comp 2013 I. Scientific Measurement Metric Units S.I. English Length Meter (m) Feet (ft.) Mass Kilgram (kg) Pund (lb.) Weight Newtn (N) Ounce (z.) r pund (lb.) Time Secnds (s) Secnds (s) Vlume Liter (L) Galln (gal)

More information

DUAL NATURE OF RADIATION AND MATTER I K GOGIA KV JHARODA KALAN DELHI.

DUAL NATURE OF RADIATION AND MATTER I K GOGIA KV JHARODA KALAN DELHI. DUAL NATURE OF RADIATION AND MATTER AIM: The aim of present self- learning module is to train the minds of the learners in building the concepts by learning on their own. The module is designed to Achieve

More information

General Chemistry II, Unit I: Study Guide (part I)

General Chemistry II, Unit I: Study Guide (part I) 1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Prperties f Gases Observatin 1: Pressure- Vlume Measurements n Gases The spring f air is measured as pressure, defined as the

More information

Making and Experimenting with Voltaic Cells. I. Basic Concepts and Definitions (some ideas discussed in class are omitted here)

Making and Experimenting with Voltaic Cells. I. Basic Concepts and Definitions (some ideas discussed in class are omitted here) Making xperimenting with Vltaic Cells I. Basic Cncepts Definitins (sme ideas discussed in class are mitted here) A. Directin f electrn flw psitiveness f electrdes. If ne electrde is mre psitive than anther,

More information

ChE 471: LECTURE 4 Fall 2003

ChE 471: LECTURE 4 Fall 2003 ChE 47: LECTURE 4 Fall 003 IDEL RECTORS One f the key gals f chemical reactin engineering is t quantify the relatinship between prductin rate, reactr size, reactin kinetics and selected perating cnditins.

More information

Synchronous Motor V-Curves

Synchronous Motor V-Curves Synchrnus Mtr V-Curves 1 Synchrnus Mtr V-Curves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel

More information

Electromagnetic Radiation

Electromagnetic Radiation CLASSICALLY -- ELECTROMAGNETIC RADIATION Maxwell (1865) Electrmagnetic Radiatin http://apd.nasa.gv/apd/astrpix.html Classically, an electrmagnetic wave can be viewed as a self-sustaining wave f electric

More information

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments Lectures 5-6: Magnetic diple mments Sdium D-line dublet Orbital diple mments. Orbital precessin. Grtrian diagram fr dublet states f neutral sdium shwing permitted transitins, including Na D-line transitin

More information

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review)

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review) CHAPTER 18: THERMODYNAMICS AND EQUILIBRIUM Part One: Heat Changes and Thermchemistry This aspect f Thermdynamics was dealt with in Chapter 6. (Review) A. Statement f First Law. (Sectin 18.1) 1. U ttal

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance summary C = ε A / d = πε L / ln( b / a ) ab C = 4πε 4πε a b a b >> a Chapter 16 Electric Energy and Capacitance Capacitance Q=CV Parallel plates, caxial cables, Earth Series and parallel 1 1 1 = + +..

More information

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1 Physics 1 Lecture 1 Tday's Cncept: Magnetic Frce n mving charges F qv Physics 1 Lecture 1, Slide 1 Music Wh is the Artist? A) The Meters ) The Neville rthers C) Trmbne Shrty D) Michael Franti E) Radiatrs

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information

Measurement of Radial Loss and Lifetime. of Microwave Plasma in the Octupo1e. J. C. Sprott PLP 165. Plasma Studies. University of Wisconsin DEC 1967

Measurement of Radial Loss and Lifetime. of Microwave Plasma in the Octupo1e. J. C. Sprott PLP 165. Plasma Studies. University of Wisconsin DEC 1967 Measurement f Radial Lss and Lifetime f Micrwave Plasma in the Octup1e J. C. Sprtt PLP 165 Plasma Studies University f Wiscnsin DEC 1967 1 The number f particles in the tridal ctuple was measured as a

More information

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd NAME: DUE DATE: JULY 2 nd AP Chemistry SUMMER REV: Half-Life Why? Every radiistpe has a characteristic rate f decay measured by its half-life. Half-lives can be as shrt as a fractin f a secnd r as lng

More information

Chapter 30. Inductance

Chapter 30. Inductance Chapter 30 nductance 30. Self-nductance Cnsider a lp f wire at rest. f we establish a current arund the lp, it will prduce a magnetic field. Sme f the magnetic field lines pass thrugh the lp. et! be the

More information

POLARISATION VISUAL PHYSICS ONLINE. View video on polarisation of light

POLARISATION VISUAL PHYSICS ONLINE. View video on polarisation of light VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT POLARISATION View vide n plarisatin f light While all the experimental evidence s far that supprts the wave nature f light, nne f it tells us whether light

More information

Accelerated Chemistry POGIL: Half-life

Accelerated Chemistry POGIL: Half-life Name: Date: Perid: Accelerated Chemistry POGIL: Half-life Why? Every radiistpe has a characteristic rate f decay measured by its half-life. Half-lives can be as shrt as a fractin f a secnd r as lng as

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

General Chemistry II, Unit II: Study Guide (part 1)

General Chemistry II, Unit II: Study Guide (part 1) General Chemistry II, Unit II: Study Guide (part 1) CDS Chapter 21: Reactin Equilibrium in the Gas Phase General Chemistry II Unit II Part 1 1 Intrductin Sme chemical reactins have a significant amunt

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

Chapter 32. Maxwell s Equations and Electromagnetic Waves

Chapter 32. Maxwell s Equations and Electromagnetic Waves Chapter 32 Maxwell s Equatins and Electrmagnetic Waves Maxwell s Equatins and EM Waves Maxwell s Displacement Current Maxwell s Equatins The EM Wave Equatin Electrmagnetic Radiatin MFMcGraw-PHY 2426 Chap32-Maxwell's

More information

PHYSICS Unit 3 Trial Examination

PHYSICS Unit 3 Trial Examination STAV Publishing Pty Ltd 005 PHYSICS Unit 3 Trial Examinatin SOLUTIONS BOOK Published by STAV Publishing Pty Ltd. STAV Huse, 5 Munr Street, Cburg VIC 3058 Australia. Phne: 6 + 3 9385 3999 Fax: 6 + 3 9386

More information

Therefore the atomic diameter is 5 orders of magnitude ( times) greater than the m

Therefore the atomic diameter is 5 orders of magnitude ( times) greater than the m Orders f Magnitude Pwers f 10 are referred t as rders f magnitude e.g. smething a thusand times larger (10 3 ) is three rders f magnitude bigger. A prtn has a diameter f the rder ~10-15 m The diameter

More information

BASIC DIRECT-CURRENT MEASUREMENTS

BASIC DIRECT-CURRENT MEASUREMENTS Brwn University Physics 0040 Intrductin BASIC DIRECT-CURRENT MEASUREMENTS The measurements described here illustrate the peratin f resistrs and capacitrs in electric circuits, and the use f sme standard

More information

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Name: Perid: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant

More information

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!**

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!** Tpics lists: UV-Vis Absrbance Spectrscpy Lab & ChemActivity 3-6 (nly thrugh 4) I. UV-Vis Absrbance Spectrscpy Lab Beer s law Relates cncentratin f a chemical species in a slutin and the absrbance f that

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS 16. REASONING AND SOLUTION A trapeze artist, starting rm rest, swings dwnward n the bar, lets g at the bttm the swing, and alls reely t the net. An assistant,

More information

Lecture 02 CSE 40547/60547 Computing at the Nanoscale

Lecture 02 CSE 40547/60547 Computing at the Nanoscale PN Junctin Ntes: Lecture 02 CSE 40547/60547 Cmputing at the Nanscale Letʼs start with a (very) shrt review f semi-cnducting materials: - N-type material: Obtained by adding impurity with 5 valence elements

More information

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent.

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent. Electrchemistry Review: Reductin: the gaining f electrns Oxidatin: the lss f electrns Reducing agent (reductant): species that dnates electrns t reduce anther reagent. Oxidizing agent (xidant): species

More information

Lab 1 The Scientific Method

Lab 1 The Scientific Method INTRODUCTION The fllwing labratry exercise is designed t give yu, the student, an pprtunity t explre unknwn systems, r universes, and hypthesize pssible rules which may gvern the behavir within them. Scientific

More information

CBSE Board Class XII Physics Set 1 Board Paper 2008 (Solution)

CBSE Board Class XII Physics Set 1 Board Paper 2008 (Solution) CBSE Bard Class XII Physics Set 1 Bard Paper 2008 (Slutin) 1. The frce is given by F qv B This frce is at right angles t &. 2. Micrwaves. It is used in radar & cmmunicatin purpses. 3. Or As m e e m S,

More information

Solution to HW14 Fall-2002

Solution to HW14 Fall-2002 Slutin t HW14 Fall-2002 CJ5 10.CQ.003. REASONING AND SOLUTION Figures 10.11 and 10.14 shw the velcity and the acceleratin, respectively, the shadw a ball that underges unirm circular mtin. The shadw underges

More information

Lecture 23: Lattice Models of Materials; Modeling Polymer Solutions

Lecture 23: Lattice Models of Materials; Modeling Polymer Solutions Lecture 23: 12.05.05 Lattice Mdels f Materials; Mdeling Plymer Slutins Tday: LAST TIME...2 The Bltzmann Factr and Partitin Functin: systems at cnstant temperature...2 A better mdel: The Debye slid...3

More information

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis Bicycle Generatr Dump Lad Cntrl Circuit: An Op Amp Cmparatr with Hysteresis Sustainable Technlgy Educatin Prject University f Waterl http://www.step.uwaterl.ca December 1, 2009 1 Summary This dcument describes

More information

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 6. An electrchemical cell is cnstructed with an pen switch, as shwn in the diagram abve. A strip f Sn and a strip f an unknwn metal, X, are used as electrdes.

More information

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y ) (Abut the final) [COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t m a k e s u r e y u a r e r e a d y ) The department writes the final exam s I dn't really knw what's n it and I can't very well

More information

Honors Physics Final Review Summary

Honors Physics Final Review Summary Hnrs Physics Final Review Summary Wrk Dne By A Cnstant Frce: Wrk describes a frce s tendency t change the speed f an bject. Wrk is dne nly when an bject mves in respnse t a frce, and a cmpnent f the frce

More information

Relationships Between Frequency, Capacitance, Inductance and Reactance.

Relationships Between Frequency, Capacitance, Inductance and Reactance. P Physics Relatinships between f,, and. Relatinships Between Frequency, apacitance, nductance and Reactance. Purpse: T experimentally verify the relatinships between f, and. The data cllected will lead

More information

CHE 105 EXAMINATION III November 11, 2010

CHE 105 EXAMINATION III November 11, 2010 CHE 105 EXAMINATION III Nvember 11, 2010 University f Kentucky Department f Chemistry READ THESE DIRECTIONS CAREFULLY BEFORE STARTING THE EXAMINATION! It is extremely imprtant that yu fill in the answer

More information

4) What is the magnitude of the net electric field at the center of the square?

4) What is the magnitude of the net electric field at the center of the square? Fur charges are n the fur crners f a square. Q = +5C, Q = -0C, Q 3 = +5C, Q 4 = -0C. The side length f each side f the square is 3 m. Q Q ) What is the directin f the frce n Q due t ONLY Q 4? (a) up (b)

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is Length L>>a,b,c Phys 232 Lab 4 Ch 17 Electric Ptential Difference Materials: whitebards & pens, cmputers with VPythn, pwer supply & cables, multimeter, crkbard, thumbtacks, individual prbes and jined prbes,

More information

Information for Physics 1201 Midterm I Wednesday, February 20

Information for Physics 1201 Midterm I Wednesday, February 20 My lecture slides are psted at http://www.physics.hi-state.edu/~humanic/ Infrmatin fr Physics 1201 Midterm I Wednesday, February 20 1) Frmat: 10 multiple chice questins (each wrth 5 pints) and tw shw-wrk

More information

CHAPTER PRACTICE PROBLEMS CHEMISTRY

CHAPTER PRACTICE PROBLEMS CHEMISTRY Chemical Kinetics Name: Batch: Date: Rate f reactin. 4NH 3 (g) + 5O (g) à 4NO (g) + 6 H O (g) If the rate f frmatin f NO is 3.6 0 3 ml L s, calculate (i) the rate f disappearance f NH 3 (ii) rate f frmatin

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

PHY 2054C Review guide Fall 2018 Chapter 17 Wave optics

PHY 2054C Review guide Fall 2018 Chapter 17 Wave optics PHY 2054C Review guide Fall 2018 Chapter 17 Wave ptics Light acts as a wave, ray, particle, and phtn. Refractive index n = c/v Light waves travel with speed c in a vacuum they slw dwn when they pass thrugh

More information

Electrochemical Reactions

Electrochemical Reactions Electrchemical Reactins The first chemical prcess t prduce electricity was described in 1800 by the Italian scientist Alessandr Vlta, a frmer high schl teacher. Acting n the hypthesis that tw dissimilar

More information

AQA GCSE Physics. Topic 7: Magnetism and Electromagnetism. Notes. (Content in bold is for Higher Tier only)

AQA GCSE Physics. Topic 7: Magnetism and Electromagnetism. Notes. (Content in bold is for Higher Tier only) AQA GCSE Physics Tpic 7: Magnetism and Electrmagnetism Ntes (Cntent in bld is fr Higher Tier nly) Magnets - Nrth and Suth Ples - Same Ples repel - Oppsite ples attract Permanent Magnets - Always magnetic,

More information

Unit 14 Thermochemistry Notes

Unit 14 Thermochemistry Notes Name KEY Perid CRHS Academic Chemistry Unit 14 Thermchemistry Ntes Quiz Date Exam Date Lab Dates Ntes, Hmewrk, Exam Reviews and Their KEYS lcated n CRHS Academic Chemistry Website: https://cincchem.pbwrks.cm

More information

Energy Inputs and Outputs

Energy Inputs and Outputs Energy Inputs and Outputs Sun Earth ultravilet visible infrared Bth Sun and Earth behave as blackbdies (absrb 100% incident radiatin; emit radiatin at all wavelengths in all directins) Earth receives energy

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Lecture 13: Electrochemical Equilibria

Lecture 13: Electrochemical Equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 13: 10.21.05 Electrchemical Equilibria Tday: LAST TIME...2 An example calculatin...3 THE ELECTROCHEMICAL POTENTIAL...4 Electrstatic energy cntributins

More information

GAUSS' LAW E. A. surface

GAUSS' LAW E. A. surface Prf. Dr. I. M. A. Nasser GAUSS' LAW 08.11.017 GAUSS' LAW Intrductin: The electric field f a given charge distributin can in principle be calculated using Culmb's law. The examples discussed in electric

More information

CLASS 12th. Modern Physics-I

CLASS 12th. Modern Physics-I CLASS 12th Modern Physics-I Modern Physics-I 01. Dual Nature of Radiation The phenomena such as interference, diffraction and polarization were success-fully explained on the basis of were nature of On

More information

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets Department f Ecnmics, University f alifrnia, Davis Ecn 200 Micr Thery Prfessr Giacm Bnann Insurance Markets nsider an individual wh has an initial wealth f. ith sme prbability p he faces a lss f x (0

More information

Hooke s Law (Springs) DAVISSON. F A Deformed. F S is the spring force, in newtons (N) k is the spring constant, in N/m

Hooke s Law (Springs) DAVISSON. F A Deformed. F S is the spring force, in newtons (N) k is the spring constant, in N/m HYIC 534 XRCI-4 ANWR Hke s Law (prings) DAVION Clintn Davissn was awarded the Nbel prize fr physics in 1937 fr his wrk n the diffractin f electrns. A spring is a device that stres ptential energy. When

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant)

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant) ε µ0 N mp T kg Kuwait University hysics Department hysics 0 Secnd Midterm Examinatin Summer Term (00-0) July 7, 0 Time: 6:00 7:0 M Name Student N Instructrs: Drs. bdel-karim, frusheh, Farhan, Kkaj, a,

More information

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s .9 Kinetic Mlecular Thery Calculate the effective (rms) speeds f the He and Ne atms in the He-Ne gas laser tube at rm temperature (300 K). Slutin T find the rt mean square velcity (v rms ) f He atms at

More information

AP Physics Kinematic Wrap Up

AP Physics Kinematic Wrap Up AP Physics Kinematic Wrap Up S what d yu need t knw abut this mtin in tw-dimensin stuff t get a gd scre n the ld AP Physics Test? First ff, here are the equatins that yu ll have t wrk with: v v at x x

More information

Hubble s Law PHYS 1301

Hubble s Law PHYS 1301 1 PHYS 1301 Hubble s Law Why: The lab will verify Hubble s law fr the expansin f the universe which is ne f the imprtant cnsequences f general relativity. What: Frm measurements f the angular size and

More information

1. Write a balanced nuclear equation for each decay process indicated. a. The isotope Th-234 decays by an alpha emission.

1. Write a balanced nuclear equation for each decay process indicated. a. The isotope Th-234 decays by an alpha emission. 1. Write a balanced nuclear equatin fr each decay prcess indicated. a. The istpe Th-234 decays by an alpha emissin. b. The istpe Fe-59 decays by a beta emissin. c. The istpe Tc-99 decays by a gamma emissin.

More information

Supporting information

Supporting information Electrnic Supplementary Material (ESI) fr Physical Chemistry Chemical Physics This jurnal is The wner Scieties 01 ydrgen perxide electrchemistry n platinum: twards understanding the xygen reductin reactin

More information

Lecture 19: Electronic Contributions to OCV in Batteries and Solar Cells. Notes by MIT Student (and MZB) March 18, 2009

Lecture 19: Electronic Contributions to OCV in Batteries and Solar Cells. Notes by MIT Student (and MZB) March 18, 2009 Lecture 19: lectrnic Cntributins t OCV in Batteries and Slar Cells Ntes by MIT Student (and MZB) March 18, 2009 -In many situatins the µ e cnstant fr metal electrdes, this due t the abundance and freedm

More information

clicker 1/25/2011 All C s are 8.00 nf. The battery is 12 V. What is the equivalent capacitance? summary o

clicker 1/25/2011 All C s are 8.00 nf. The battery is 12 V. What is the equivalent capacitance? summary o /5/0 summary C = ε / d = πε / ln( b / a ) ab C = 4πε 4πε a b a b >> a Capacitance Parallel plates, caxial cables, Earth Series and parallel cmbinatins Energy in a capacitr Dielectrics Dielectric strength

More information

Chapter 4 The debroglie hypothesis

Chapter 4 The debroglie hypothesis Capter 4 Te debrglie yptesis In 194, te Frenc pysicist Luis de Brglie after lking deeply int te special tery f relatiity and ptn yptesis,suggested tat tere was a mre fundamental relatin between waes and

More information

Study Guide- Bare Bones list Physics Comprehensive Exam 2014

Study Guide- Bare Bones list Physics Comprehensive Exam 2014 Study Guide- Bare Bnes list Physics Cmprehensive Exam 2014 I. Scientific Measurement Metric Units S.I. English Length Meter (m) Feet (ft.) Mass Kilgram (kg) Pund (lb.) Weight Newtn (N) Ounce (z.) r pund

More information

Chapter 3 Forensic Laboratory Techniques Cengage Learning. All Rights Reserved

Chapter 3 Forensic Laboratory Techniques Cengage Learning. All Rights Reserved Chapter 3 Frensic Labratry Techniques Intrductin Objectives 1. Distinguish between physical and chemical prperties. 2. Describe presumptive and cnfirmatry tests. 3. Cmpare and cntrast different types f

More information

W V. (d) W. (3) Which one is used to determine the internal resistance of a cell

W V. (d) W. (3) Which one is used to determine the internal resistance of a cell [CHAPT-13 CUNT LCTICITY] www.prfaminz.cm MULTIPL CHOIC QUSTIONS (1) In carbn resistr the gld band indicates tlerance f (a) 5% (b) % 0% (d) 10% () The wrk dne t mve a psitive charge frm ne pint t anther

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS On cmpletin f this tutrial yu shuld be able t d the fllwing. Define viscsity

More information

Chapter 17 Free Energy and Thermodynamics

Chapter 17 Free Energy and Thermodynamics Chemistry: A Mlecular Apprach, 1 st Ed. Nivald Tr Chapter 17 Free Energy and Thermdynamics Ry Kennedy Massachusetts Bay Cmmunity Cllege Wellesley Hills, MA 2008, Prentice Hall First Law f Thermdynamics

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

FIZIKA ANGOL NYELVEN JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA ANGOL NYELVEN JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika angl nyelven emelt szint 0804 ÉRETTSÉGI VIZSGA 010. május 18. FIZIKA ANGOL NYELVEN EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM In marking

More information

Regents Chemistry Period Unit 3: Atomic Structure. Unit 3 Vocabulary..Due: Test Day

Regents Chemistry Period Unit 3: Atomic Structure. Unit 3 Vocabulary..Due: Test Day Name Skills: 1. Interpreting Mdels f the Atm 2. Determining the number f subatmic particles 3. Determine P, e-, n fr ins 4. Distinguish istpes frm ther atms/ins Regents Chemistry Perid Unit 3: Atmic Structure

More information

BASD HIGH SCHOOL FORMAL LAB REPORT

BASD HIGH SCHOOL FORMAL LAB REPORT BASD HIGH SCHOOL FORMAL LAB REPORT *WARNING: After an explanatin f what t include in each sectin, there is an example f hw the sectin might lk using a sample experiment Keep in mind, the sample lab used

More information

PHYS College Physics II Final Examination Review

PHYS College Physics II Final Examination Review PHYS 1402- Cllege Physics II Final Examinatin Review The final examinatin will be based n the fllwing Chapters/Sectins and will cnsist f tw parts. Part 1, cnsisting f Multiple Chice questins, will accunt

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY Name: Perid: Date: BONDING NOTES HONORS CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant terms

More information