Electromagnetic Radiation

Size: px
Start display at page:

Download "Electromagnetic Radiation"

Transcription

1 CLASSICALLY -- ELECTROMAGNETIC RADIATION Maxwell (1865) Electrmagnetic Radiatin Classically, an electrmagnetic wave can be viewed as a self-sustaining wave f electric and magnetic field. 1 E B = + 4π j c t i B= 0 1 B E = - c t i E = 4πρ These equatins imply the existence f a prpagating self - sustaning wave. A change in B creates a changing E, which creates a changing E which creates a changing B which creates a changing B etc. Crudely, ne can say that a changing B prduces a changing E, but that implies an ut f phase scillatin which is nt the case. Electrmagnetic radiatin is characterized by a frequency ν and a wavelength λ. The prduct f wavelength and frequency is the speed f light. The time fr ne wavelength t pass at speed c is 1/ν, s c/ν = λ. ν λ= c c = x cm s -1 Wavelength is measured in units f length that smetimes vary depending upn what srt f radiatin yu are talking abut. m, cm, and mm fr radi emissin Angstrms fr x-rays and near ptical light: A = 10 micrn = µ = 10-6 m = 10-4 cm = 10,000 A fr infrared and micrwave 8 cm Frequency is measured in Hertz = s -1 kilhertz (khz) MegaHertz, etc as n yur radi (MHz) "ptical" light is apprximately A ν = c λ = cm (5000)(10 8 cm) sec = Hz (B and E scillatins are actually in phase as shwn)

2 Classically, electrmagnetic radiatin is prduced whenever electric charge is accelerated. Examples: Electrns flwing in a current up and dwn in a radi antenna micrwaves 1A Electrns clliding with nuclei and each ther in a ht gas - emissin depends n temperature Electrns spiraling in a magnetic field 7000 A 6000 A 5000 A 4000 A The light we can see is a very small part f the whle electrmagnetic spectrum. Transparency f the Earth s Atmsphere Blackbdy Radiatin 1 µ = 10-6 m = 10-4 cm = 10,000 A Mst electrmagnetic radiatin, except fr ptical light and radi waves, des nt make it t the surface f the Earth. In physics, a black bdy is an idealized bject that absrbs all electrmagnetic radiatin that falls nt it. N radiatin passes thrugh it and nne is reflected. Similarly, a black bdy is ne that radiates energy at every pssible wavelength and that emissin is sensitive nly t the temperature, i.e., nt the cmpsitin.!

3 Blackbdy Radiatin Blackbdies belw arund 800 K (530 C) prduce very little radiatin at visible wavelengths and appear black (hence the name). Blackbdies abve this temperature, hwever, begin t prduce radiatin at visible wavelengths starting at red, ging thrugh range, yellw, and white befre ending up at blue as the temperature increases. The term "blackbdy" was intrduced by Gustav Kirchhff in Tday the term has a technical meaning, an emitter r absrber whse spectrum depends nly n its temperature and nt its cmpsitin. " Experimentally, the distributin f intensity with wavelength is well determined As the temperature Is raised yu get mre energy (flux) at every wavelength, but the peak als mves Radiatin Interactive The sun as seen frm the Earth 1 nm = 10 A = 1000 µ! 1 µ = 10,000 A ultravilet is blcked The sun s radiatin is t fair apprximatin a black bdy with a temperature arund 5800 K Why d these curves lk like they d? The classical slutin t blackbdy radiatin assumed that electrns vibrating at any frequency had ~kt f energy t put int radiatin at that frequency. It ignred the fact that the radiatin had energy that depended n its frequency. There was, in fact, mre rm (phase space) fr radiatin with shrt wavelengths, hence its emissin was preferred. The fact that the prbability fr emitting shrt wavelength radiatin increased withut bund did nt vilate the cnservatin f energy, because there was n relatin between energy and wavelength. But this was ttally at dds with what was seen

4 Prblem: Divergent fr large values f! Classically the intensity f radiatin having frequency ν was given by the Rayleigh-Jeans frmula (e.g., Feynman, Leightn and Sands, Vl 1 p 41.5) I ν = 2ν 2 kt c 2 where I ν dν is the flux f radiatin emitted by a blackbdy f temperature T (erg cm 2 s 1 ) with a frequency in the range ν t ν +dν. k is Btzmann's cnstant and c the speed f light. If yu pened an ven yu wuld be verwhelmed by x-rays and gamma-rays puring ut (at all temperatures). Optical light t wuld be emitted at all temperatures. Thery gt the behavir at lng wavelengths crrect but was wrng fr shrt wavelengths lg flux At a cnstant T lg frequency PLANCK The slutin t the dilemma psed by the classical slutin was t require that electrmagnetic radiatin be quantized, that is it cmes in individual particle-like packets f energy called phtns. Each phtn has an energy prprtinal t the frequency f the radiatin. High frequency (shrt wavelength) radiatin thus had greater energy and was increasingly hard t prduce at a given temperature. x-rays have mre energy than ptical light and are harder t prduce. E γ = hν This particle like prperty f light als meant that light carried mmentum and culd exert a pressure. Energy = mmentum speed (fr relativistic particles there E γ = pc = hν p = h ν c = hλ is n 1 2 ut frnt as in 1/2 mv 2 ) where h is Planck s cnstant h = x erg sec

5 WITHOUT PROOF Fr a blackbdy with temperature T the emitted flux as a functin f frequency was erg cm 2 s Hz e x 1+ x if x <<1 s exp( hν hν ) 1 kt kt I ν 2ν 2 kt if hν << kt c 2 but fr hν kt I ν 2hν 3 c 2 exp( hν kt ) 0 sin Blackbdy (Thermal) Radiatin Aside: e is the base f Napierian lgarithms. It is als knwn as the "expnential functin" As T rises: Intensity e = It can be taken t a pwer like any ther number e 0 = 1 e = 0 etc. The "natural lgarithm" f a number, ln, is the pwer t which e is raised t get that number. mre radiatin at all wavelengths shift f peak emissin t shrter wavelength greater ttal emissin (area under the curve) classic quantum cut-ff

6 Intensity I = Pwer (erg/sec) radiated fr a range f frequencies and +d thrugh unit surface area, da Flux(ν)= I ν dν da Rewriting in terms f the wavelenth λ = c/ν I λ = 2hc2 1 λ 5 hc λkt e 1 We are interested in the emissin summed ver all wavelengths F(T) = I λ dλ = 0 2π 5 k 4 15h 3 c 2 T 4 r F(T) = σt 4 erg cm 2 s 1 where σ is the Stephan-Bltzmann cnstant σ = x 10 5 erg/(cm 2 s K 4 ) i..e., when multiplied by T 4 the units are thse f flux. The maximum ccurs where di = 0, which is dλ λ max = cm T = A T maximum slpe = 0 Fr ur purpses, yu nly need t knw 1) Each square cm f a blackbdy radiatr with temperature T emits T 4 erg s -1 2) Mst f the emissin ccurs at a wavelength given by = area under curve λ max = cm T = A T σ is the Stefan Bltzmann radiatin cnstant erg s cm 2 K 4

7 Frm Nick Strbel s Astrnmy Ntes A λ = T DIFFUSION TIME FOR THE SUN The sun - a typical star Hw lng des it take? τ Diff 0.1 cm R 2 number cllisins c = R2 c time between each Intensity ( cm) 2 s (0.1 cm)( cm) = s 50,000 years

8 THE LUMINOSITY OF THE SUN L = 4π R 2 σt 4 T= 5800 K = 4(3.14)( cm) 2 ( erg)(5800 K) 4 cm 2 s K 4 = erg/s (Culd have gtten 5800 K frm Wien's Law) L= Area σt 4 L = 4π R 2 σt 4 The actual value is 3.83 x erg/s Frm Nick Strbel s Astrnmy Ntes If radius is held cnstant,

9 red giants On the main sequence, apprximately R M 0.65 white dwarfs S M R = R M 0.65 This implies mre massive main sequence stars are less dense Anther Example f a Blackbdy The Universe Z =

10 2.73 K 3000 K 1100 i.e., the temperature at recminatin divided by 1+z at recmbinatin * T = K And anther example f blackbdy radiatin Planetary Temperatures A picture f the universe when it was nly 379,000 years ld (WMAP 2003)

11 Sunlight L Received frm sun: 4πd Absrbed: f times this Reflected: (1 - f) times this Reradiated: 4π R σ T 2 4 P P f L In steady state: 4πd π R 2 π R 2 P = 4π R σ T P P P R P T Earthshine f L = 16π d σ P 2 Assume planet is rapidly rtating 1/ 4 1/ 4 L n. b., Tp d and independent f R p Fr Earth: 1/4 ( ) 33 f ( ) T P = 16π ( ) 13 2 ( ) 5 = 281 K f = 1 (8 C, 46 F) = 249 K f = (-24 C, -12 F) But actually the Earth s average temperature is abut 288 K (15 C)

12 Fr ther planets that rbit the sun ne can take L t be cnstant and the calculatin is the same except that the temperature varies as 1/ d. 1 AU T P = 281 f 1/4 d 1/ 2 In last 100 years temperature has increased abut 0.9 K (r 0.9 C r 1.6 F). In the next century it is expected t increase several mre degrees K ( if absrbed like the Earth Fr example, fr Mars at 1.52 AU T = 281 f P = 1/ 2 1/4 1 1/4 228 K f = 1 (-45 C -49 F) = 200 K f = 0.6 (-73 C -99 F) = 217 K 1.52 actually measured 218 = 228 K f f = 0.84 (-56 C -69 F) crrect f fr Mars

13 f T p = p L 16π d 2 σ f = T p Earth f Earth 1/4 1/4 1/4 AU = 281 f p d 1/2 ( ) 1/4 1 AU d 1/2 1/2 = fr Venus; nb nly 28% f the light it receives reaches the surface = 240 K (fr Earth we gt 247 K withut greenhuse; 288 K with it) S Venus, with its measured albed, shuld in fact be cler than the Earth, even thugh 2 1 φ Venus = φ Earth = 1.91φ Earth This is because nly 28% f the light gets thrugh s the flux at the base f Venus' atmsphere is VENUS = 87% that f Earth fr any planet arund the sun But the bserved temperature n Venus is 730 K. The atmspheric pressure is abut 90 Earth atmspheres, mstly made f CO 2 This is htter than the planet Mercury and htter than the melting pint f lead. (850 F) The mist greenhuse effect ccurs when sunlight causes increased evapratin frm the ceans t the pint that the gradient f water vapr in the earth s atmsphere des nt decrease rapidly with altitude (it currently des). As a result water is present at high altitude where it can be brken brken dwn int hydrgen and xygen by ultravilet radiatin. The hydrgen escapes and the water is permanently lst frm the earth. Kasting (1988) shwed that this happens when the luminsity frm the sun exceeds a minimum f 1.1 times its present value. Cluds may increase this threshld value. A true runaway greenhuse effect happens when the luminsity f the sun is 1.4 times greater than nw. The ceans cmpletely evaprate. The extra water vapr in the atmsphere increases the greenhuse effect which raises the temperature still mre leading t faster evapratin... On the ther hand, belw a certain temperature the carbn dixide cndenses ut f the atmsphere and there is n greenhuse effect. This happens fr fluxes abut 55% that f the present sun at the Earth s rbit. This may be why Mars is s cld. Tgether these cnditins restrict the Habitable Zne f ur present sun t 0.95 t 1.37 AU. Mars is at 1.52 AU. Kasting et al. February, 1988 Scientific American Hw Climate Evlved n the Terrestrial Planets

14 Frm Nick Strbel s Astrnmy Ntes Stars that are t big dn t live lng enugh fr life t develp (3 by?). Stars that are t small have life znes that are t clse t the star and the planets becme tidally lcked ( slar masses??). Fr main sequence stars nly (red giants and white dwarfs wuld have different tables) BACK TO THE STARS The fact that the stars are all blackbdy radiatrs allws astrnmers t prepare very useful tables that fr example give the blmetric crrectin and interesting physical quantities such as the radius and temperature

15 If knw L and T then als knw R. M cmes frm ther measurements - TBD

Electromagnetic Radiation.

Electromagnetic Radiation. Electromagnetic Radiation http://apod.nasa.gov/apod/astropix.html CLASSICALLY -- ELECTROMAGNETIC RADIATION Classically, an electromagnetic wave can be viewed as a self-sustaining wave of electric and magnetic

More information

Electromagnetic Radiation.

Electromagnetic Radiation. Electromagnetic Radiation http://apod.nasa.gov/apod/astropix.html CLASSICALLY -- ELECTROMAGNETIC RADIATION Classically, an electromagnetic wave can be viewed as a self-sustaining wave of electric and magnetic

More information

Chapter 23 Electromagnetic Waves Lecture 14

Chapter 23 Electromagnetic Waves Lecture 14 Chapter 23 Electrmagnetic Waves Lecture 14 23.1 The Discvery f Electrmagnetic Waves 23.2 Prperties f Electrmagnetic Waves 23.3 Electrmagnetic Waves Carry Energy and Mmentum 23.4 Types f Electrmagnetic

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantizatin Light 9.1 Planck s Quantum Thery 9.1.1 Distinguish between Planck s quantum thery and classical thery energy The undatin the Planck s quantum thery is a thery black bdy radiatin.

More information

Dispersion Ref Feynman Vol-I, Ch-31

Dispersion Ref Feynman Vol-I, Ch-31 Dispersin Ref Feynman Vl-I, Ch-31 n () = 1 + q N q /m 2 2 2 0 i ( b/m) We have learned that the index f refractin is nt just a simple number, but a quantity that varies with the frequency f the light.

More information

11. DUAL NATURE OF RADIATION AND MATTER

11. DUAL NATURE OF RADIATION AND MATTER 11. DUAL NATURE OF RADIATION AND MATTER Very shrt answer and shrt answer questins 1. Define wrk functin f a metal? The minimum energy required fr an electrn t escape frm the metal surface is called the

More information

Energy Inputs and Outputs

Energy Inputs and Outputs Energy Inputs and Outputs Sun Earth ultravilet visible infrared Bth Sun and Earth behave as blackbdies (absrb 100% incident radiatin; emit radiatin at all wavelengths in all directins) Earth receives energy

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law Sectin 5.8 Ntes Page 1 5.8 Expnential Grwth and Decay Mdels; Newtn s Law There are many applicatins t expnential functins that we will fcus n in this sectin. First let s lk at the expnential mdel. Expnential

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Matter Content from State Frameworks and Other State Documents

Matter Content from State Frameworks and Other State Documents Atms and Mlecules Mlecules are made f smaller entities (atms) which are bnded tgether. Therefre mlecules are divisible. Miscnceptin: Element and atm are synnyms. Prper cnceptin: Elements are atms with

More information

d sinθ = mλ Interference and diffraction double slit or diffraction grating d sinθ = mλ d sinθ is the path difference x (small angle approximation)

d sinθ = mλ Interference and diffraction double slit or diffraction grating d sinθ = mλ d sinθ is the path difference x (small angle approximation) Wave Optics Wave prperties f light The clrs in a rainbw are ROY G. BIV (Red, range, yellw, green, blue, indig, vilet). White light is a cmbinatin f all clrs Black is the absence f light Wavelength determines

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Chapter 30: Stars. B. The Solar Interior 1. Core : the combining of lightweight nuclei into heavier nuclei

Chapter 30: Stars. B. The Solar Interior 1. Core : the combining of lightweight nuclei into heavier nuclei Chapter 30: Stars Sectin 1: The Sun Objectives 1. Explre the structure f the Sun. 2. Describe the slar activity cycle and hw the Sun affects Earth. 3. Cmpare the different types f spectra. A. Prperties

More information

To get you thinking...

To get you thinking... T get yu thinking... 1.) What is an element? Give at least 4 examples f elements. 2.) What is the atmic number f hydrgen? What des a neutral hydrgen atm cnsist f? Describe its "mtin". 3.) Hw des an atm

More information

ECE 5318/6352 Antenna Engineering. Spring 2006 Dr. Stuart Long. Chapter 6. Part 7 Schelkunoff s Polynomial

ECE 5318/6352 Antenna Engineering. Spring 2006 Dr. Stuart Long. Chapter 6. Part 7 Schelkunoff s Polynomial ECE 538/635 Antenna Engineering Spring 006 Dr. Stuart Lng Chapter 6 Part 7 Schelkunff s Plynmial 7 Schelkunff s Plynmial Representatin (fr discrete arrays) AF( ψ ) N n 0 A n e jnψ N number f elements in

More information

Lecture 15. Physics 1202: Lecture 15 Today s Agenda

Lecture 15. Physics 1202: Lecture 15 Today s Agenda Physics 1202: Lecture 15 Tday s Agenda Annuncements: Team prblems tday Team 7: Cailin Catarina, Matthew Canapetti, Kervin Vincent Team 8: Natalie Kasir, Adam Antunes, Quincy Alexander Team 9: Garrett Schlegel,

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Name: Perid: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant

More information

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving.

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving. Sectin 3.2: Many f yu WILL need t watch the crrespnding vides fr this sectin n MyOpenMath! This sectin is primarily fcused n tls t aid us in finding rts/zers/ -intercepts f plynmials. Essentially, ur fcus

More information

Hubble s Law PHYS 1301

Hubble s Law PHYS 1301 1 PHYS 1301 Hubble s Law Why: The lab will verify Hubble s law fr the expansin f the universe which is ne f the imprtant cnsequences f general relativity. What: Frm measurements f the angular size and

More information

" 1 = # $H vap. Chapter 3 Problems

 1 = # $H vap. Chapter 3 Problems Chapter 3 rblems rblem At 1 atmsphere pure Ge melts at 1232 K and bils at 298 K. he triple pint ccurs at =8.4x1-8 atm. Estimate the heat f vaprizatin f Ge. he heat f vaprizatin is estimated frm the Clausius

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

Chapter 8 Predicting Molecular Geometries

Chapter 8 Predicting Molecular Geometries Chapter 8 Predicting Mlecular Gemetries 8-1 Mlecular shape The Lewis diagram we learned t make in the last chapter are a way t find bnds between atms and lne pais f electrns n atms, but are nt intended

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

37 Maxwell s Equations

37 Maxwell s Equations 37 Maxwell s quatins In this chapter, the plan is t summarize much f what we knw abut electricity and magnetism in a manner similar t the way in which James Clerk Maxwell summarized what was knwn abut

More information

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1 Physics 1 Lecture 1 Tday's Cncept: Magnetic Frce n mving charges F qv Physics 1 Lecture 1, Slide 1 Music Wh is the Artist? A) The Meters ) The Neville rthers C) Trmbne Shrty D) Michael Franti E) Radiatrs

More information

Chapter 31: Galaxies and the Universe

Chapter 31: Galaxies and the Universe Chapter 31: Galaxies and the Universe Sectin 1: The Milky Way Galaxy Objectives 1. Determine the size and shape f the Milky Way, as well as Earth s lcatin within it. 2. Describe hw the Milky Way frmed.

More information

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd NAME: DUE DATE: JULY 2 nd AP Chemistry SUMMER REV: Half-Life Why? Every radiistpe has a characteristic rate f decay measured by its half-life. Half-lives can be as shrt as a fractin f a secnd r as lng

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

AP Physics Kinematic Wrap Up

AP Physics Kinematic Wrap Up AP Physics Kinematic Wrap Up S what d yu need t knw abut this mtin in tw-dimensin stuff t get a gd scre n the ld AP Physics Test? First ff, here are the equatins that yu ll have t wrk with: v v at x x

More information

Lecture 7: Damped and Driven Oscillations

Lecture 7: Damped and Driven Oscillations Lecture 7: Damped and Driven Oscillatins Last time, we fund fr underdamped scillatrs: βt x t = e A1 + A csω1t + i A1 A sinω1t A 1 and A are cmplex numbers, but ur answer must be real Implies that A 1 and

More information

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals f Diffusin Diffusin: Transprt in a slid, liquid, r gas driven by a cncentratin gradient (r, in the case f mass transprt, a chemical ptential

More information

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra Chem 115 POGIL Wrksheet - Week 8 Thermchemistry (Cntinued), Electrmagnetic Radiatin, and Line Spectra Why? As we saw last week, enthalpy and internal energy are state functins, which means that the sum

More information

Lab #3: Pendulum Period and Proportionalities

Lab #3: Pendulum Period and Proportionalities Physics 144 Chwdary Hw Things Wrk Spring 2006 Name: Partners Name(s): Intrductin Lab #3: Pendulum Perid and Prprtinalities Smetimes, it is useful t knw the dependence f ne quantity n anther, like hw the

More information

AQA GCSE Physics. Topic 4: Atomic Structure. Notes. (Content in bold is for Higher Tier only)

AQA GCSE Physics. Topic 4: Atomic Structure. Notes. (Content in bold is for Higher Tier only) AQA GCSE Physics Tpic 4: Atmic Structure Ntes (Cntent in bld is fr Higher Tier nly) Atmic Structure Psitively charged nucleus (which cntains neutrns and prtns) surrunded by negatively charged electrns.

More information

Five Whys How To Do It Better

Five Whys How To Do It Better Five Whys Definitin. As explained in the previus article, we define rt cause as simply the uncvering f hw the current prblem came int being. Fr a simple causal chain, it is the entire chain. Fr a cmplex

More information

General Chemistry II, Unit I: Study Guide (part I)

General Chemistry II, Unit I: Study Guide (part I) 1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Prperties f Gases Observatin 1: Pressure- Vlume Measurements n Gases The spring f air is measured as pressure, defined as the

More information

ASTRODYNAMICS. o o o. Early Space Exploration. Kepler's Laws. Nicolaus Copernicus ( ) Placed Sun at center of solar system

ASTRODYNAMICS. o o o. Early Space Exploration. Kepler's Laws. Nicolaus Copernicus ( ) Placed Sun at center of solar system ASTRODYNAMICS Early Space Explratin Niclaus Cpernicus (1473-1543) Placed Sun at center f slar system Shwed Earth rtates n its axis nce a day Thught planets rbit in unifrm circles (wrng!) Jhannes Kepler

More information

The Solar Interior - The Standard Model. Topics to be covered: o Solar interior. Radiative Zone. Convective Zone

The Solar Interior - The Standard Model. Topics to be covered: o Solar interior. Radiative Zone. Convective Zone Lecture 1 - The Slar Interir Tpics t be cvered: Slar interir Cre Radiative zne Cnvectin zne Lecture 1 - The Slar Interir The Slar Interir - The Standard Mdel Cre Energy generated by nuclear fusin (the

More information

Journal of Molecular EvOlution by Springer-Verlag. 1979

Journal of Molecular EvOlution by Springer-Verlag. 1979 0022-28447900140057~ 01.60 J. Ml. Evl. 14, 57--64 (1979) Jurnal f Mlecular EvOlutin by Springer-Verlag. 1979 Slar Radiatin Incident n the Martian Surface W.R. Kuhn and S.K. Atreya Department f Atmspheric

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Accelerated Chemistry POGIL: Half-life

Accelerated Chemistry POGIL: Half-life Name: Date: Perid: Accelerated Chemistry POGIL: Half-life Why? Every radiistpe has a characteristic rate f decay measured by its half-life. Half-lives can be as shrt as a fractin f a secnd r as lng as

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY 013 SUBJECT: ENGINEERING PHYSICS (PHY101/10) Time: 3 Hrs. Max. Marks: 50 Nte: Answer any

More information

Weather satellite Cumulus clouds Stratus clouds Cirrus clouds Cumulus Stratus Cirrus Nimbo-/-nimbus Cirro- nimbo- -nimbus Alto- cirro- alto-

Weather satellite Cumulus clouds Stratus clouds Cirrus clouds Cumulus Stratus Cirrus Nimbo-/-nimbus Cirro- nimbo- -nimbus Alto- cirro- alto- Study Guide: Weather Patterns Lessn 1: Watching the Cluds G By Cntent Objectives: Cluds frm when large areas f warm, mist air rise int the air t the pint where water vapr cndenses int water drplets. There

More information

TOPPER SAMPLE PAPER 2 Class XII- Physics

TOPPER SAMPLE PAPER 2 Class XII- Physics TOPPER SAMPLE PAPER 2 Class XII- Physics Time: Three Hurs Maximum Marks: 70 General Instructins (a) All questins are cmpulsry. (b) There are 30 questins in ttal. Questins 1 t 8 carry ne mark each, questins

More information

Chapter 11: Atmosphere

Chapter 11: Atmosphere Chapter 11: Atmsphere Sectin 1: Atmspheric Basics Objectives 1. Describe the cmpsitin f the atmsphere. 2. Cmpare and cntrast the varius layers f the atmsphere. 3. Identify three methds f transferring energy

More information

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

Lab 11 LRC Circuits, Damped Forced Harmonic Motion Physics 6 ab ab 11 ircuits, Damped Frced Harmnic Mtin What Yu Need T Knw: The Physics OK this is basically a recap f what yu ve dne s far with circuits and circuits. Nw we get t put everything tgether

More information

B. Definition of an exponential

B. Definition of an exponential Expnents and Lgarithms Chapter IV - Expnents and Lgarithms A. Intrductin Starting with additin and defining the ntatins fr subtractin, multiplicatin and divisin, we discvered negative numbers and fractins.

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

GASES. PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2. Pressure & Boyle s Law Temperature & Charles s Law Avogadro s Law IDEAL GAS LAW

GASES. PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2. Pressure & Boyle s Law Temperature & Charles s Law Avogadro s Law IDEAL GAS LAW GASES Pressure & Byle s Law Temperature & Charles s Law Avgadr s Law IDEAL GAS LAW PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2 Earth s atmsphere: 78% N 2 21% O 2 sme Ar, CO 2 Sme Cmmn Gasses Frmula Name

More information

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!**

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!** Tpics lists: UV-Vis Absrbance Spectrscpy Lab & ChemActivity 3-6 (nly thrugh 4) I. UV-Vis Absrbance Spectrscpy Lab Beer s law Relates cncentratin f a chemical species in a slutin and the absrbance f that

More information

CHAPTER 13 Temperature and Kinetic Theory. Units

CHAPTER 13 Temperature and Kinetic Theory. Units CHAPTER 13 Temperature and Kinetic Thery Units Atmic Thery f Matter Temperature and Thermmeters Thermal Equilibrium and the Zerth Law f Thermdynamics Thermal Expansin Thermal Stress The Gas Laws and Abslute

More information

We can see from the graph above that the intersection is, i.e., [ ).

We can see from the graph above that the intersection is, i.e., [ ). MTH 111 Cllege Algebra Lecture Ntes July 2, 2014 Functin Arithmetic: With nt t much difficulty, we ntice that inputs f functins are numbers, and utputs f functins are numbers. S whatever we can d with

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Lecture 19: Electronic Contributions to OCV in Batteries and Solar Cells. Notes by MIT Student (and MZB) March 18, 2009

Lecture 19: Electronic Contributions to OCV in Batteries and Solar Cells. Notes by MIT Student (and MZB) March 18, 2009 Lecture 19: lectrnic Cntributins t OCV in Batteries and Slar Cells Ntes by MIT Student (and MZB) March 18, 2009 -In many situatins the µ e cnstant fr metal electrdes, this due t the abundance and freedm

More information

AP Physics Heat Transfer and Thermal Expansion

AP Physics Heat Transfer and Thermal Expansion AP Physics Heat Transfer and Thermal Expansin Heat Flw: Heat can flw frm ne system t anther nly if there is a temperature difference between the tw systems. The greater the difference in temperature, the

More information

Short notes for Heat transfer

Short notes for Heat transfer Furier s Law f Heat Cnductin Shrt ntes fr Heat transfer Q = Heat transfer in given directin. A = Crss-sectinal area perpendicular t heat flw directin. dt = Temperature difference between tw ends f a blck

More information

Chapter 32. Maxwell s Equations and Electromagnetic Waves

Chapter 32. Maxwell s Equations and Electromagnetic Waves Chapter 32 Maxwell s Equatins and Electrmagnetic Waves Maxwell s Equatins and EM Waves Maxwell s Displacement Current Maxwell s Equatins The EM Wave Equatin Electrmagnetic Radiatin MFMcGraw-PHY 2426 Chap32-Maxwell's

More information

Today in Our Galaxy SECOND MID-TERM EXAM. ASTR 1040 Accel Astro: Stars & Galaxies. Another useful experience (we hope)

Today in Our Galaxy SECOND MID-TERM EXAM. ASTR 1040 Accel Astro: Stars & Galaxies. Another useful experience (we hope) ASTR 1040 Accel Astr: Stars & Galaxies Prf. Juri Tmre TA: Kyle Augustsn Lecture 20 Thur 20 Mar 08 zeus.clrad.edu/astr1040-tmre tmre Eagle Nebula Tday in Our Galaxy Hw t detect black hles (indirectly) Our

More information

BASD HIGH SCHOOL FORMAL LAB REPORT

BASD HIGH SCHOOL FORMAL LAB REPORT BASD HIGH SCHOOL FORMAL LAB REPORT *WARNING: After an explanatin f what t include in each sectin, there is an example f hw the sectin might lk using a sample experiment Keep in mind, the sample lab used

More information

Concept Category 2. Trigonometry & The Unit Circle

Concept Category 2. Trigonometry & The Unit Circle Cncept Categry 2 Trignmetry & The Unit Circle Skill Checklist Use special right triangles t express values f fr the six trig functins Evaluate sine csine and tangent using the unit circle Slve tw-step

More information

Preparation work for A2 Mathematics [2017]

Preparation work for A2 Mathematics [2017] Preparatin wrk fr A2 Mathematics [2017] The wrk studied in Y12 after the return frm study leave is frm the Cre 3 mdule f the A2 Mathematics curse. This wrk will nly be reviewed during Year 13, it will

More information

UNIT 5: ATOMIC THEORY & THE PERIODIC TABLE CHEMISTRY 215, DUFFEY, CHAPTER 4 & SECTION 6.1

UNIT 5: ATOMIC THEORY & THE PERIODIC TABLE CHEMISTRY 215, DUFFEY, CHAPTER 4 & SECTION 6.1 UNIT 5: ATOMIC THEORY & THE PERIODIC TABLE CHEMISTRY 215, DUFFEY, CHAPTER 4 & SECTION 6.1 BIG IDEAS (we will tuch n small parts f Chp.5 as well) 4.1 Early Ideas Abut Matter 4.2 Defining the Atm 4.3 Hw

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenmena Phsics 5c Lecture Gemetrical Optics (H&L Chapter ) Tw Mre Lectures T G!! Will inish gemetrical ptics tda! Next week will cver less serius material! Laser and hlgraph! Quantum Mechanics Hw

More information

Therefore the atomic diameter is 5 orders of magnitude ( times) greater than the m

Therefore the atomic diameter is 5 orders of magnitude ( times) greater than the m Orders f Magnitude Pwers f 10 are referred t as rders f magnitude e.g. smething a thusand times larger (10 3 ) is three rders f magnitude bigger. A prtn has a diameter f the rder ~10-15 m The diameter

More information

Debris Belts Around Vega

Debris Belts Around Vega Debris Belts Arund Vega Tpic: Explanets Cncepts: Infrared bservatins, debris disks, explanet detectin, planetary systems Missins: Spitzer, Herschel Crdinated by the NASA Astrphysics Frum An Instructr s

More information

Phys. 344 Ch 7 Lecture 8 Fri., April. 10 th,

Phys. 344 Ch 7 Lecture 8 Fri., April. 10 th, Phys. 344 Ch 7 Lecture 8 Fri., April. 0 th, 009 Fri. 4/0 8. Ising Mdel f Ferrmagnets HW30 66, 74 Mn. 4/3 Review Sat. 4/8 3pm Exam 3 HW Mnday: Review fr est 3. See n-line practice test lecture-prep is t

More information

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y ) (Abut the final) [COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t m a k e s u r e y u a r e r e a d y ) The department writes the final exam s I dn't really knw what's n it and I can't very well

More information

Solution to HW14 Fall-2002

Solution to HW14 Fall-2002 Slutin t HW14 Fall-2002 CJ5 10.CQ.003. REASONING AND SOLUTION Figures 10.11 and 10.14 shw the velcity and the acceleratin, respectively, the shadw a ball that underges unirm circular mtin. The shadw underges

More information

Lecture 18 Title : Fine Structure : multi-electron atoms

Lecture 18 Title : Fine Structure : multi-electron atoms Lecture 8 Title : Fine Structure : multi-electrn atms Page-0 In this lecture we will cncentrate n the fine structure f the multielectrn atms. As discussed in the previus lecture that the fine structure

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA. December 4, PLP No. 322

ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA. December 4, PLP No. 322 ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA by J. C. SPROTT December 4, 1969 PLP N. 3 These PLP Reprts are infrmal and preliminary and as such may cntain errrs nt yet eliminated. They are fr private

More information

CHEM 103 Calorimetry and Hess s Law

CHEM 103 Calorimetry and Hess s Law CHEM 103 Calrimetry and Hess s Law Lecture Ntes March 23, 2006 Prf. Sevian Annuncements Exam #2 is next Thursday, March 30 Study guide, practice exam, and practice exam answer key are already psted n the

More information

State of matter characteristics solid Retains shape and volume

State of matter characteristics solid Retains shape and volume **See attachment fr graphs States f matter The fundamental difference between states f matter is the distance between particles Gas Ttal disrder Much empty space Particles have cmpletely freedm f mtin

More information

POLARISATION VISUAL PHYSICS ONLINE. View video on polarisation of light

POLARISATION VISUAL PHYSICS ONLINE. View video on polarisation of light VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT POLARISATION View vide n plarisatin f light While all the experimental evidence s far that supprts the wave nature f light, nne f it tells us whether light

More information

Chapter 30. Inductance

Chapter 30. Inductance Chapter 30 nductance 30. Self-nductance Cnsider a lp f wire at rest. f we establish a current arund the lp, it will prduce a magnetic field. Sme f the magnetic field lines pass thrugh the lp. et! be the

More information

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1 Phys101 Final Cde: 1 Term: 1 Wednesday, May 1, 014 Page: 1 Q1. A car accelerates at.0 m/s alng a straight rad. It passes tw marks that are 0 m apart at times t = 4.0 s and t = 5.0 s. Find the car s velcity

More information

Lecture 12: Chemical reaction equilibria

Lecture 12: Chemical reaction equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 12: 10.19.05 Chemical reactin equilibria Tday: LAST TIME...2 EQUATING CHEMICAL POTENTIALS DURING REACTIONS...3 The extent f reactin...3 The simplest

More information

/ / Chemistry. Chapter 1 Chemical Foundations

/ / Chemistry. Chapter 1 Chemical Foundations Name Chapter 1 Chemical Fundatins Advanced Chemistry / / Metric Cnversins All measurements in chemistry are made using the metric system. In using the metric system yu must be able t cnvert between ne

More information

Introduction to Spacetime Geometry

Introduction to Spacetime Geometry Intrductin t Spacetime Gemetry Let s start with a review f a basic feature f Euclidean gemetry, the Pythagrean therem. In a twdimensinal crdinate system we can relate the length f a line segment t the

More information

Relationships Between Frequency, Capacitance, Inductance and Reactance.

Relationships Between Frequency, Capacitance, Inductance and Reactance. P Physics Relatinships between f,, and. Relatinships Between Frequency, apacitance, nductance and Reactance. Purpse: T experimentally verify the relatinships between f, and. The data cllected will lead

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

The Evidence for the Photon

The Evidence for the Photon The Evidence fr the Phtn The Atmic Nature f Matter and the Elementary Structure f the Atm The first evidence that nature is quantized arse frm the realizatin that there ere nly a small number f fundamental

More information

OTHER USES OF THE ICRH COUPL ING CO IL. November 1975

OTHER USES OF THE ICRH COUPL ING CO IL. November 1975 OTHER USES OF THE ICRH COUPL ING CO IL J. C. Sprtt Nvember 1975 -I,," PLP 663 Plasma Studies University f Wiscnsin These PLP Reprts are infrmal and preliminary and as such may cntain errrs nt yet eliminated.

More information

ABSORPTION OF GAMMA RAYS

ABSORPTION OF GAMMA RAYS 6 Sep 11 Gamma.1 ABSORPTIO OF GAMMA RAYS Gamma rays is the name given t high energy electrmagnetic radiatin riginating frm nuclear energy level transitins. (Typical wavelength, frequency, and energy ranges

More information

1/2 and e0 e s ' 1+ imm w 4 M s 3 πρ0 r 3 m. n 0 ktr. .Also,since n 0 ktr 1,wehave. 4 3 M sπρ 0 r 3. ktr. 3 M sπρ 0

1/2 and e0 e s ' 1+ imm w 4 M s 3 πρ0 r 3 m. n 0 ktr. .Also,since n 0 ktr 1,wehave. 4 3 M sπρ 0 r 3. ktr. 3 M sπρ 0 Chapter 6 6.1 Shw that fr a very weak slutin drplet (m 4 3 πr3 ρ 0 M s ), (6.8) can be written as e 0 ' 1+ a r b r 3 where a σ 0 /n 0 kt and b imm w / 4 3 M sπρ 0. What is yur interpretatin f thecnd and

More information

3/22/18. Onward to Galaxies, starting with our own! Warping of Space by Gravity. Three aspects of falling into a black hole: 1) Spaghettified

3/22/18. Onward to Galaxies, starting with our own! Warping of Space by Gravity. Three aspects of falling into a black hole: 1) Spaghettified ASTR 1040: Stars & Galaxies Prf. Juri Tmre TAs: Peri Jhnsn, Ryan Hrtn Lecture 20 Thur 22 Mar 2018 zeus.clrad.edu/astr1040-tmre M51 Whirlpl Onward t Galaxies, starting with ur wn! Revisit Our Milky Way

More information

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes.

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes. Edexcel IGCSE Chemistry Tpic 1: Principles f chemistry Chemical frmulae, equatins and calculatins Ntes 1.25 write wrd equatins and balanced chemical equatins (including state symbls): fr reactins studied

More information

Verification of Quality Parameters of a Solar Panel and Modification in Formulae of its Series Resistance

Verification of Quality Parameters of a Solar Panel and Modification in Formulae of its Series Resistance Verificatin f Quality Parameters f a Slar Panel and Mdificatin in Frmulae f its Series Resistance Sanika Gawhane Pune-411037-India Onkar Hule Pune-411037- India Chinmy Kulkarni Pune-411037-India Ojas Pandav

More information

Lecture 23: Lattice Models of Materials; Modeling Polymer Solutions

Lecture 23: Lattice Models of Materials; Modeling Polymer Solutions Lecture 23: 12.05.05 Lattice Mdels f Materials; Mdeling Plymer Slutins Tday: LAST TIME...2 The Bltzmann Factr and Partitin Functin: systems at cnstant temperature...2 A better mdel: The Debye slid...3

More information

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25 CHAPTER 17 1. Read Chapter 17, sectins 1,2,3. End f Chapter prblems: 25 2. Suppse yu are playing a game that uses tw dice. If yu cunt the dts n the dice, yu culd have anywhere frm 2 t 12. The ways f prducing

More information

Problem Set 6 & 7: Solutions

Problem Set 6 & 7: Solutions University f Alabama Department f Physics and Astrnmy PH 53 / LeClair Spring Prblem Set 6 & 7: Slutins. The energies f the statinary states f hydrgen slightly depend n the rbital angular mmentum quantum

More information

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY Energy- the capacity t d wrk r t prduce heat 1 st Law f Thermdynamics: Law f Cnservatin f Energy- energy can be cnverted frm ne frm t anther but it can be neither

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10]

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10] EECS 270, Winter 2017, Lecture 3 Page 1 f 6 Medium Scale Integrated (MSI) devices [Sectins 2.9 and 2.10] As we ve seen, it s smetimes nt reasnable t d all the design wrk at the gate-level smetimes we just

More information

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 6. An electrchemical cell is cnstructed with an pen switch, as shwn in the diagram abve. A strip f Sn and a strip f an unknwn metal, X, are used as electrdes.

More information

Phy 212: General Physics II 1 Chapter 18 Worksheet 3/20/2008

Phy 212: General Physics II 1 Chapter 18 Worksheet 3/20/2008 Phy 1: General Physics II 1 hapter 18 rksheet 3/0/008 Thermal Expansin: 1. A wedding ring cmpsed f pure gld (inner diameter = 1.5 x 10 - m) is placed n a persn s finger (diameter = 1.5 x 10 - m). Bth the

More information