Non Linear Op Amp Circuits.

Size: px
Start display at page:

Download "Non Linear Op Amp Circuits."

Transcription

1 Non Linear Op Amp ircuis. omparaors wih 0 and non zero reference volage. omparaors wih hyseresis. The Schmid Trigger. Window comparaors. The inegraor. Waveform conversion. Sine o ecangular. ecangular o riangular. Triangular o recangular. Waveform generaion. elaxaion oscillaors. Generaing riangular waves. Triangular generaors. Acive diode circuis. Acive peak deecor. Acive clipper. Acive clamper. The Differeniaor.

2 A comparaor is a circui ha compares he inpu signal wih a reference volage and provides an oupu signal (HIGH sae) if he inpu signal is greaer han he reference volage. The simples comparaor is a differenial amplifier wih no feedback. V A V υ ou The circui shown produces a posiive oupu if he inpu signal is posiive, and a negaive one if he inpu signal is negaive. However i sauraes unless he inpu signal is beween Vcc/A and Vcc/A. For some opamp Is A could reach very high values like 100,000 and for Vcc = 10 V he inpu signal should be beween 0.1mV and 0.1mV pracically 0 for some applicaion. We can herefore say ha for pracical applicaions he circui goes high for a posiive signal and low (10V) for a negaive inpu signal. omparaors usually are being used o drive digial circuis or swiches, since heir oupu can be seen as a digial signal obained from an analog inpu.

3 omparaor inerface wih MOS. V υ ou V

4 Invering omparaor wih proecion claming circui. If he inpu goes higher han 0.7 or lower han 0.7V one of he diodes conducs and he inpu o he comparaor chip is limied beween ±0.7V. V υ ou V

5 omparaor wih an adjusable reference volage. By varying he poeniomeer posiion we can vary he reference volage above which he comparaor is high and below of which he comparaor is low. V A υ ou V V 0

6 A comparaor wih zero reference volage can be viewed as a circui ha will conver an inpu sinusoidial signal ino an oupu square one. During he ime he inpu signal is posiive (half he period of he inpu signal) he oupu is high (Vcc) and during he oher half when he inpu is negaive he oupu signal is low (Vcc). Moreover we can bind he oupu signal by using ordinary and Zener diodes in special configuraions. V υ ou V Z 0.7V 0.7V υ ou V Z 0.7V

7 omparaors wih hyseresis. A comparaor is very easy o be riggered by noise, ha is why comparaors wih hyserisis have been invened. They are called Schmid riggers. A Schmid rigger is a comparaor wih posiive feedback. The oupu signal in he circui below can ake wo only values ±V sa. A porion of he oupu signal B= 1 /( 1 2 ) is fed o he posiive inpu of he comparaor. Imagine ha he oupu signal is posiive. This means ha he inpu signal is negaive and in order for he comparaor o change sae he inpu mus become posiive and greaer han BV sa (upper rip poin, UTP). Imagine ha he oupu signal is negaive. This means ha he inpu signal is posiive and in order for he comparaor o change sae he inpu mus become negaive and less han BV sa (lower rip poin, LTP). This behavior is called hyseresis. υ in V υ ou υ ou V sa V LTP = BV sa UTP = BV sa 2 1 V sa

8 Non invering Schmid rigger. The posiive inpu of he inverer is a Vx=( 2 V in 1 V ou )/( 1 2 ). Suppose ha for some inpu posiive volage he oupu become high a Vsa. The posiive inpu of he inverer is a Vx = ( 2 V in 1 Vsa)/( 1 2 ). In order for he oupu o change sae Vx < 0 ha is V in < V sa ( 1 / 2 ). Suppose now ha for some inpu negaive volage he oupu became low a Vsa. The posiive inpu of he inverer is a Vx=( 2 V in 1 V sa )/( 1 2 ). In order for he oupu o change sae Vx > 0 ha is V in > V sa ( 1 / 2 ). υ ou 2 V sa υ in 1 V υ ou LTP UTP V sa V LTP = ( 1 / 2 )V sa UTP = ( 1 / 2 )V sa

9 This is an invering window comparaor where he oupu is low when he inpu is wihin he window defined by he wo reference volages UTP and LTP. υ ou V sa V LTP LTP UTP V υ ou V L UTP V

10 υ ou V sa 5V LTP LM339 V LTP UTP υ ou UTP V LM339 This is an invering window comparaor where he oupu is high when he inpu is wihin he window defined by he wo reference volages UTP and LTP.

11 The op amp circui below inegraes he inpu signal. For a consan inpu signal he oupu is: V ou = (V in /). If he offse volage of he op amp is Voff, he circui is evenually going o saurae. In order o avoid his problem a large resisor >10 or (an FET swich) is conneced parallel o he capacior. υ dq d i I = = q( ) = υ ( ) 1 0 i d υ i υ o = q υ o 1 ( ) = υ ( ) d 0 i υ o

12 The presence of he F will limi he oupu volage a an asympoic value a lile larger han V OS. I F F V OS I 1 I υ o V OS

13 The Schmid rigger will conver an inpu sinusoidial wave ino a square wave wih he same period. V Z 0.7V υ in V V υ ou LTP = BV sa υ ou V sa UTP = BV sa 2 1 V sa

14 A recangular wave inpu o he inegraor will produce a riangular wave as an oupu. The peak o peak riangular oupu volage is υ ou( pp) = 2 V 0 f υ i υ o

15 A riangular wave inpu o comparaor wih hreshold volage V hr will produce an oupu square wave wih ampliude he sauraion volage of he comparaor and period depending on he hreshold volage V hr. υ i 1 V V hr υ o 2

16 The circui below is a relaxaion oscillaor ha will produce a recangular oupu wave wihou an inpu signal. I is A Schmid rigger wih boh posiive and negaive feedback. Le us assume ha he oupu is a posiive sauraion. The capacior will sar charging iself and he negaive inpu will sar becoming posiive. When i reaches he UTP he sae of he Schmid rigger will change and he capacior will sar discharging iself and obaining negaive charge. When he negaive inpu volage reaches he LTP he Schmid rigger will change sae once more and he circle will sar repeaing iself. The period of oscillaion can be calculaed as: V T = 1 2 ln 1 B B υ o V 2 1 By feeding hese recangular pulses ino an inegraor we can have sponaneous generaion of a riangular waveform.

17 We will now ry o find he period of oscillaions of he relaxaion oscillaor. The volage oupu from he capacior is fed ino he negaive inpu of he Schmid rigger and herefore i direcly affecs he rigger s oupu. V () depends on he oher hand on he rigger s oupu V i since he capacior is charged from he oupu volage V i via he resisor. V () is given by he differenial equaion: V () V i V q( ) V i = ( ) q = V = q(0) e dq d (0) e d d qe e 0 e e 0 / V i = e e V d i / / V d When he Schmid rigger goes from High o Low (V sa V sa ) V () sars from an iniial value BV sa (he cause of he rigger change) o V sa he inpu volage o he circui ha charges he capacior. The above equaion from V () gives: V ( ) / V sae / = BVsae e d V = V sa Vsa ( ) 1 0 ( B) e i T /

18 When he Schmid rigger goes from High o Low (V sa V sa ) V () sars from an iniial value BV sa (he cause of he rigger change) o V sa he inpu volage o he circui ha charges he capacior. V () is given by: V () V i BV V ( ) = V V 1 sa sa ( B) e However when V reaches he value BV sa he Schmid rigger changes saes. The oupu becomes high V sa and a new cycle of charging he capacior sars. The ime i will ake for V o become BV sa is: sa = V sa V sa 1 ( B) e = ln B 1 B When V = BV sa hen V i = V sa and he capacior sars charging. V () is given by: V ( ) / V sae / = BVsae e d V = Vsa Vsa ( ) 1 0 ( B) e When V reaches he value BV sa he Schmid rigger changes saes again. The oupu becomes low V sa and he capacior sars discharging again. The cycle sars all over. The ime i will ake for V o become BV sa is: BV sa = V sa V sa 1 B 1 B 2 ( B) e = ln 1 2

19 The cycle of charging and discharging repeas iself periodically wih period T. V () T = 1 2 = 1 2 ln 1 B B BV sa BV sa V ou () T 1 B = 2 ln 1 B V sa V sa

20 Sponaneous generaion of riangular pulses. V V V υ o V 1 2

21 This is anoher ype of riangular wave generaor wih frequency: f = V V υ o V 3 V

22 Acive Diode ircuis. Half wave recifier.when he inpu is negaive he diode cus off and he oupu volage is 0. When he inpu is posiive and he diode conducs he oupu from he op amp is Vin0.7 V and he oupu from he diode is Vin. The superdiode does no suffer from he Knee volage of 0.7 V. V υ ou V

23 Acive Diode ircuis. Acive peak deecor. This acive peak deecor does no suffer from he diode s knee volage of 0.7 V. V υ ou V

24 Acive Diode ircuis. Acive posiive clipper. This acive posiive clipper does no suffer from he diode s knee volage of 0.7 V. υ ou V ref V ref V V V

25 Acive Diode ircuis. Acive posiive clamper. This acive posiive clamper does no suffer from he diode s knee volage of 0.7 V. υ ou V p 2V p V p V V

26 The circui below is a differeniaor. I produces spices when fed wih a recangular waveform. The oupu signal is he derivaive of he inpu. υ ou

27 Acive Differeniaor wih Op Amp. υ i υ o υ = i υ υ O o q = i υ dυ ( ) i ( ) = ( ) o d = dq d

Basic Principles of Sinusoidal Oscillators

Basic Principles of Sinusoidal Oscillators Basic Principles of Sinusoidal Oscillaors Linear oscillaor Linear region of circui : linear oscillaion Nonlinear region of circui : ampliudes sabilizaion Barkhausen crierion X S Amplifier A X O X f Frequency-selecive

More information

non-linear oscillators

non-linear oscillators non-linear oscillaors The invering comparaor operaion can be summarized as When he inpu is low, he oupu is high. When he inpu is high, he oupu is low. R b V REF R a and are given by he expressions derived

More information

Chapter 5-4 Operational amplifier Department of Mechanical Engineering

Chapter 5-4 Operational amplifier Department of Mechanical Engineering MEMS08 Chaper 5-4 Operaional amplifier Deparmen of Mechanical Engineering Insrumenaion amplifier Very high inpu impedance Large common mode rejecion raio (CMRR) Capabiliy o amplify low leel signals Consisen

More information

( ) = Q 0. ( ) R = R dq. ( t) = I t

( ) = Q 0. ( ) R = R dq. ( t) = I t ircuis onceps The addiion of a simple capacior o a circui of resisors allows wo relaed phenomena o occur The observaion ha he ime-dependence of a complex waveform is alered by he circui is referred o as

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Universià degli Sudi di Roma Tor Vergaa Diparimeno di Ingegneria Eleronica Analogue Elecronics Paolo Colanonio A.A. 2015-16 Diode circui analysis The non linearbehaviorofdiodesmakesanalysisdifficul consider

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C :

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C : EECE202 NETWORK ANALYSIS I Dr. Charles J. Kim Class Noe 22: Capaciors, Inducors, and Op Amp Circuis A. Capaciors. A capacior is a passive elemen designed o sored energy in is elecric field. 2. A capacior

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY

UNIVERSITY OF CALIFORNIA AT BERKELEY Homework #10 Soluions EECS 40, Fall 2006 Prof. Chang-Hasnain Due a 6 pm in 240 Cory on Wednesday, 04/18/07 oal Poins: 100 Pu (1) your name and (2) discussion secion number on your homework. You need o

More information

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch.

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch. 16.4.3 A SWITHED POWER SUPPY USINGA DIODE In his example, we will analyze he behavior of he diodebased swiched power supply circui shown in Figure 16.15. Noice ha his circui is similar o ha in Figure 12.41,

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

U(t) (t) -U T 1. (t) (t)

U(t) (t) -U T 1. (t) (t) Prof. Dr.-ng. F. Schuber Digial ircuis Exercise. () () A () - T T The highpass is driven by he square pulse (). alculae and skech A (). = µf, = KΩ, = 5 V, T = T = ms. Exercise. () () A () T T The highpass

More information

The problem with linear regulators

The problem with linear regulators he problem wih linear regulaors i in P in = i in V REF R a i ref i q i C v CE P o = i o i B ie P = v i o o in R 1 R 2 i o i f η = P o P in iref is small ( 0). iq (quiescen curren) is small (probably).

More information

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter page 11 Flyback converer The Flyback converer belongs o he primary swiched converer family, which means here is isolaion beween in and oupu. Flyback converers are used in nearly all mains supplied elecronic

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direc Curren Circuis February 19, 2014 Physics for Scieniss & Engineers 2, Chaper 26 1 Ammeers and Volmeers! A device used o measure curren is called an ammeer! A device used o measure poenial difference

More information

Silicon Controlled Rectifiers UNIT-1

Silicon Controlled Rectifiers UNIT-1 Silicon Conrolled Recifiers UNIT-1 Silicon Conrolled Recifier A Silicon Conrolled Recifier (or Semiconducor Conrolled Recifier) is a four layer solid sae device ha conrols curren flow The name silicon

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

Lecture -14: Chopper fed DC Drives

Lecture -14: Chopper fed DC Drives Lecure -14: Chopper fed DC Drives Chopper fed DC drives o A chopper is a saic device ha convers fixed DC inpu volage o a variable dc oupu volage direcly o A chopper is a high speed on/off semiconducor

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK EE202 Circui Theory II 2018 2019, Spring Dr. Yılmaz KALKAN & Dr. Ailla DÖNÜK 1. Basic Conceps (Chaper 1 of Nilsson - 3 Hrs.) Inroducion, Curren and Volage, Power and Energy 2. Basic Laws (Chaper 2&3 of

More information

Pulse Generators. Any of the following calculations may be asked in the midterms/exam.

Pulse Generators. Any of the following calculations may be asked in the midterms/exam. ulse Generaors ny of he following calculaions may be asked in he miderms/exam.. a) capacior of wha capaciance forms an RC circui of s ime consan wih a 0 MΩ resisor? b) Wha percenage of he iniial volage

More information

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

2 Definitions and parameters of the impulse-technics

2 Definitions and parameters of the impulse-technics efiniions and parameers of he impulse-echnics igial logic-circuis are driven wih signals, which only represen wo levels: he levels LOW and HIGH or he variables wih he values "" and ". These levels are

More information

Chapter 2: Logical levels, timing and delay

Chapter 2: Logical levels, timing and delay 28.1.216 haper 2: Logical levels, iming and delay Dr.-ng. Sefan Werner Winersemeser 216/17 Table of conen haper 1: Swiching lgebra haper 2: Logical Levels, Timing & Delays haper 3: Karnaugh-Veich-Maps

More information

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

Chapter 4 DC converter and DC switch

Chapter 4 DC converter and DC switch haper 4 D converer and D swich 4.1 Applicaion - Assumpion Applicaion: D swich: Replace mechanic swiches D converer: in racion drives Assumions: Ideal D sources Ideal Power emiconducor Devices 4.2 D swich

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chaper 1 Fundamenal Conceps 1 Signals A signal is a paern of variaion of a physical quaniy, ofen as a funcion of ime (bu also space, disance, posiion, ec). These quaniies are usually he independen variables

More information

Chapter 4 AC Network Analysis

Chapter 4 AC Network Analysis haper 4 A Nework Analysis Jaesung Jang apaciance Inducance and Inducion Time-Varying Signals Sinusoidal Signals Reference: David K. heng, Field and Wave Elecromagneics. Energy Sorage ircui Elemens Energy

More information

h[n] is the impulse response of the discrete-time system:

h[n] is the impulse response of the discrete-time system: Definiion Examples Properies Memory Inveribiliy Causaliy Sabiliy Time Invariance Lineariy Sysems Fundamenals Overview Definiion of a Sysem x() h() y() x[n] h[n] Sysem: a process in which inpu signals are

More information

3. Alternating Current

3. Alternating Current 3. Alernaing Curren TOPCS Definiion and nroducion AC Generaor Componens of AC Circuis Series LRC Circuis Power in AC Circuis Transformers & AC Transmission nroducion o AC The elecric power ou of a home

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

6.01: Introduction to EECS I Lecture 8 March 29, 2011

6.01: Introduction to EECS I Lecture 8 March 29, 2011 6.01: Inroducion o EES I Lecure 8 March 29, 2011 6.01: Inroducion o EES I Op-Amps Las Time: The ircui Absracion ircuis represen sysems as connecions of elemens hrough which currens (hrough variables) flow

More information

555 Timer. Digital Electronics

555 Timer. Digital Electronics 555 Timer Digial Elecronics This presenaion will Inroduce he 555 Timer. 555 Timer Derive he characerisic equaions for he charging and discharging of a capacior. Presen he equaions for period, frequency,

More information

Experimental Buck Converter

Experimental Buck Converter Experimenal Buck Converer Inpu Filer Cap MOSFET Schoky Diode Inducor Conroller Block Proecion Conroller ASIC Experimenal Synchronous Buck Converer SoC Buck Converer Basic Sysem S 1 u D 1 r r C C R R X

More information

Chapter 10 INDUCTANCE Recommended Problems:

Chapter 10 INDUCTANCE Recommended Problems: Chaper 0 NDUCTANCE Recommended Problems: 3,5,7,9,5,6,7,8,9,,,3,6,7,9,3,35,47,48,5,5,69, 7,7. Self nducance Consider he circui shown in he Figure. When he swich is closed, he curren, and so he magneic field,

More information

Physical Limitations of Logic Gates Week 10a

Physical Limitations of Logic Gates Week 10a Physical Limiaions of Logic Gaes Week 10a In a compuer we ll have circuis of logic gaes o perform specific funcions Compuer Daapah: Boolean algebraic funcions using binary variables Symbolic represenaion

More information

LabQuest 24. Capacitors

LabQuest 24. Capacitors Capaciors LabQues 24 The charge q on a capacior s plae is proporional o he poenial difference V across he capacior. We express his wih q V = C where C is a proporionaliy consan known as he capaciance.

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers A ircuis A ircui wih only A circui wih only A circui wih only A circui wih phasors esonance Transformers Phys 435: hap 31, Pg 1 A ircuis New Topic Phys : hap. 6, Pg Physics Moivaion as ime we discovered

More information

EE 230 Lecture 28. Nonlinear Circuits using Diodes. Rectifiers Precision Rectifiers Nonlinear function generators

EE 230 Lecture 28. Nonlinear Circuits using Diodes. Rectifiers Precision Rectifiers Nonlinear function generators EE 230 Lecure 28 Nonlinear Circuis using ioes ecifiers Precision ecifiers Nonlinear funcion generaors Quiz 8 f a ioe has a value of S =E-4A an he ioe volage is.65v, wha will be he ioe curren if operaing

More information

Timer 555. Digital Electronics

Timer 555. Digital Electronics Timer 555 Digial Elecronics This presenaion will Inroduce he 555 Timer. 555 Timer Derive he characerisic equaions for he charging and discharging of a capacior. Presen he equaions for period, frequency,

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

EEEB113 CIRCUIT ANALYSIS I

EEEB113 CIRCUIT ANALYSIS I 9/14/29 1 EEEB113 CICUIT ANALYSIS I Chaper 7 Firs-Order Circuis Maerials from Fundamenals of Elecric Circuis 4e, Alexander Sadiku, McGraw-Hill Companies, Inc. 2 Firs-Order Circuis -Chaper 7 7.2 The Source-Free

More information

Zhihan Xu, Matt Proctor, Ilia Voloh

Zhihan Xu, Matt Proctor, Ilia Voloh Zhihan Xu, Ma rocor, lia Voloh - GE Digial Energy Mike Lara - SNC-Lavalin resened by: Terrence Smih GE Digial Energy CT fundamenals Circui model, exciaion curve, simulaion model CT sauraion AC sauraion,

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Cosmic Feb 06, 2007 by Raja Reddy P

Cosmic Feb 06, 2007 by Raja Reddy P osmic ircuis@iisc, Feb 6, 7 by aja eddy P. ou() i() alculae ou(s)/(s). plo o(). calculae ime consan and pole frequency. ou ( e τ ) ou (s) ( s) Time consan (/) Pole frequency : ω p. i() n he above circui

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 35 Chaper 8: Second Order Circuis Daniel M. Liynski, Ph.D. ECE 1 Circui Analysis Lesson 3-34 Chaper 7: Firs Order Circuis (Naural response RC & RL circuis, Singulariy funcions,

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 37 Chaper 8: Second Order Circuis Discuss Exam Daniel M. Liynski, Ph.D. Exam CH 1-4: On Exam 1; Basis for work CH 5: Operaional Amplifiers CH 6: Capaciors and Inducor CH 7-8:

More information

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation Inroducion o CMOS VLSI Design Chaper : DC & Transien Response David Harris, 004 Updaed by Li Chen, 010 Ouline DC Response Logic Levels and Noise Margins Transien Response Delay Esimaion Slide 1 Aciviy

More information

MC3x063A 1.5-A Peak Boost/Buck/Inverting Switching Regulators

MC3x063A 1.5-A Peak Boost/Buck/Inverting Switching Regulators MC3303A, MC3403A SLLS3N DECEMBER 004 REVISED JANUARY 05 MC3x03A.5-A Peak Boos/Buck/Invering Swiching Regulaors Feaures 3 Descripion Wide Inpu Volage Range: 3 V o 40 V The MC3303A and MC3403A devices are

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

This exam is formed of 4 obligatory exercises in four pages numbered from 1 to 4 The use of non-programmable calculators is allowed

This exam is formed of 4 obligatory exercises in four pages numbered from 1 to 4 The use of non-programmable calculators is allowed وزارةالتربیةوالتعلیمالعالي المدیریةالعامةللتربیة داي رةالامتحانات امتحاناتشھادةالثانویةالعامة فرع العلومالعامة مسابقةفي ال فیزیاء المدة:ثلاثساعات دورةسنة الاسم : الرقم : 005 ا لعادیة This exam is formed

More information

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 3 Absolue and Relaive Accuracy DAC Design The Sring DAC . Review from las lecure. DFT Simulaion from Malab Quanizaion Noise DACs and ADCs generally quanize boh ampliude and ime If convering

More information

dv i= C. dt 1. Assuming the passive sign convention, (a) i = 0 (dc) (b) (220)( 9)(16.2) t t Engineering Circuit Analysis 8 th Edition

dv i= C. dt 1. Assuming the passive sign convention, (a) i = 0 (dc) (b) (220)( 9)(16.2) t t Engineering Circuit Analysis 8 th Edition . Assuming he passive sign convenion, dv i= C. d (a) i = (dc) 9 9 (b) (22)( 9)(6.2) i= e = 32.8e A 9 3 (c) i (22 = )(8 )(.) sin. = 7.6sin. pa 9 (d) i= (22 )(9)(.8) cos.8 = 58.4 cos.8 na 2. (a) C = 3 pf,

More information

Capacitors. C d. An electrical component which stores charge. parallel plate capacitor. Scale in cm

Capacitors. C d. An electrical component which stores charge. parallel plate capacitor. Scale in cm apaciors An elecrical componen which sores charge E 2 2 d A 2 parallel plae capacior Scale in cm Leyden Jars I was invened independenly by German cleric Ewald Georg von Kleis on Ocober 745 and by Duch

More information

Analytic Model and Bilateral Approximation for Clocked Comparator

Analytic Model and Bilateral Approximation for Clocked Comparator Analyic Model and Bilaeral Approximaion for Clocked Comparaor M. Greians, E. Hermanis, G.Supols Insiue of, Riga, Lavia, e-mail: gais.supols@edi.lv Research is suppored by: 1) ESF projec Nr.1DP/1.1.1.2.0/09/APIA/VIAA/020,

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Lectures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS. I. Introduction

Lectures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS. I. Introduction EE-202/445, 3/18/18 9-1 R. A. DeCarlo Lecures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS I. Inroducion 1. The biquadraic ransfer funcion has boh a 2nd order numeraor and a 2nd order denominaor:

More information

Lecture 15: Differential Pairs (Part 2)

Lecture 15: Differential Pairs (Part 2) Lecure 5: ifferenial Pairs (Par ) Gu-Yeon Wei ivision of Enineerin and Applied Sciences Harvard Universiy uyeon@eecs.harvard.edu Wei Overview eadin S&S: Chaper 6.6 Suppleenal eadin S&S: Chaper 6.9 azavi,

More information

7. Capacitors and Inductors

7. Capacitors and Inductors 7. Capaciors and Inducors 7. The Capacior The ideal capacior is a passive elemen wih circui symbol The curren-volage relaion is i=c dv where v and i saisfy he convenions for a passive elemen The capacior

More information

Exam I. Name. Answer: a. W B > W A if the volume of the ice cubes is greater than the volume of the water.

Exam I. Name. Answer: a. W B > W A if the volume of the ice cubes is greater than the volume of the water. Name Exam I 1) A hole is punched in a full milk caron, 10 cm below he op. Wha is he iniial veloci of ouflow? a. 1.4 m/s b. 2.0 m/s c. 2.8 m/s d. 3.9 m/s e. 2.8 m/s Answer: a 2) In a wind unnel he pressure

More information

8.022 (E&M) Lecture 16

8.022 (E&M) Lecture 16 8. (E&M) ecure 16 Topics: Inducors in circuis circuis circuis circuis as ime Our second lecure on elecromagneic inducance 3 ways of creaing emf using Faraday s law: hange area of circui S() hange angle

More information

Physics 310 Lecture 7b Waveform Generators & Timers

Physics 310 Lecture 7b Waveform Generators & Timers Physics 0 Lecure 7b Waveform Generaors & imers Wed. /0 hurs. / Fri. / Ch 0: Oscillaors & imers - Beginning Ch 0: Oscillaors & imers es of; Lab 7: Oscillaors & imers Lab 7: Oscillaors & imers; Quiz Ch 0

More information

first-order circuit Complete response can be regarded as the superposition of zero-input response and zero-state response.

first-order circuit Complete response can be regarded as the superposition of zero-input response and zero-state response. Experimen 4:he Sdies of ransiional processes of 1. Prpose firs-order circi a) Use he oscilloscope o observe he ransiional processes of firs-order circi. b) Use he oscilloscope o measre he ime consan of

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

TWO-ELEMENT DC-DRIVEN SERIES LRC CIRCUITS

TWO-ELEMENT DC-DRIVEN SERIES LRC CIRCUITS TWO-ELEMENT D-DRIVEN SERIES LR IRUITS TWO-ELEMENT D-DRIVEN SERIES LR IRUITS by K. Franlin, P. Signell, and J. Kovacs Michigan Sae Universiy 1. Inroducion.............................................. 1

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91 ddiional Problems 9 n inverse relaionship exiss beween he ime-domain and freuency-domain descripions of a signal. Whenever an operaion is performed on he waveform of a signal in he ime domain, a corresponding

More information

UNIT- III DC CHOPPERS

UNIT- III DC CHOPPERS UN- D HPPES NDUN A chopper is a saic device which is used o obain a variable dc volage from a consan dc volage source. A chopper is also known as dc-o-dc converer. he hyrisor converer offers greaer efficiency,

More information

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2 Page of 6 all effec Aim :- ) To deermine he all coefficien (R ) ) To measure he unknown magneic field (B ) and o compare i wih ha measured by he Gaussmeer (B ). Apparaus :- ) Gauss meer wih probe ) Elecromagne

More information

Sequential Logic. Digital Integrated Circuits A Design Perspective. Latch versus Register. Naming Conventions. Designing Sequential Logic Circuits

Sequential Logic. Digital Integrated Circuits A Design Perspective. Latch versus Register. Naming Conventions. Designing Sequential Logic Circuits esigning Sequenial Logic Circuis Adaped from Chaper 7 of igial egraed Circuis A esign Perspecive Jan M. Rabaey e al. Copyrigh 23 Prenice Hall/Pearson Sequenial Logic pus Curren Sae COMBINATIONAL LOGIC

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information

5.2. The Natural Logarithm. Solution

5.2. The Natural Logarithm. Solution 5.2 The Naural Logarihm The number e is an irraional number, similar in naure o π. Is non-erminaing, non-repeaing value is e 2.718 281 828 59. Like π, e also occurs frequenly in naural phenomena. In fac,

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Analogue amplifier card for 4/3 proportional directional valves of type 4WRE

Analogue amplifier card for 4/3 proportional directional valves of type 4WRE Analogue amplifier card for / proporional direcional valves of ype WRE RE 09/07.05 Replaces: 06.0 /0 Type VT-VRPA-.-X/ Series X H66 Table of conens Conens Page Feaures Ordering code Funcion Block circui

More information

Module 10 SCR. 2. To understand two Transistor Static and Transient Models. 3. To learn the SCR Turn-on and Turn-off methods

Module 10 SCR. 2. To understand two Transistor Static and Transient Models. 3. To learn the SCR Turn-on and Turn-off methods 1 Module 1 SR 1. Inroducion 2. SR characerisics 3. Two ransisor saic and ransien models 4. SR urnon mehods 5. SR urnoff mehods 6. SR proecion and Triggering circuis 7. ae proecion circuis 8. Summary Learning

More information

EE 435. Lecture 35. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 35. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 35 Absolue and Relaive Accuracy DAC Design The Sring DAC Makekup Lecures Rm 6 Sweeney 5:00 Rm 06 Coover 6:00 o 8:00 . Review from las lecure. Summary of ime and ampliude quanizaion assessmen

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

Physics 1402: Lecture 22 Today s Agenda

Physics 1402: Lecture 22 Today s Agenda Physics 142: ecure 22 Today s Agenda Announcemens: R - RV - R circuis Homework 6: due nex Wednesday Inducion / A curren Inducion Self-Inducance, R ircuis X X X X X X X X X long solenoid Energy and energy

More information

Inductor Energy Storage

Inductor Energy Storage School of Compuer Science and Elecrical Engineering 5/5/ nducor Energy Sorage Boh capaciors and inducors are energy sorage devices They do no dissipae energy like a resisor, bu sore and reurn i o he circui

More information

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in Circui Variables 1 Assessmen Problems AP 1.1 Use a produc of raios o conver wo-hirds he speed of ligh from meers per second o miles per second: ( ) 2 3 1 8 m 3 1 s 1 cm 1 m 1 in 2.54 cm 1 f 12 in 1 mile

More information

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

2.9 Modeling: Electric Circuits

2.9 Modeling: Electric Circuits SE. 2.9 Modeling: Elecric ircuis 93 2.9 Modeling: Elecric ircuis Designing good models is a ask he compuer canno do. Hence seing up models has become an imporan ask in modern applied mahemaics. The bes

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

9. Alternating currents

9. Alternating currents WS 9. Alernaing currens 9.1 nroducion Besides ohmic resisors, capaciors and inducions play an imporan role in alernaing curren (AC circuis as well. n his experimen, one shall invesigae heir behaviour in

More information

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9:

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9: EE65R: Reliabiliy Physics of anoelecronic Devices Lecure 9: Feaures of Time-Dependen BTI Degradaion Dae: Sep. 9, 6 Classnoe Lufe Siddique Review Animesh Daa 9. Background/Review: BTI is observed when he

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information