Basic Principles of Sinusoidal Oscillators

Size: px
Start display at page:

Download "Basic Principles of Sinusoidal Oscillators"

Transcription

1 Basic Principles of Sinusoidal Oscillaors Linear oscillaor Linear region of circui : linear oscillaion Nonlinear region of circui : ampliudes sabilizaion Barkhausen crierion X S Amplifier A X O X f Frequency-selecive nework loop gain L(s) = β (s)a(s) characerisic equaion -L(s) = oscillaion crierion L(j = A(j ) β(j ) = - Elecronics(),

2 Basic Principles of Sinusoidal Oscillaors (on.) a, he phase of he loop should be zero and he magniude of he loop gain should be uniy. Oscillaion frequency is deermined solely by φ φ ω dφ dω φ ω ω A seep phase response resuls in a small for a given change in phase - Elecronics(),

3 Nonlinear Ampliude onrol o susain oscillaion : βa> a.overdesign for βa variaions b.oscillaion will grow in ampliude poles are in he righ half of he s-plane c.nonlinear nework reduces βa o when he desired ampliude is reached poles will be pulled o j-axis - Elecronics(),

4 Nonlinear Ampliude onrol (on.) Limier circui for ampliude conrol linear region O A B ( f ) 4 i 4 5 O O I D f D A O 4 B Elecronics(),

5 - 5 Elecronics(), Nonlinear Ampliude onrol (on.) nonlinear region ) ( L similarly, ) ( ) ( L 5 4 D 5 4 D D - O D A f ) ( Slope L L 4 f ) ( Slope O I f Slope

6 OPAMP- Oscillaor ircuis Wien-bridge oscillaor L L s jω Z p Zp Z S For phase. ω L ω S jω ω s s d ω Z P _ Z S O - 6 Elecronics(),

7 OPAMP- Oscillaor ircuis (on.) Wien-bridge oscillaor wih a limier 5 D k a.k k _ 4 k O k 6nF 6nF k 5 k D b 6 k 5-7 Elecronics(),

8 OPAMP- Oscillaor ircuis (on.) v O 5k b k a p - 6nF k 6nF k - 8 Elecronics(),

9 Phase-Shif Oscillaor Wihou ampliude sabilizaion - K phase shif of he nework is 8 degrees. oal phase shif around he loop is or 6 degrees. - 9 Elecronics(),

10 Phase-Shif Oscillaor (on.) Wih ampliude sabilizaion k 5k P x 6nF 6nF 6nF k k _ D vo D 4 - Elecronics(),

11 Quadraure Oscillaor - 4 _ O X _ OP O OP f (Nominally ) - Elecronics(),

12 Quadraure Oscillaor (on.) Break he loop a X, loop gain oscillaion frequency L(s) = X = S o is he inegral of o 9 phase difference beween o and o quadraure oscillaor - Elecronics(),

13 Block diagram Acive-Filer uned Oscillaor f - - High-disorion v High-Q bandpass low-disorion v - Elecronics(),

14 Acive-Filer uned Oscillaor (on.) Pracical implemenaion Q Elecronics(),

15 A General Form of L-uned Oscillaor onfiguraion Many oscillaor circuis fall ino a general form shown below O ˆ - A I Z Z Z O O - A v ˆ Z Z Z O Z L Z L Z,Z,Z :capaciive or inducive - 5 Elecronics(),

16 - 6 Elecronics(), A General Form of L-uned Oscillaor onfiguraion (on.) ) ( ) ( ) ( ) ( ) ( ˆ ˆ X X A X X X A X X X X X A X X X X X X X X X j X X A X L X jx Z jx Z jx Z Z Z Z Z Z Z Z A Z Z Z Z Z Z A v v v O v O v O O L L v O oscillaion, for capaciance for inducance for,, if

17 A General Form of L-uned Oscillaor onfiguraion (on.) Wih oscillaion = and =, 6, 7, degree. i.e. = (X =ωl or X = - ) ω X & X mus have he same sign if A v is posiive X & X are L, X = -(X + X ) is or X & X are, X = -(X + X ) is L ransisor oscillaors.ollpis oscillaor -- X & X are s, X is L.Harley oscillaor -- X & X are Ls, X is - 7 Elecronics(),

18 L uned Oscillaors wo commonly used configuraions.ollpis (feedback is achieved by using a capaciive divider).harley (feedback is achieved by using an inducive divider) onfiguraion.ollpis.harley L L a.c. ground( DD ) a.c. ground( ) DD L - 8 Elecronics(),

19 ollpis oscillaor Equivalen circui L uned Oscillaors (on.) sπ L O π( s L ) sπ π Gm π = loss of inducor + load resisance of oscillaor + oupu resisance of ransisor - 9 Elecronics(),

20 L uned Oscillaors (on.) S+gmv+( +S )(+S L )= L S L +S ( )+S( + )+(g m+ )= w L (g m+ )+j W( + ) W L = S=jw For oscillaions o sar, boh he real and imaginary pars mus be zero Oscillaion frequency ω = cc L( ) c +c - Elecronics(),

21 L uned Oscillaors (on.) Gain g m c c (Acually, g m c c ) Oscillaion ampliude.l uned oscillaors are known as self limiing oscillaors. (As oscillaions grown in ampliude, ransisor gain is reduced below is small signal value).oupu volage signal will be a sinusoid of high puriy because of he filering acion of he L uned circui Harley oscillaor can be similariy analyzed - Elecronics(),

22 Symbol of crysal rysal oscillaors ircui model of crysal L S P r - Elecronics(),

23 - Elecronics(), rysal oscillaors (on.) eacance of a crysal assuming r = (rysal is high Q device) ω p S ω ω inducive capaciive reacance rysal S P S P P S P P S P S S P S S P S P S P ω hen ω, If ω ω ω ω ω j jω Z L ω L ω Le L s L s s s sl s Z(s)

24 rysal oscillaors (on.) he crysal reacance is inducive over he narrow frequency band beween w s and w p ollpis crysal oscillaor onfiguraion crysal a.c. ground( DD ) - 4 Elecronics(),

25 Equivalen circui <<,, S P ω =ω L rysal oscillaors (on.) S S L - π S P v - 5 Elecronics(),

26 rysal oscillaors (on.) - L =pf 6~ uh L gd + D sray N68 - S MHz M Bias circui XAL.kΩ.μF (For A,- and ground are he same=) - 6 Elecronics(),

27 rysal oscillaors (on.) AX v Since reurn raio = X hen X mus be large for he loop gain o be greaer han one. X is very large when ω closes o ω ωs ω ωp p and X +X +X = & X = X &X are inducive ω j Z =L//= = jω + ω + jω L ω L X = > ωl> ω> ω+ ω L ωl For MHz crysal, =pf L 84.4μH π L MHz - 7 Elecronics(),

28 Bisable Mulivibraors Mulivibraors bisable:wo sable saes ( ypes) monosable:one sable sae asable:no sable sae Bisable Has wo sable saes an be obained by connecing an amplifier in a amplifier in a posiive-feedback loop having a loop gain greaer han uniy. I.e. βa> where β= /( + ) - 8 Elecronics(),

29 Bisable Mulivibraors (on.) Bisable circui wih clockwise hyseresis v o L v + - v O L H v I v I - L - lockwise hyseresis (or invering hyseresis) L + :posiive sauraion volage of OPAMP L - :negaive sauraion volage of OPAMP - 9 Elecronics(),

30 Bisable Mulivibraors (on.) H L βl βl L L Hyseresis widh = H - L - Elecronics(),

31 Noninvering Bisable ircui ounerclockwise hyseresis onfiguraion v o v I - v + L - v O L H v I L - v=v +v + I + + For v =L +, v + =,v I=vL v L = L + ( ) For v =L -, v + =,v I=vH v H= L ( ) - Elecronics(),

32 Noninvering Bisable ircui (on.) omparaor characerisics wih hyseresis an rejec inerference Signal corruped wih inerference H L Muliple zero crossings - Elecronics(),

33 Generaion of Square and riangular Waveforms using Asable Mulivibraors an be done by connecing a bisable mulivibraor wih a circui in a feedback loop. v L v v L H v H βl L - L L βl L - - Elecronics(),

34 Generaion of Square and riangular Waveforms using Asable Mulivibraors (on.) v O L v + L - v v O - H L H v - βl βl v βl o L o L - ime consan = L βl - 4 Elecronics(),

35 - 5 Elecronics(), Generaion of Square and riangular Waveforms using Asable Mulivibraors (on.) During During β L L β a βl if,β where e βl L L ln τ τ τ is assumed L L ; β β β L L β a βl if e βl L L τ ln τ ln τ

36 Generaion of riangular Waveforms v _ L H L v L - Bisable Slope -L L H L L Slope L - 6 Elecronics(),

37 Generaion of riangular Waveforms (on.) During L L H L ; i d where i H L L During Similarily H L L o obain symmerical waveforms L L - 7 Elecronics(),

38 Monosable Mulivibraors Is alernaive name is one sho Has one sable sae an be riggered o a quasi-sae E D 4 (βl+ D) L - v E v L A () () B D _ A βl βl - v v B D () () o L βl - o L - 8 Elecronics(),

39 During B B () L () βl For D L Monosable Mulivibraors (on.) (L βl ln( βl D D )e L L L (L ) ( ) β D )e βl + is greaer hen D Sable sae is mainained - 9 Elecronics(),

40 Monosable Mulivibraors(on.) Monosable mulivibraor using NO gaes DD in NO o vx NO O v in v O DD DD X v O DD DD DD DD - 4 Elecronics(),

41 Mono-sable Mulivibraor (on.) - - c O DD v X - - O - c DD DD v X - v () v (e ) x DD v() x DD(e ) DD ln ln.69 DD DD where ; is NO gae hreshold volage v v x ( ) DD e - 4 Elecronics(),

42 Mono-sable Mulivibraor (on.) Monosable mulivibraor wih caching diode DD in o D O NO x NO X 5.6 forward resisance of diode 5 D ime consan f ime consan - 4 Elecronics(),

43 Asable Mulivibraor Using NO(or Inverer) Gaes v o D D X O O v _ v o D D ransien behavior ()<< (i) v o:dd w hen = (ii) v : w hen = o DD (iii)v =( + )e x D D - (iv)v =v - =- +( + )e c x O DD DD - v X DD D D v D D - 4 Elecronics(),

44 Asable Mulivibraor Using NO(or Inverer) Gaes (on.) ()<<(+) (i) v : w hen = o DD (ii) v : w hen = o DD (iii)v = -( + )e x D D D D (- ) (iv)v =v - =v = -( + )e c x O x D D D D (- ) - 44 Elecronics(),

45 Asable Mulivibraor Using NO(or Inverer) Gaes (on.) Oscillaion frequency v ( )= x DD ( + )e = DD+ =ln DD If =, hen =ln and =ln.455 oscillaion frequency f = ln - 45 Elecronics(),

46 Asable Mulivibraor Using NO(or Inverer) Gaes (on.) Wih caching diode a X X O O v _ f ln.7 ln DD Asymmerical square wave (i) (ii) DD X O D D v _ O - 46 Elecronics(),

47 he 555 I imer Widely used as boh a monosable and asable mulivibraor n Used as monosable mulivibraor hreshold rigger c H L omparaor S Q omparaor Q Q oem-pole oupu sage O v v v c O ( ) ( ) H ( ) S n Q n+ Q n N/A c cc cc cc n v L ( e ) Discharge ransisor v() - 47 Elecronics(),

48 For v x he 555 I imer (on.) () e (() ) E(sa) For =, v ( ) H () ln ln (() ) - 48 Elecronics(),

49 he 555 I imer (on.) Used as an asable mulivibraor cc H = cc L = ( ) A B cc c S, cc c S, cc cc c S ln, ( )ln B A B Oscillaion frequency f hreshold A B c rigger H L (A omparaor omparaor B )ln 555 imer chip S Q Q Q Discharge oem-pole oupu sage ransisor O - 49 Elecronics(),

50 Sine-Wave Shaper Shape a riangular waveform ino a sinusoid Exensively used in funcion generaors Noe:linear oscillaors are no cos-effecive for low v O frequency applicaion no easy o ime over wide frequency ranges vf - 5 Elecronics(),

51 Sine-Wave Shaper (on.) Nonlinear-amplificaion mehod For various inpu values, heir corresponding oupu values can be calculaed ransfer curve can be obained and is similar o _ vo v i (riangular wave) (Sine wave) Q Q I I - EE - 5 Elecronics(),

52 Sine-Wave Shaper (on.) Breakpoin mehod Piecewise linear ransfercurve Low-valued is assumed and are consan in in in D D D ou ( in in is on (volage drop D is on limi 5 ) 5 o 4 D ) D - 5 Elecronics(),

53 Sine-Wave Shaper (on.) D In ou In 4 D D D 4 ou - 5 Elecronics(),

54 Precision ecifier ircuis Precision half-wave recifier --- superdiode " Superdiode " O i _ A O i An alernae circui O D _ D O i i - 54 Elecronics(),

55 Precision ecifier ircuis (on.) Applicaion:Measure A volages D 4 i _ A D _ A O π P Average ;where p is he peak ampliude of an inpu sinusoid - 55 Elecronics(),

56 Precision ecifier ircuis (on.) If ωmin ;ω min is he lowes expeced 4 P π 4 frequency of he inpu sine wave - 56 Elecronics(),

57 Precision Full-Wave ecifiers A D A A B D B B or L - 57 Elecronics(),

58 Precision Full-Wave ecifiers (on.) i A _ A E D O O _ D P i A F L - 58 Elecronics(),

59 Wih load Peak ecifier Super diode v i - _ L v O - buffered D _ A D _ A v O - v i Elecronics(),

Basic Principles of Sinusoidal Oscillators

Basic Principles of Sinusoidal Oscillators Basic Principles of Sinusoidal Oscillators Linear oscillator Linear region of circuit: linear oscillation Nonlinear region of circuit: amplitudes stabilization Barkhausen criterion X S Amplifier A X O

More information

Non Linear Op Amp Circuits.

Non Linear Op Amp Circuits. Non Linear Op Amp ircuis. omparaors wih 0 and non zero reference volage. omparaors wih hyseresis. The Schmid Trigger. Window comparaors. The inegraor. Waveform conversion. Sine o ecangular. ecangular o

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

non-linear oscillators

non-linear oscillators non-linear oscillaors The invering comparaor operaion can be summarized as When he inpu is low, he oupu is high. When he inpu is high, he oupu is low. R b V REF R a and are given by he expressions derived

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

U(t) (t) -U T 1. (t) (t)

U(t) (t) -U T 1. (t) (t) Prof. Dr.-ng. F. Schuber Digial ircuis Exercise. () () A () - T T The highpass is driven by he square pulse (). alculae and skech A (). = µf, = KΩ, = 5 V, T = T = ms. Exercise. () () A () T T The highpass

More information

Chapter 4 DC converter and DC switch

Chapter 4 DC converter and DC switch haper 4 D converer and D swich 4.1 Applicaion - Assumpion Applicaion: D swich: Replace mechanic swiches D converer: in racion drives Assumions: Ideal D sources Ideal Power emiconducor Devices 4.2 D swich

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Universià degli Sudi di Roma Tor Vergaa Diparimeno di Ingegneria Eleronica Analogue Elecronics Paolo Colanonio A.A. 2015-16 Diode circui analysis The non linearbehaviorofdiodesmakesanalysisdifficul consider

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

Sequential Logic. Digital Integrated Circuits A Design Perspective. Latch versus Register. Naming Conventions. Designing Sequential Logic Circuits

Sequential Logic. Digital Integrated Circuits A Design Perspective. Latch versus Register. Naming Conventions. Designing Sequential Logic Circuits esigning Sequenial Logic Circuis Adaped from Chaper 7 of igial egraed Circuis A esign Perspecive Jan M. Rabaey e al. Copyrigh 23 Prenice Hall/Pearson Sequenial Logic pus Curren Sae COMBINATIONAL LOGIC

More information

Silicon Controlled Rectifiers UNIT-1

Silicon Controlled Rectifiers UNIT-1 Silicon Conrolled Recifiers UNIT-1 Silicon Conrolled Recifier A Silicon Conrolled Recifier (or Semiconducor Conrolled Recifier) is a four layer solid sae device ha conrols curren flow The name silicon

More information

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch.

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch. 16.4.3 A SWITHED POWER SUPPY USINGA DIODE In his example, we will analyze he behavior of he diodebased swiched power supply circui shown in Figure 16.15. Noice ha his circui is similar o ha in Figure 12.41,

More information

Cosmic Feb 06, 2007 by Raja Reddy P

Cosmic Feb 06, 2007 by Raja Reddy P osmic ircuis@iisc, Feb 6, 7 by aja eddy P. ou() i() alculae ou(s)/(s). plo o(). calculae ime consan and pole frequency. ou ( e τ ) ou (s) ( s) Time consan (/) Pole frequency : ω p. i() n he above circui

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Pulse Generators. Any of the following calculations may be asked in the midterms/exam.

Pulse Generators. Any of the following calculations may be asked in the midterms/exam. ulse Generaors ny of he following calculaions may be asked in he miderms/exam.. a) capacior of wha capaciance forms an RC circui of s ime consan wih a 0 MΩ resisor? b) Wha percenage of he iniial volage

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY

UNIVERSITY OF CALIFORNIA AT BERKELEY Homework #10 Soluions EECS 40, Fall 2006 Prof. Chang-Hasnain Due a 6 pm in 240 Cory on Wednesday, 04/18/07 oal Poins: 100 Pu (1) your name and (2) discussion secion number on your homework. You need o

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

EE 230 Lecture 28. Nonlinear Circuits using Diodes. Rectifiers Precision Rectifiers Nonlinear function generators

EE 230 Lecture 28. Nonlinear Circuits using Diodes. Rectifiers Precision Rectifiers Nonlinear function generators EE 230 Lecure 28 Nonlinear Circuis using ioes ecifiers Precision ecifiers Nonlinear funcion generaors Quiz 8 f a ioe has a value of S =E-4A an he ioe volage is.65v, wha will be he ioe curren if operaing

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter page 11 Flyback converer The Flyback converer belongs o he primary swiched converer family, which means here is isolaion beween in and oupu. Flyback converers are used in nearly all mains supplied elecronic

More information

2 Definitions and parameters of the impulse-technics

2 Definitions and parameters of the impulse-technics efiniions and parameers of he impulse-echnics igial logic-circuis are driven wih signals, which only represen wo levels: he levels LOW and HIGH or he variables wih he values "" and ". These levels are

More information

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers A ircuis A ircui wih only A circui wih only A circui wih only A circui wih phasors esonance Transformers Phys 435: hap 31, Pg 1 A ircuis New Topic Phys : hap. 6, Pg Physics Moivaion as ime we discovered

More information

IE1206 Embedded Electronics

IE1206 Embedded Electronics E06 Embedded Elecronics Le Le3 Le4 Le Ex Ex P-block Documenaion, Seriecom Pulse sensors,, R, P, serial and parallel K LAB Pulse sensors, Menu program Sar of programing ask Kirchhoffs laws Node analysis

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

( ) = Q 0. ( ) R = R dq. ( t) = I t

( ) = Q 0. ( ) R = R dq. ( t) = I t ircuis onceps The addiion of a simple capacior o a circui of resisors allows wo relaed phenomena o occur The observaion ha he ime-dependence of a complex waveform is alered by he circui is referred o as

More information

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation Inroducion o CMOS VLSI Design Chaper : DC & Transien Response David Harris, 004 Updaed by Li Chen, 010 Ouline DC Response Logic Levels and Noise Margins Transien Response Delay Esimaion Slide 1 Aciviy

More information

Experimental Buck Converter

Experimental Buck Converter Experimenal Buck Converer Inpu Filer Cap MOSFET Schoky Diode Inducor Conroller Block Proecion Conroller ASIC Experimenal Synchronous Buck Converer SoC Buck Converer Basic Sysem S 1 u D 1 r r C C R R X

More information

Module 10 SCR. 2. To understand two Transistor Static and Transient Models. 3. To learn the SCR Turn-on and Turn-off methods

Module 10 SCR. 2. To understand two Transistor Static and Transient Models. 3. To learn the SCR Turn-on and Turn-off methods 1 Module 1 SR 1. Inroducion 2. SR characerisics 3. Two ransisor saic and ransien models 4. SR urnon mehods 5. SR urnoff mehods 6. SR proecion and Triggering circuis 7. ae proecion circuis 8. Summary Learning

More information

Physical Limitations of Logic Gates Week 10a

Physical Limitations of Logic Gates Week 10a Physical Limiaions of Logic Gaes Week 10a In a compuer we ll have circuis of logic gaes o perform specific funcions Compuer Daapah: Boolean algebraic funcions using binary variables Symbolic represenaion

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

3. Alternating Current

3. Alternating Current 3. Alernaing Curren TOPCS Definiion and nroducion AC Generaor Componens of AC Circuis Series LRC Circuis Power in AC Circuis Transformers & AC Transmission nroducion o AC The elecric power ou of a home

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

6.01: Introduction to EECS I Lecture 8 March 29, 2011

6.01: Introduction to EECS I Lecture 8 March 29, 2011 6.01: Inroducion o EES I Lecure 8 March 29, 2011 6.01: Inroducion o EES I Op-Amps Las Time: The ircui Absracion ircuis represen sysems as connecions of elemens hrough which currens (hrough variables) flow

More information

Chapter 5-4 Operational amplifier Department of Mechanical Engineering

Chapter 5-4 Operational amplifier Department of Mechanical Engineering MEMS08 Chaper 5-4 Operaional amplifier Deparmen of Mechanical Engineering Insrumenaion amplifier Very high inpu impedance Large common mode rejecion raio (CMRR) Capabiliy o amplify low leel signals Consisen

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

Dynamic Effects of Feedback Control!

Dynamic Effects of Feedback Control! Dynamic Effecs of Feedback Conrol! Rober Sengel! Roboics and Inelligen Sysems MAE 345, Princeon Universiy, 2017 Inner, Middle, and Ouer Feedback Conrol Loops Sep Response of Linear, Time- Invarian (LTI)

More information

EECS 141: FALL 00 MIDTERM 2

EECS 141: FALL 00 MIDTERM 2 Universiy of California College of Engineering Deparmen of Elecrical Engineering and Compuer Science J. M. Rabaey TuTh9:30-11am ee141@eecs EECS 141: FALL 00 MIDTERM 2 For all problems, you can assume he

More information

The problem with linear regulators

The problem with linear regulators he problem wih linear regulaors i in P in = i in V REF R a i ref i q i C v CE P o = i o i B ie P = v i o o in R 1 R 2 i o i f η = P o P in iref is small ( 0). iq (quiescen curren) is small (probably).

More information

Lectures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS. I. Introduction

Lectures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS. I. Introduction EE-202/445, 3/18/18 9-1 R. A. DeCarlo Lecures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS I. Inroducion 1. The biquadraic ransfer funcion has boh a 2nd order numeraor and a 2nd order denominaor:

More information

Fundamentals of Power Electronics Second edition. Robert W. Erickson Dragan Maksimovic University of Colorado, Boulder

Fundamentals of Power Electronics Second edition. Robert W. Erickson Dragan Maksimovic University of Colorado, Boulder Fundamenals of Power Elecronics Second ediion Rober W. Erickson Dragan Maksimovic Universiy of Colorado, Boulder Chaper 1: Inroducion 1.1. Inroducion o power processing 1.2. Some applicaions of power elecronics

More information

Lecture -14: Chopper fed DC Drives

Lecture -14: Chopper fed DC Drives Lecure -14: Chopper fed DC Drives Chopper fed DC drives o A chopper is a saic device ha convers fixed DC inpu volage o a variable dc oupu volage direcly o A chopper is a high speed on/off semiconducor

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C :

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C : EECE202 NETWORK ANALYSIS I Dr. Charles J. Kim Class Noe 22: Capaciors, Inducors, and Op Amp Circuis A. Capaciors. A capacior is a passive elemen designed o sored energy in is elecric field. 2. A capacior

More information

Timer 555. Digital Electronics

Timer 555. Digital Electronics Timer 555 Digial Elecronics This presenaion will Inroduce he 555 Timer. 555 Timer Derive he characerisic equaions for he charging and discharging of a capacior. Presen he equaions for period, frequency,

More information

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance:

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance: Problem Se # Problem : a) Using phasor noaion, calculae he volage and curren waves on a ransmission line by solving he wave equaion Assume ha R, L,, G are all non-zero and independen of frequency From

More information

Principle and Analysis of a Novel Linear Synchronous Motor with Half-Wave Rectified Self Excitation

Principle and Analysis of a Novel Linear Synchronous Motor with Half-Wave Rectified Self Excitation Principle and Analysis of a Novel Linear Synchronous Moor wih Half-Wave Recified Self Exciaion Jun OYAMA, Tsuyoshi HIGUCHI, Takashi ABE, Shoaro KUBOTA and Tadashi HIRAYAMA Deparmen of Elecrical and Elecronic

More information

Chapter 2: Logical levels, timing and delay

Chapter 2: Logical levels, timing and delay 28.1.216 haper 2: Logical levels, iming and delay Dr.-ng. Sefan Werner Winersemeser 216/17 Table of conen haper 1: Swiching lgebra haper 2: Logical Levels, Timing & Delays haper 3: Karnaugh-Veich-Maps

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

UNIT- III DC CHOPPERS

UNIT- III DC CHOPPERS UN- D HPPES NDUN A chopper is a saic device which is used o obain a variable dc volage from a consan dc volage source. A chopper is also known as dc-o-dc converer. he hyrisor converer offers greaer efficiency,

More information

Chapter 4 AC Network Analysis

Chapter 4 AC Network Analysis haper 4 A Nework Analysis Jaesung Jang apaciance Inducance and Inducion Time-Varying Signals Sinusoidal Signals Reference: David K. heng, Field and Wave Elecromagneics. Energy Sorage ircui Elemens Energy

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

i sw + v sw + v o 100V Ideal switch characteristics

i sw + v sw + v o 100V Ideal switch characteristics deal swich characerisics. onsider he swiching circui shown in Fig. P. wih a resisive load. Assume he swich is ideal and operaing a a duy raio of 4%. (a) Skech he waveforms for i sw and v sw. (b) Deermine

More information

EE 101 Electrical Engineering. vrect

EE 101 Electrical Engineering. vrect EE Elecrical Engineering ac heory 3. Alernaing urren heory he advanage of he alernaing waveform for elecric power is ha i can be sepped up or sepped down in poenial easily for ransmission and uilisaion.

More information

Lecture 28: Single Stage Frequency response. Context

Lecture 28: Single Stage Frequency response. Context Lecure 28: Single Sage Frequency response Prof J. S. Sih Conex In oday s lecure, we will coninue o look a he frequency response of single sage aplifiers, saring wih a ore coplee discussion of he CS aplifier,

More information

EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS C gsp V DD C sbp C gd, C gs, C gb -> Oxide Caps C db, C sb -> Juncion Caps 2 S C in -> Ineconnec Cap G B D C dbp V in C gdp V ou C gdn D C dbn G B S C in

More information

Dual Current-Mode Control for Single-Switch Two-Output Switching Power Converters

Dual Current-Mode Control for Single-Switch Two-Output Switching Power Converters Dual Curren-Mode Conrol for Single-Swich Two-Oupu Swiching Power Converers S. C. Wong, C. K. Tse and K. C. Tang Deparmen of Elecronic and Informaion Engineering Hong Kong Polyechnic Universiy, Hunghom,

More information

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direc Curren Circuis February 19, 2014 Physics for Scieniss & Engineers 2, Chaper 26 1 Ammeers and Volmeers! A device used o measure curren is called an ammeer! A device used o measure poenial difference

More information

Introduction to Digital Circuits

Introduction to Digital Circuits The NMOS nerer The NMOS Depleion oad 50 [ D ] µ A GS.0 + 40 30 0 0 Resisance characerisic of Q 3 4 5 6 GS 0.5 GS 0 GS 0.5 GS.0 GS.5 [ ] DS GS i 0 Q Q Depleion load Enhancemen drier Drain characerisic of

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

2.9 Modeling: Electric Circuits

2.9 Modeling: Electric Circuits SE. 2.9 Modeling: Elecric ircuis 93 2.9 Modeling: Elecric ircuis Designing good models is a ask he compuer canno do. Hence seing up models has become an imporan ask in modern applied mahemaics. The bes

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

Analysis and design of a high-efficiency zero-voltage-switching step-up DC DC converter

Analysis and design of a high-efficiency zero-voltage-switching step-up DC DC converter Sādhanā Vol. 38, Par 4, Augus 2013, pp. 653 665. c Indian Academy of Sciences Analysis and design of a high-efficiency zero-volage-swiching sep-up DC DC converer JAE-WON YANG and HYUN-LARK DO Deparmen

More information

555 Timer. Digital Electronics

555 Timer. Digital Electronics 555 Timer Digial Elecronics This presenaion will Inroduce he 555 Timer. 555 Timer Derive he characerisic equaions for he charging and discharging of a capacior. Presen he equaions for period, frequency,

More information

Signal and System (Chapter 3. Continuous-Time Systems)

Signal and System (Chapter 3. Continuous-Time Systems) Signal and Sysem (Chaper 3. Coninuous-Time Sysems) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 0-760-453 Fax:0-760-4435 1 Dep. Elecronics and Informaion Eng. 1 Nodes, Branches, Loops A nework wih b

More information

Dead-time Induced Oscillations in Inverter-fed Induction Motor Drives

Dead-time Induced Oscillations in Inverter-fed Induction Motor Drives Dead-ime Induced Oscillaions in Inverer-fed Inducion Moor Drives Anirudh Guha Advisor: Prof G. Narayanan Power Elecronics Group Dep of Elecrical Engineering, Indian Insiue of Science, Bangalore, India

More information

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class -Spring 006 Digial Inegraed Circuis Lecure Design Merics Adminisraive Suff Labs and discussions sar in week Homework # is due nex hursday Everyone should have an EECS insrucional accoun hp://wwwins.eecs.berkeley.edu/~ins/newusers.hml

More information

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context Reading Lecure 28: Single Sage Frequency response Prof J. S. Sih Reading: We are discussing he frequency response of single sage aplifiers, which isn reaed in he ex unil afer uli-sae aplifiers (beginning

More information

Chapter 6 MOSFET in the On-state

Chapter 6 MOSFET in the On-state Chaper 6 MOSFET in he On-sae The MOSFET (MOS Field-Effec Transisor) is he building block of Gb memory chips, GHz microprocessors, analog, and RF circuis. Mach he following MOSFET characerisics wih heir

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mar Fowler Noe Se #1 C-T Signals: Circuis wih Periodic Sources 1/1 Solving Circuis wih Periodic Sources FS maes i easy o find he response of an RLC circui o a periodic source!

More information

Chapter 10 INDUCTANCE Recommended Problems:

Chapter 10 INDUCTANCE Recommended Problems: Chaper 0 NDUCTANCE Recommended Problems: 3,5,7,9,5,6,7,8,9,,,3,6,7,9,3,35,47,48,5,5,69, 7,7. Self nducance Consider he circui shown in he Figure. When he swich is closed, he curren, and so he magneic field,

More information

6.003 Homework #13 Solutions

6.003 Homework #13 Solutions 6.003 Homework #3 Soluions Problems. Transformaion Consider he following ransformaion from x() o y(): x() w () w () w 3 () + y() p() cos() where p() = δ( k). Deermine an expression for y() when x() = sin(/)/().

More information

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution:

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution: Example: The inpu o each of he circuis shown in Figure 10-N1 is he volage source volage. The oupu of each circui is he curren i( ). Deermine he oupu of each of he circuis. (a) (b) (c) (d) (e) Figure 10-N1

More information

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect H513 8-Channel Serial o Parallel Converer wih High olage Push-Pull s, POL, Hi-Z, and Shor Circui Deec Feaures HCMOS echnology Operaing oupu volage of 250 Low power level shifing from 5 o 250 Shif regiser

More information

Module 4: Time Response of discrete time systems Lecture Note 2

Module 4: Time Response of discrete time systems Lecture Note 2 Module 4: Time Response of discree ime sysems Lecure Noe 2 1 Prooype second order sysem The sudy of a second order sysem is imporan because many higher order sysem can be approimaed by a second order model

More information

p h a s e - o u t Three Phase Rectifier Bridge with IGBT and Fast Recovery Diode for Braking System VVZB 135 = 1600 V = 135 A Recommended replacement:

p h a s e - o u t Three Phase Rectifier Bridge with IGBT and Fast Recovery Diode for Braking System VVZB 135 = 1600 V = 135 A Recommended replacement: VVZB 5 Three Phase Recifier Bridge wih IGBT and Fas Recovery Diode for Braking Sysem V RRM I dvm = 6 V = 5 V RRM Type + 6 5 4 NTC 9 + V 6 VVZB 5-6 NO 6+7 4+5 + Symbol Condiions Maximum Raings V RRM 6 V

More information

Determination of the Sampling Period Required for a Fast Dynamic Response of DC-Motors

Determination of the Sampling Period Required for a Fast Dynamic Response of DC-Motors Deerminaion of he Sampling Period Required for a Fas Dynamic Response of DC-Moors J. A. GA'EB, Deparmen of Elecrical and Compuer Eng, The Hashemie Universiy, P.O.Box 15459, Posal code 13115, Zerka, JORDAN

More information

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

q, r, s r s q Since Q has taken 2 days sick leave, he has worked only 5 days on the end of seventh day Ratio of their work

q, r, s r s q Since Q has taken 2 days sick leave, he has worked only 5 days on the end of seventh day Ratio of their work . Ans. A. Before superlaive aricle he has o be used. one of he expression should ae plural noun and so opion C and D can be he answer.. Ans. B. lose is verb. 3. Ans. A. effeciveness is noun and prescribed

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

First Order RC and RL Transient Circuits

First Order RC and RL Transient Circuits Firs Order R and RL Transien ircuis Objecives To inroduce he ransiens phenomena. To analyze sep and naural responses of firs order R circuis. To analyze sep and naural responses of firs order RL circuis.

More information

Chapter 4. Circuit Characterization and Performance Estimation

Chapter 4. Circuit Characterization and Performance Estimation VLSI Design Chaper 4 Circui Characerizaion and Performance Esimaion Jin-Fu Li Chaper 4 Circui Characerizaion and Performance Esimaion Resisance & Capaciance Esimaion Swiching Characerisics Transisor Sizing

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

Multi-Frequency Sheath Dynamics

Multi-Frequency Sheath Dynamics Muli-Frequency Sheah Dynamics Seven Shannon, Alex Paerson, Theodoros Panagopoulos, Daniel Hoffman, John Holland, Dennis Grimard (Universiy of Michigan) Purpose of research RF plasmas wih muliple frequency

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

Physics 310 Lecture 7b Waveform Generators & Timers

Physics 310 Lecture 7b Waveform Generators & Timers Physics 0 Lecure 7b Waveform Generaors & imers Wed. /0 hurs. / Fri. / Ch 0: Oscillaors & imers - Beginning Ch 0: Oscillaors & imers es of; Lab 7: Oscillaors & imers Lab 7: Oscillaors & imers; Quiz Ch 0

More information

MC3x063A 1.5-A Peak Boost/Buck/Inverting Switching Regulators

MC3x063A 1.5-A Peak Boost/Buck/Inverting Switching Regulators MC3303A, MC3403A SLLS3N DECEMBER 004 REVISED JANUARY 05 MC3x03A.5-A Peak Boos/Buck/Invering Swiching Regulaors Feaures 3 Descripion Wide Inpu Volage Range: 3 V o 40 V The MC3303A and MC3403A devices are

More information